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the world 
around  
us is filled 
with  
important, 
unanswered 
questions.



A mathematical model is a representation of a system 
or scenario that is used to gain qualitative and/
or quantitative understanding of some real-world 
problems and to predict future behavior. Models 
are used in a variety of disciplines, such as biology, 
engineering, computer science, psychology, sociology, 
and marketing. Because models are abstractions of 
reality, they can lead to scientific advances, provide the 
foundation for new discoveries, and help leaders make 
informed decisions.
 This guide is intended for students, teachers, and 
anyone who wants to learn how to model. The aim 
of this guide is to demystify the process of how a 
mathematical model can be built. Building a useful 
math model does not necessarily require advanced 
mathematics or significant expertise in any of the 
fields listed above. It does require a willingness to do 
some research, brainstorm, and jump right in and try 
something that may be out of your comfort zone.

1. INTRODUCTION
The world around us is filled with important, 
unanswered questions. What effect will rising sea 
levels have on the coastal regions of the United States? 
When will the world’s human population surpass 
10 billion? How much will it cost to go to college in 
10 years? Who will win the next U.S. Presidential 
election? There are also other phenomena we wish to 
understand better. Is it possible to study crimes and 
identify a burglary pattern [1, 10]? What is the best 
way to move through the rain and not get soaked 
[7]? How feasible is invisibility cloaking technology 
[6]? Can we design a brownie pan so the edges do not 
burn but the center is cooked [2]? Possible answers to 
these questions are being sought by researchers and 
students alike. Will they be able to find the answers? 
Maybe. The only thing one can say with certainty is 
that any attempt to find a solution requires the use 
of mathematics, most likely through the creation, 
application, and refinement of mathematical models.
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This type of question might appear in a math textbook 
to reinforce the concept that we translate the phrase 
“35% of” to the mathematical computation “0.35 
times.” It is an example of what we would call a word 
problem: the problem explicitly gives you all the 
information you need. You need only determine the 
appropriate math computation(s) in order to arrive at 
the one correct answer. Word problems can be used 
to help students understand why we might want to 
study a particular mathematical concept and reinforce 
important mathematical skills.
 The second question is quite different. When you 
read a question like this, you might be thinking, “I 
don’t have enough information to answer this ques-
tion,” and you’re right! This is exactly the key point: we 
usually don’t have complete information when trying 
to solve real-world problems. Indeed, such situations 
demand that we use both mathematics and creativity. 
When we encounter such situations where we have 

Modeling problems are entirely different than the types of word problems most of us encountered in math classes. 
In order to understand the difference between math modeling and word problems, consider the following questions 
about recycling.

1.  The population of Yourtown is 20,000, and 35% of its citizens recycle their plastic water bottles. If each person uses 
9 water bottles per week, how many bottles are recycled each week in Yourtown?

2.  How much plastic is recycled in Yourtown? 

The solution to the first question is straightforward:

math modeling 
vs. word problems

bottles bottles

person × week week
0.35 × 20,000 people × 9 = 63,000

incomplete information, we refer to the problem as 
open-ended. It turns out that mathematical modeling 
is perfect for open-ended problems. This question, for 
example, might have been conceived because we saw 
garbage cans overflowing with water and soda bottles 
and then wondered how many bottles were actually  
being thrown out and why they were not being  
recycled. Modeling allows us to use mathematics to 
analyze the situation and propose a solution to promote 
recycling.
 In the word problem example above, it is assumed 
that each person in town uses 9 plastic water bottles per 
week and that 35% of the 20,000 people recycle their 
water bottles every time they use one. Are these reason-
able assumptions? The number 20,000 is probably an 
estimate of Yourtown’s population, but where is the 
other information coming from? Is it likely that every 
person in the town uses exactly 9 water bottles every 
week? Is it likely that 35% of people recycle every water 

1: introduction
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bottle they use while 65% of people never recycle any  
of their water bottles? Probably not, but maybe this is 
an average value, based on other data. The first problem 
doesn’t invite us to determine whether the scenario 
is realistic; it is assumed that we will accept the given 
information as true and make the appropriate  
computations.
 In order to answer the second (modeling) problem 
above, you would need to research the situation for 
yourself, making your own (reasonable) assumptions 
and strategies for answering the question. The  
question statement doesn’t provide specific details 
about Yourtown.
 You will have to determine 
what factors about Yourtown 
contribute to the amount of plastic 
that gets recycled. It seems reason-
able to believe that the population 
of Yourtown is an important factor, 
but what else about the city affects 
the recycling rate? The question 
statement failed to mention what 
types of plastic you should be tak-
ing into account. It would be hard 
to quantify all plastic thrown away. Is it a reasonable 
assumption to consider only the plastics from food and 
beverage containers if you believe those are the pri-
mary plastic waste sources? You would have to do some 
research and make some assumptions in order to make 
any progress on this problem.
 If, after your research, you distill the original prob-
lem into something very specific, such as “Determine 

the volume of plastic waste Yourtown sent to landfills 
last year,” then there is exactly one correct answer. 
However, it’s unlikely that you will ever have sufficient 
information to find that answer. In light of this, you 
will develop a model that best estimates the answer 
given the available information. Since no one knows 
the true answer to the question, your model is at least 
as important as the answer itself, as is your ability to 
explain your model.
 In contrast to word problems, we often use the 
phrase “a solution” (as opposed to “the solution”) when 
we talk about modeling problems. This is because 
people who look at the same modeling problem may 

have different perspectives into its 
resolution and can certainly come up 
with different, valid alternative solu-
tions. It is worth noting that word 
problems can actually be thought of 
as former modeling problems. That is 
to say, someone has already deter-
mined a simple model and provided 
you with all the relevant pieces of 
information. This is very different 
from a modeling problem, in which 

you must decide what’s important and how to piece it 
all together.
 Mathematical modeling questions allow you to 
research real-world problems, using your discoveries 
to create new knowledge. Your creativity and how you 
think about this problem are both highly valuable in 
finding a solution to a modeling question. This is part 
of what makes modeling so interesting and fun!

people who look at the 

same modeling problem 

may have different 

perspectives into its 

resolution and can 

certainly come up 

with different, valid 

alternative solutions.
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This guide will help you understand each of the  
components of math modeling. It’s important to remember 
that this isn’t necessarily a sequential list of steps; math 
modeling is an iterative process, and the key steps may be 
revisited multiple times, as we show in Figure 1.

overview of the 
modeling process

Building the model

figure 1.

research & 
brainstorming

Getting a 
solution

repeat as 
needed or as 
time allows

Analysis & model 
assessment

Real world problem

reporting results

1: introduction

defining 
the  

problem

Defining 
variables

Making  
assump-

tions



•  Defining the Problem Statement Real-world  
problems can be broad and complex. It’s important 
to refine the conceptual idea into a concise problem 
statement which will indicate exactly what the  
output of your model will be.

•  Making Assumptions Early in your work, it may 
seem that a problem is too complex to make any  
progress. That is why it is necessary to make assump-
tions to help simplify the problem and sharpen the 
focus. During this process you reduce the number of 
factors affecting your model, thereby deciding which 
factors are most important.

•  Defining Variables What are the primary fac-
tors influencing the phenomenon you are trying to 
understand? Can you list those factors as quantifi-
able variables with specified units? You may need to 
distinguish between independent variables, dependent 
variables, and model parameters. In understand-
ing these ideas better, you will be able both to define 
model inputs and to create mathematical relation-
ships, which ultimately establish the model itself.

7

•  Getting a Solution What can you learn from your 
model? Does it answer the question you originally 
asked? Determining a solution may involve pencil-
and-paper calculations, evaluating a function, running 
simulations, or solving an equation, depending on the 
type of model you developed. It might be helpful to 
use software or some other computational technology.

•  Analysis and Model Assessment In the end, one must 
step back and analyze the results to assess the quality 
of the model. What are the strengths and weaknesses 
of the model? Are there certain situations when the 
model doesn’t work? How sensitive is the model if you 
alter the assumptions or change model parameters 
values? Is it possible to make (or at least point out) 
possible improvements?

•  Reporting the Results Your model might be awe-
some, but no one will ever know unless you are able to 
explain how to use or implement it. You may be asked 
to provide unbiased results or to be an advocate for a 
particular stakeholder, so pay attention to your point 
of view. Include your results in a summary or abstract 
at the beginning of your report.

We will address the components in more detail one by one, but we note again that this should not be thought of as a 
checklist for modeling. Throughout the process of building your model, you’ll likely move back and forth among the 
components. Take careful notes as you go; it’s easy to get caught up in the modeling process and forget what you’ve 
done along the way!



waste not, want not: putting  

recyclables in their place 

(A selection from Moody’s Mega Math Challenge: 
2013 Problem. The full question and a solution paper 
submitted by Team 1356 from Montgomery Blair High 
School, Silver Spring, Maryland, coached by David Stein 
and with student members Alexander Bourzutschky, 
Alan Du, Tatyana Gubin, Lisha Ruan, and Audrey Shi, is 
included as Appendix B.) 
 Plastics are embedded in a myriad of modern-day 
products, from pens, cell phones, and storage containers 
to car parts, artificial limbs, and medical instruments; 
unfortunately, there are long-term costs associated with 
these advances. Plastics do not biodegrade easily. There 
is a region of the Northern Pacific Ocean, estimated 
to be roughly the size of Texas, where plastics collect 
to form an island and cause serious environmental 
impact. While this is an international problem, in 
the U.S. we also worry about plastics that end up in 
landfills and may stay there for hundreds of years. To 
gain some perspective on the severity of the problem, 
the first plastic bottle was introduced in 1975 and now, 
according to some sources, roughly 50 million plastic 
water bottles end up in U.S. landfills every day.

We demonstrate the modeling process by looking at three 
modeling questions in detail. We state those problems  
directly below and then explore them throughout the  
remainder of this guide.

1: introduction

primary examples used 
throughout this guide

Plastics aren’t the only problem. So many of the 
materials we dispose of can be recycled. Develop a 
mathematical model that a city can use to determine 
which recycling method it should adopt. You may 
consider, but are not limited to:

•  Providing locations where one can drop off pre-sorted 
recyclables

•  Providing single-stream curbside recycling

•  Providing single-stream curbside recycling in addition 
to having residents pay for each container of garbage 
collected

Your model should be developed independent of current 
recycling practices in the city and should include 
some information about the city of interest and some 
information about the recycling method. Demonstrate 
how your model works by applying it to each of the 
following cities: Fargo, North Dakota; Price, Utah; 
Wichita, Kansas.

8



Will it Thrill Me?  
Amusement parks are typically open during the summer 
months, when the heat and humidity are almost 
unbearable. The lines for the most popular rides can 
sometimes be hours long, leaving you to decide whether 
you should spend your limited time at the park waiting 
to ride the newest, most popular roller coaster (with 
the longest line) or instead riding several, possibly less 
exciting, roller coasters.
 Unfortunately there is no real metric for scoring 
roller coasters, although an extensive database exists 
with information about many rides (see rcdb.com). 
Innovative roller coaster engineers certainly set out to 
design a thrilling roller coaster, but what makes a roller 
coaster exciting and fun? Create a mathematical model 
that ranks roller coasters according to a thrill factor that 
you define.

Outbreak? Epidemic? Pandemic? 

Panic?  

We all dread getting sick. Years ago, illness didn’t 
spread very quickly because travel was difficult and 
expensive. Now thousands of people travel via trains 
and planes across the globe for work and vacation every 
day. Illnesses that were once confined to small regions 
of the world can now spread quickly as a result of one 
infected individual who travels internationally. The 
National Institutes of Health and the Centers for Disease 
Control and Prevention are interested in knowing 
how significant the outbreak of illnesses will be in the 
coming year in the U.S.

9



2. defining the 
problem  
statement

Modeling problems are often open ended. Some math 
modeling problems are clearly defined, while others 
are ambiguous. This means there is an opportunity for 
creative problem solving and interpretation. In some 
cases, it is up to the modeler to define the outputs of 
the model and which key concepts will be quantified. 
Defining the problem statement requires some research 
and brainstorming. The goal is a concise statement that 
explains what the model will predict.
 To see how a math modeling question can be 
interpreted in different ways, consider the roller coaster 
problem proposed earlier: rank roller coasters according 
to how thrilling they are. The word “thrilling” here 
is open to several interpretations. There are many 
reasonable possibilities in defining and quantifying 
“thrilling.”
 For example, one student’s definition of a thrilling 
ride may be a combination of the maximum height 
and the number of loops, while another student values 
a combination of length of a ride and the maximum 
speed. If these individuals ranked the same list of roller 
coasters, their ranking systems would likely produce 
different results, neither of which would be “the” 
correct ranking. The modeler has room to be creative in 
deciding how to define “thrilling” but must make sure 
that no matter what definition she decides upon, there is 
a systematic ranking that incorporates quantifiable (i.e., 
measurable) aspects of a roller coaster.
 Perhaps you’re thinking that the reason the students 
above didn’t come up with “the” one correct ranking 
with either of the previous models is because neither 

of those models incorporate sufficiently sophisticated 
mathematics. Suppose that we can leverage tools from 
mathematics and physics to help answer this question. 
Given the design of a particular roller coaster, we might 
compute, among other things, velocities and g-forces a 
rider would experience. Even with this information in 
hand, it’s not obvious how to use that information to 
rank roller coasters.
 Consider four different roller coasters (A, B, C, 
and D). Coaster A has a larger maximum velocity than 
B, but B has a higher average velocity. Which is more 
thrilling? How would these two rank against roller 
coaster C, which attains a g-force twice as large as A’s 
or B’s but only does so for 10 seconds of the entire 
ride? Suppose that roller coaster D never reaches that 
g-force but sustains g-forces only .5 g less for more 
than 50 seconds. Which is more thrilling? The modeler 
must choose a definition for thrilling. Eventually, when 
communicating the results, a modeler will need to 
explain why decisions were made and will discuss the 
strengths and weakness of the model.
 In the previous discussion we mentioned just 
a few measurable aspects of roller coasters that one 
could use to define “thrilling,” including maximum 
height, the number of peaks, the maximum velocity, 
or some combination of these. Where does one get a 
list like this? They come from a process we refer to as 
brainstorming. Brainstorming is part of the problem-
solving process where spontaneous ideas are allowed to 
flow without evaluation and interruption.

10



The roller coaster example demonstrates that 
brainstorming at the beginning of a project is an 
essential process that helps reveal different directions 
that the math model can take. A brainstorming session 
may include listing all of the things that make a roller 
coaster thrilling and then digging deeper to see how 
those properties are measured. At the beginning of the 
process, however, one may want to just let the ideas  
flow and then prune the list later after determining what 
resources are available. This process is related to making 
assumptions, which we will talk about in more detail  
in the next section.
 We’ll look at the brainstorming process in detail 
by showing how it might work within the context of 
the recycling problem. In this problem, we want to 
determine which recycling method would be best for 
a city to adopt. The word “best” needs to be clearly 
defined, and there are multiple ways to do that. Let’s 
imagine that we are on a team that works together to 
discuss this, and we think of three possible ways to 
define “best” in this problem.
 In order to organize our thoughts, we might 
use a mind map, as in Figure 2, to give us a visual 
representation of our initial round of brainstorming. 
A mind map is a tool to visually outline and organize 
ideas. Typically a key idea is the center of a mind map 
and associated ideas are added to create a diagram 
that shows the flow of ideas. In Figure 2, we focus on 
the definition of “best,” with three possible definitions 

branching off to be further explored. From here, we  
can focus our attention on one of the three branches  
at a time. Let’s think about the least-cost option first.  
We probably can’t determine how much any recycling  
program costs without knowing more about the 
recycling program, so a good place to start is to ask the 
question “What kinds of recycling programs exist?”  
If we aren’t familiar with different types of recycling,  
we might need to do some research to see what kinds  
of programs exist.
 If you are working on a long-term modeling 
project and you have lots of time, you’ll want to do an 
extensive search to find learn everything you can about 
the problem. You’ll also want to find out if others have 
considered modeling this situation. If you are working 
on a problem and you have a fairly short time frame, 
you’ll need to be careful to not spend all of your time 
on the internet researching the problem. Instead, do 
a quick, preliminary internet search to get a broad 
perspective (without getting too far into the “weeds”).
 Suppose that the list of recycling methods consists 
of drop-off center, curbside single-stream, curbside 
(presorted), and pay-as-you-throw. Next, we need to 
consider the costs. Let’s focus on one of the branches, 
say single-stream curbside pick-up of recyclables. We 
then ask ourselves, “What contributes to cost for this 
method?” Then we ask, “For each of those costs, what  
is the dependence on the properties of the city?” 

least overall 
cost to city

most  
participation

processes the 
most recyclables

“best” 
recycling 
method

Figure 2 
Example of mind map to explore 
the definition of “best”
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2: defining the problem statement

“best” 
recycling 
method

processes 
the most 
recycla-
bles

least 
overall 
cost to 
city

curbside 
(pre-
sorted)

pay as  
you  
throw

curbside  
single 
stream

drop- 
off 
center

how many are needed?

operational cost

operational cost

operational cost

operational cost

likelihood of participation

likelihood of participaton

efficiency 

incentives/refunds?

most
partici-
pation

Figure 3 

Possible mind map under the assumption 

that “best” means least cost

A possible final mind map for the least-cost 
approach is shown in Figure 3.
 Although we will not include the details 
here, you can imagine that we could proceed 
in a similar fashion for each of the three  
definitions of “best.” We would then choose 
one of the three possibilities, define the 
problem statement in terms of this choice, and 
move forward from there to develop a model.
During the brainstorming process, explore the 
problem from different perspectives as if you 
had access to all the data you could ever need. 
In the next section, Making Assumptions, we’ll 
discuss exactly what you can do if you can’t 
find all of the data you need. Don’t discount 
any idea simply because you don’t think you’ll 
be able to find sufficient data.
 One of the most important aspects of 
brainstorming is to let the ideas flow freely, 
especially if done in a group. It is best at this 
initial phase to stay positive and be open-
minded. This part of the modeling process is 
about creativity, so it is important that there is 
no criticism of anyone’s ideas or suggestions. 
What seems like a ridiculous approach may 
later seem innovative after some more thought, 
so make note of everything! Also, even if your 
idea isn’t perfect, it might inspire someone else 
to come up with an even better suggestion.
After you’ve explored the problem and  
considered several possible approaches,  
you can step back and look at the possible ways  
a model might be constructed. Your intuition 
will help you analyze your brainstorming 
results and decide on a reasonable  
problem statement.

likelihood of participation

likelihood of 
participation
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how many are needed?

size of city

start-up? (fixed cost)

distance to center

likelihood to participate

operational cost

start-up? (fixed cost) start-up? (fixed cost)

start-up? 
(fixed cost)

how many 
are needed?

area of 
city

area of city
population

number of trucks

mileage year

how many?

wage

truck 
capacitytruck capacity

number of trucks

operational cost

start-up? 
(see above 
map)

processing 
center

operational cost

single stream or pre-sort mapping

operational cost

population

processing costs/recyclable

probability based on data?

cost-benefit analysis

Limited scope (beverage containers only)

likelihood of participation

processing center

trucks

processing costs/recyclable

GAS

maintenance

employees

likelihood of participaton

incentives/refunds?

probability based on data?

likelihood of participation

probability 
based on data?

likelihood of 
participation

how far are people willing to drive?

how much waste can the center process?

how many/square mile?
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Often math modeling questions are worded in ways that allow for multiple approaches, so you 

should develop a concise restatement of the question at hand.

Focus on subjective words that can be interpreted in different ways. Also, identify words that 

are not easily quantified. Examples include best, thrilling, efficient, robust and optimal.

Explore the problem by doing a combination of research and brainstorming, keeping in mind 

your time constraints.

Keep an open mind and a positive attitude; you can prune out ideas later that are not realistic.

 Brainstorming should be approached as if you had access to any data you need.

Visual diagrams, such as mind maps, can be a powerful tool leading to the structure of the 

model. Consider using the website freemind (http://freemind.sourceforge.net/wiki/index.php/Main_Page) [5]. 

In the end, you should have a concise statement that explains what the model will measure  

or predict.

Activity

in summary

Create a mind map for the disease-spreading problem.

2: defining the problem statement

1

2

3

4

5

6

7
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3. Making 
Assumptions
In presenting any scientific work to others, you 
need to explain how the results were achieved with 
explicit details so that they can be repeated. If you are 
explaining a chemistry experiment, for example, you 
need to list (among other things) which chemicals 
were used in what quantities and in what order. Other 
chemists would expect similar results only when they 
used the same chemicals and procedure.
 The list of assumptions for a mathematical model are 
as critical as the experimental procedure in performing 
a chemistry experiment. The assumptions tell the reader 
under what conditions the model is valid. Making 
assumptions can be one of the most intimidating parts 
of the modeling process for a novice, but it need not 
be! Assumptions are necessary and help you make a 
seemingly impossible question much more tractable.
 Many assumptions will follow quite naturally from 
the brainstorming process. For the recycling problem, 
some of our assumptions follow directly from the 
questions we asked during the brainstorming session,  
as on the following page. 
 Let’s further examine the assumption about how 
many people would make use of drop-off centers 
(termed “likelihood of participation”). The two extremes 
would be to assume that the 100% of the people near a 
recycling center would use it or that none would use it. 
Neither of these seems like a reasonable assumption, so 
what would be a better assumption? The students whose 
solution to this problem appears in Appendix B decided 

they would do some investigation and see if there has 
been any successful research on participation rates in 
drop-off centers. They found a study that had been 
done in Ohio that estimated about 15% of households 
participated in drop-off center recycling, and made an 
assumption that this rate would hold in every city across 
the U.S.
 One might ask if it is safe to assume that across 
the U.S. 15% of households will participate in drop-off 
center recycling if it is available. Is it true that residents 
of Arizona will behave the same way residents of Ohio 
do? Certainly some cities would garner a participation 
rate much higher than 15%, while other cities would 
have a significantly lower participation rate. In fact, 
what are the chances that any city would actually have 
a participation rate of exactly 15%? In some sense, one 
might say that assigning one participation rate to every 
city across the U.S. is a ridiculous assumption.
 In response to that line of thinking, remember 
two things. First, remember that one must make 
assumptions in order to make a model. It is not 
practical or feasible to poll every citizen of every city 
to determine who will bring recyclables to a drop-
off center. If we had to rely on data with that level of 
certainty at every juncture of the modeling process, 
we would never get any work done. It’s practical and 
important to make reasonable assumptions when we 
cannot find data.

15



What is meant by the “best”

recycling method?

The best recycling method 

will be interpreted to mean 

the least cost to  

the city.

Brainstorming Question

What contributes

to cost for the

drop-off center method?

What recycling methods should

we consider?

We consider only four

recycling programs: 

drop-off centers, single-stream 

curbside, presorted curbside, and 

pay-as-you-throw.

What is the dependence
on the properties
of the city?

The cost of drop-off centers depends only 

on the number of drop-off centers, the 

quantity of recyclables that pass through 

each center, and the costs to operate  

each center.

3: mAKING ASSUMPTIONS

brainstorming question ASSUMPTION

The number of drop-off centers 

needed depends on the area of the 

city, the population of the city, and 

the likelihood of participation.

16



 Choice of assumptions may also be dictated by the 
mathematical tools available. Both the National Institute 
of Health and the Centers for Disease Control and 
Prevention use mathematical modeling to help them 
understand the spread of infectious diseases. While their 
models may be quite sophisticated, they are actually 
built upon many of the simple principles we will discuss 
here, which evolve from relatively few assumptions. Let’s 
focus on determining the number of people who have 
the disease over time by considering models at multiple 
math levels.
 One of the simpler models for disease propagation 
can be created if we assume that the disease spreads at a 
constant rate. For example, we might assume that each 
person who has the disease will spread the disease to 3 
people per day or that each person spreads the disease to 
just 1 person every 5 days. As we move forward, we will 
refer to this as the constant-rate disease model.
 Transmission rate drives the spread of disease, and 
the assumption that it remains constant over time seems 
unlikely for the duration of the disease. If we have 
knowledge of calculus and differential equations, we 
can arrive at another model that accounts for varying 
transmission rate.

 Second, you are developing a model that is intended 
to help one understand some complex behavior or assist 
in making a complex decision. It is not likely to predict 
the exact outcome of a situation, only to help provide 
insight and predict likely outcomes. When you provide 
a list of your assumptions, you’ve done your part to 
inform anyone who might use your model. They can 
decide whether they think your assumption is or is not 
appropriate to model the behavior they are interested 
in predicting. In the Analysis and Model Assessment 
section, we’ll discuss in more detail ways in which you 
can examine some of the impacts of your assumptions.
 It’s entirely possible that you may search and search 
and never find the data you need to make an “educated” 
guess about a parameter in your model. That’s fine; 
simply make a note in your write-up that future work 
might include further investigation in that area. If Team 
1356 had not found any estimates for recycling rates, 
they might have assumed that the recycling rate was 
50% in the absence of other data (since it’s the mean of 
the two extreme cases). That would have been a better 
assumption than either of the extremes (all residents 
recycle or no residents recycle). They also might have 
determined that 25% seemed reasonable (based on their 
own experiences or intuition) and moved forward with 
that number. All of these are appropriate as long as they 
are included as assumptions.
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In order to decide how the transmission rate should 
change with time, it might be helpful to think about 
the mechanism behind disease transmission: infected 
people somehow in contact with susceptible individuals. 
It makes sense, then, to believe that the transmission 
rate depends on how many people 
are infected and how many 
people are susceptible. We might 
assume that the transmission rate 
is directly proportional to the 
product of the number of people 
infected and the number of people 
who are susceptible. We will refer 
to this model as the varying-rate 
disease model. We will revisit both 
disease models in later sections.
 Some assumptions are made 
at the beginning of the modeling 
process, while others are made as you proceed through 
the modeling process. The modeling process is iterative; 

it is legitimate to make a reasonable assumption, 
determine how it affects the model moving forward, 
and make adjustments to improve the outcome. You 
can see an example of this later in the Analysis and 
Model Assessment section. Make a careful list all of the 

assumptions you make along the way; 
a good modeling paper includes a 
list of assumptions in the write-up. 
Additionally, keep track of all the 
resources used so that you can create a 
bibliography.
      With all of these options, how 
does one know which is the best 
assumption to make? There is no easy 
answer to this question; the most 
important thing is to acknowledge the 
assumptions you’ve made and, when 
appropriate, discuss the limitations 

that might arise from your assumptions.

how does one know 

which is the “best” 

assumption to make? 

there is no easy answer 

to this question; But 

be sure to acknowledge 

the assumptions you’ve 

made and discuss their 

limitations.

3: mAKING ASSUMPTIONS
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Assumptions often come naturally 

from the process of brainstorming and 

defining the problem statement.

You should do some preliminary research 

and may find data to help you make 

assumptions. In the absence of relevant 

data, make a reasonable assumption and 

justify the assumption in your write-up.

Different assumptions can lead to 

different, equally valid models at 

different mathematical levels.

Not all assumptions are made during the 

initial brainstorming. Some come as you 

move through the modeling process. Keep 

track of the assumptions you make and 

include a list of assumptions in your 

write-up of the model.

Activityin summary

Build on the brainstorming from the 

previous section about the roller coaster 

model. Certainly we did not uncover all 

the ways in which roller coasters are 

considered thrilling. Define the problem 

statement in your own words, based on 

your understanding of the problem. 

Finally, take your work one step further 

and list the assumptions on which you 

could build your model.

1

2

3

4
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4. defining 
variables

as the outputs of the model. Another term we use 
for outputs is dependent variables. We will also have 
independent variables, or inputs to the model. Some 
quantities in a model might be held constant, in which 
case they are referred to as model parameters. Let’s look 
at a few simple examples that will help you distinguish 
between these concepts. We’ll also see how they depend 
on your viewpoint and the problem statement.

With the problem statement clearly defined and an 
initial set of assumptions made (a list that will likely 
get longer), you are ready to start to define the details 
of your model. Now is the time to pause to ask what 
is important that you can measure. Identifying these 
notions as variables, with units and some sense of their 
range, is key to building the model.
 The purpose of a model is to predict or quantify 
something of interest. We refer to these predictions 

The purpose of a model is to predict or 
quantify something of interest. We refer to 
these as the outputs of the model.

another term  

for output.

the inputs of 

the model.
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Suppose that we plan to paint a house. We’ll need to know the dimensions of the house so that we can find the 
surface area, SA (ft2). We also need to know the efficiency, E (ft2/gal), of the paint, which tells us how many square feet 
a gallon of the paint can cover. Keep in mind that the efficiency varies from brand to brand. We let V (gal) be the vol-
ume of paint in gallons that we need. Here, knowing the units for efficiency can help reveal the relationship between 
the variables:

               surface area       SA 
      volume           V

Notice that we can rewrite this 

relationship and use any of the following 

three equivalent relationships:

1

2

E = SA / V

SA = E · V

V = SA / E3

example 1:  
Painting A House

 Whether something is a dependent or independent 
variable or a parameter often relies on the perspective 
of the modeler and the problem statement. Imagine 
that you own a painting company 
and always use CoversItAll brand 
paint. When a client hires you, you 
take measurements of the house, 
and then you want to know how 
much paint you’ll need to complete 
the job. In this scenario, the the 
efficiency of CoversItAll paint is 
constant, so that is a model param-
eter. You would use equation (3), 
with the surface area of the home as 
the input and the volume of paint needed as an output. 
Therefore, SA is the independent variable, V is the  

dependent variable, and E is a constant model  
parameter.
 Suppose instead that you are a homeowner and 

want to choose from among five 
brands of paint to buy to minimize 
the amount necessary to paint your 
house. Under this scenario, the 
surface area of your house is a con-
stant, so this is treated like a model 
parameter. If we know the efficiency 
of each of the five brands of paint, 
we would again use equation (3), but 
this time with E as the input variable 
and volume as the output. Thus, 

in this case, E is the independent variable and V is the 
dependent variable.

whether something 

is a dependent or 

independent variable 

or a parameter 

often comes from 

the perspective of 

the modeler and the 

problem statement.

E = =
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For another example, recall the constant-rate disease 
model discussed in the previous section, wherein we 
want to determine the number of infected individuals 
at any given time. Using this problem statement, let t 
denote the time in days. This will be the input (indepen-
dent variable). Let I(t), the number of infected individu-
als at time t, be the output of the model (the dependent 
variable). In this constant-rate disease model, we assume 
that each person who has the disease will spread the 
disease to a certain number of people in a given fixed 
time period. We define the parameter τ to be the time 
period during which each infected person will transmit 
the disease to r other people (so r is also a parameter). 
Further, we might define a parameter I0 to be the initial 
number of infected individuals. In other words, I(0) = 
I0. For example, if we have I0 = 10, τ = 2 days, and r = 3, 
then we are considering a population starting with 10 
infected individuals, where each infected person trans-
mits the disease to 3 uninfected individuals every 2 days.
 These simple examples show that the problem 
statement will guide what the dependent variable (i.e., 
your model output) is going to be. Dependent variables 
and parameters will often be determined by both your 
assumptions and the availability of information. The key 
idea is that independent variables cause a change in the 
dependent variables. Let’s look at a more complex model 
that demonstrates how submodels may be needed to 
provide input to the overarching model.

The key idea is that 
independent variables 
cause a change in the 
dependent variables.  

example 2:  
Constant-Rate Disease Model
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For the recycling problem, we seek a model that 
will predict the cost for a city to implement and run 
a recycling program. Hence, the output of the model 
should be in dollars. What will the inputs to the model 
be? We can use the results of our brainstorming session 
to help us. Let’s consider the model to determine the 
cost of a drop-off center. Based on the brainstorming 
shown in Figure 3, the cost of using drop-off centers 
in a given city could depend on how many are needed, 
the operational cost, the likelihood that people will 
participate, and the possibility of refunds or incentives.
 Let’s consider the approach taken in the solution 
provided in this guide. These students calculated 
the cost of a drop-off center, based on the cost to 
maintain the center, as well as the revenue the center 
would create. This latter fact depends directly on the 
participation rate by the local population. So, the 
probability of participation by a single household 
was needed first. Determining the single-household 
probability rate is an example of how a submodel can be 
used to generate input to the main model.
 Continuing this line of thought, the students based 
the likelihood that a household would participate on its 
distance from a drop-off center. Thus, the distribution 
of houses throughout the city and the location of 
drop-off centers must be understood. This team 
assumed that each city was a square and that houses 
were aligned on grids. To determine the placement of 
the drop-off centers within the city grid (which will 
actually determine how many will be needed), students 
calculated a maximum distance, d, that citizens would 

be willing to drive per week to a drop-off center. Using 
that distance, drop-off centers were placed on the grid 
so that they did not overlap yet the entire city would be 
covered.
 Thus, for this approach, note that d is an input to 
determine where to place the drop off-centers, yet d 
itself needs to be determined first (because it certainly 
isn’t clear what a reasonable value of d might be nor 
is there one known value that suits everyone in the 
United States). Therefore, ultimately we can use a math 
modeling approach to determine d based on some 
assumptions as well. This team decided that d depends 
on the cost to get to a drop off-center, and this would 
depend on the price of gas, gas mileage for a typical 
car, and the amount that a household would be willing 
to pay to recycle per month. Values for these model 
parameters were found in the literature through some 
digging into available resources. 
 To summarize their approach, they assumed that 
the following were model parameters to find d:

•  People would be willing to pay $2.29 to recycle per 
month or $0.53 per week. 

• People would make biweekly trips to the center.

• The average price of a gallon of gas is $3.784.

•  The average mileage of a passenger car is 23.8 miles/gallon.

example 3:  
determining recycling costs
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The problem statement should determine 

the output of the model. The output  

variables themselves will be dependent 

variables.

The results of the initial brainstorming 

can provide insight into which variables 

should be independent variables and 

which should be fixed model parameters.

Keep track of units because they can  

reveal relationships between variables.

You will likely need to do some research 

and make additional assumptions to obtain

values for necessary model parameters.

Submodels or multiple models may be 

needed to generate some of the model 

input.

With a value of d in place, students were able to take 
into consideration the size of the city grid and then 
partition the city to place the appropriate number of 
recycling drop-off centers to cover the entire city. Next, 
the team wanted to propose a method for predicting 
the likelihood of participation, but this couldn’t be done 
until the previous submodels were developed.
 Note that the inputs, or independent variables, 
for their cost model for drop-off centers were the area 
of the city, the population, the average number of 
people in a household, the maximum distance citizens 
would be willing to drive, and the number of drop-off 
centers needed. However, more modeling was needed 
to determine values for many of these inputs, as we 
demonstrated with the input, d. Notice that these are 
specific details that are implied from the brainstorming 
shown in the mind map in Figure 2 but at this phase in 
the process, more detail (and additional brainstorming 
and assumptions) is needed.

in summary

Activity

($0.53/week) · (23 miles/gallon)
$3.784/gallon

d =              /2 = 1.66 miles/week.

4: defining variables

1

2

3

4

5

Determine the dependent and independent 

variables for ranking roller coasters based on 

how thrilling they are. What are some possible 

model parameters?
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5. Building 
Solutions
Now that you have an initial mathematical model,  
you will need to use that model to generate preliminary 
answers to the question at hand. The approach you take 
of course depends on the type of model you have and 
your background in mathematics. It may involve simply 
considering some different values of certain parameters 
to see how the output changes, it may involve 
techniques from calculus or differential equations, or 
it may involve using graphs to understand trends in 
data. In this chapter we will give you some strategies for 
choosing how to solve your problem.
 When you first approach any mathematical 
problem, you often look into your personal tool kit 
for a mathematical technique to use. Sometimes, if we 
start with the incorrect approach, a better approach 
will naturally emerge. So, the important thing is to just 
tackle it and see what happens! The following questions 
may help you.

• Have I seen this type of problem before?

•  If so, how did I solve it? If not, how is this 

problem different?

•  Do I have a single unknown, or is this a multi-

variable problem with many interdependent 

variables?

• Is the model linear or nonlinear?

•  Am I solving a system of equations  

simultaneously, or can I solve sequentially?

•  What software or computational tools are 

available to me?

•  Would a graph or other visual schematic help 

provide insight?

•  Could I approximate my complicated model with 

a simpler one?

•  Can I hold some values constant and allow  

others to vary to see what is going on?
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Example 1:  
Acid Rain

Let’s consider approaching a general problem by building different models that may lead to different results. Suppose 
we want to determine how acid rain is impacting the water resources in your town. We already know from our 
previous section that this open-ended statement needs to be refined into a concise problem statement. Let’s suppose 
we developed the following problem statement after some brainstorming and mind-mapping: Measure the levels of 
sulfur dioxide (SO2) and nitrogen monoxide (NO) at four different locations and use the results to determine the best 
place for water to be extracted.

Approach 1.
Ranking Given the measurements 
for each location, rank the 
locations as safest, second safest, 
third safest, and least safe. This 
allows a qualitative approach 
but incorporates at least some 
quantitative analysis, since it 
requires us to assess the importance 
of SO2 vs. NO and define the  
term safe.

Approach 2.
Equation-Based Solution We can 
assess the difference in importance 
between SO2 and NO, and create 
an equation that assigns a score 
to each location. The location 
with the highest score wins. This 
requires algebraic modeling and 
manipulation as well as ideas  
of proportionality.

Approach 3.
Qualitative Comparison We can 
decide if any of the sites is too 
polluted. For example, if one site 
has the highest levels of both SO2 
and NO, then that site should not 
be used. This reduces the problem 
to choosing among three sites, and 
the same ideas can be applied to 
reduce them to two and then to a 
final one.

Certainly there are times when it is clear what mathematical technique is required (for example, factoring, finding 
zeros of a polynomial or a function, integrating a function, simulating a model over time to understand how output 
evolves, etc.). Other times, when it is not clear how to proceed, it may be helpful to analyze simple examples, 
special cases, or related problems. Even a “guess-and-check” approach can sometimes provide some deep insight. 
Mathematical experiments may be facilitated with a graphing calculator or computational software such as Excel, 
Mathematica, or Maple.
 Multiple approaches can be taken to build a solution. We will show several approaches for each of the following 
examples, which appear in order of increasing mathematical level. We also show how to leverage software to assist 
you in finding solutions.

5: building solutions
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Example 2:  
Constant-Rate Disease Model

Often, when modeling real-world phenomena, we are interested in forecasting future values. That is, we want to  
explore how the value of something we care about changes over time. We will discuss several approaches that we 
could take to find a solution to the constant-rate disease model (in which we want to determine the number of people 
who are infected with a disease under the assumption that each person afflicted with a disease spreads it to exactly r 
people over a given time period τ). For this example, we’ll let I0 = 10, τ = 2 days, and r = 5. In other words, we have 
a situation in which 10 people were infected with a disease that they, and all other future individuals who become 
infected, will each transmit to exactly 5 susceptible individuals every 2 days.

Approach 1.
Computation by Hand We start by doing some simple 
computations by hand to determine whether a pattern 
emerges. After 2 days, we have the original 10 people 
who have the disease, but we also have 50 more, because 
each of the 10 infected individuals has spread the  
disease to 5 others. Hence, when t = 2, I = 60. After 2 
more days, we have I = 60 + (5 × 60) = 360, and so on. 
We could organize our numbers by putting them in a 
table, as in Table 1.

Approach 2.
Computation via Technology Straightforward iterative 
calculations such as those needed for this problem are 
easily “programmable” in spreadsheet software such as 
Microsoft Excel. Excel is a useful tool for visualizing 
step-by-step discretization, and it can allow you to see 
the value of each variable at each time step in table 
form. If you don’t know how to use Excel, you might 
find resources or videos by doing an internet search on 
performing iterative calculations in Excel.
 If we’ve done our computations in Excel, we can 
also create a plot of our solution easily, as in Figure 4.

t, In Days     I, Infected Population

0   10

2   60

4   360

6   2160

8   12960

10   77760

12   466560

Table 1. Constant-rate disease model  
computations, by hand

Figure 4. Graph of constant-rate disease 
model output with r=5, τ = 2, and I0 = 10
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Approach 3.
Pattern identification We might notice as we perform 
computations by hand or by using technology that if 
we know the number of infected individuals at some 
time step, then we can get the infected population at the 
next time step by multiplying by 6. Let’s see why this 
happens.
 At time t = 0, we have 10 infected individuals. At 
time t = τ = 2 days, we have the original 10 infected 
individuals plus 50 more, for a total of 60.

Continuing, at time t = 2τ = 4 days, we have the 60 from 
the previous time step, plus 5 times 60 more.

What does the formula look like for I(3τ)? (Try it!)

Now we see where multiplication by 6 comes from, but 
we might be able to see an even deeper formula emerge. 
We can actually substitute our expression for I(τ) into 
the equation the equation for I(2τ), as below.

For this set of parameters:                   

I(τ) = 10 + 5 ·10
 = (1 + 5) 10
 = 6 ·10.

For this set of parameters:                   

I(2τ) = 60 + 5 · 60
 = (1 + 5) 60
 = 6 · 60.

For a generic set of parameters:

I(τ) = I0 + τ I0 
 = (1 + r) · I0.

For a generic set of parameters:

I(2τ) = I(τ) + r · I(τ)
 = (1 + r) · I(τ).

You should verify that for I(3τ) we have the following 
equations.

You might see a pattern emerging that would lead you 
to find a closed form solution for the infected
population after n days have passed.

This result, an exponential model, is consistent with 
both the values in Table 1 and the corresponding graph 
in Figure 4.
 The results of each of the three approaches are 
perfectly valid model for our stated assumptions, but 
we now see that the model may be limited in its ability 
to accurately describe some of the real-world charac-
teristics of disease propagation. In the next section we 
discuss these questions, and we’ll revisit this model as  
a part of model assessment.

For this set of parameters:                   

I(2τ) = 6 · 60
 = 6 · (6 · 10)
 = 62 · 10.

For this set of parameters:                   

I(3τ) = 63 · 10.

For this set of parameters:                   

I(nτ) = 6n · 10.

For a generic set of parameters:

I(2τ) = (1 + r) I(τ)
 = (1 + r) · (1 + r) I0

 = (1 + r)2 I0.

For a generic set of parameters:

I(2τ) = (1 + r)3 I0.

For a generic set of parameters:

I(nτ) = (1 + r)n I0.

Example 2:  
Constant-Rate Disease Model (CON’T.)

5: building solutions
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Approach 1.
Analytic Solution If you’ve studied differential equations 
before, you might recognize that this particular 
differential equation can be solved analytically using 
a technique called separation of variables. (See any 
standard calculus text.) Using this technique and 
assuming that the initial condition is I(0) = I0, you can 
find the solution to be

Alternately, if you have access a symbolic computation 
tool such as Maple, you can use technology to generate 
this analytic solution.
 With the analytic solution in hand, we can 
demonstrate how the model behaves by choosing some 
parameter values to generate a plot. (See Figure 5.) Notice 
that this model exhibits the same sort of exponential 
growth in the initial stages of disease propagation as the 
constant-rate disease model, but the rate slows when 
there are fewer people left who have not yet contracted 
the illness. We see that I approaches 1000 as time 
increases. In generating the plot, we used total population 
P = 1000 (a parameter), so our model predicts that over 
time the entire population contracts the disease.

We haven’t defined the variables yet in the varying- 
rate disease model, so let’s do that now and set up the 
differential equation which is to be solved.
 We define the total population to be P, and each 
member of the population must belong to exactly one  
of two classes: susceptible, S or infected, I. Hence,  
P = S + I. We assume that the total population remains 
constant, but the values of S and I change over time, so 
we might choose to write P = S(t) + I(t).
 Recall that in the varying-rate disease model, we 
consider a population in which disease transmission 
rate is directly proportional to the product of the num-
ber of people infected and the number of people who 
are susceptible. We can think of transmission rate as 
the rate at which people become infected, or the rate of 
change of population I(t). Readers familiar with calculus 
may recognize this as the derivative. We will denote this 
rate of change I(t) with respect to time as     . Then we 
can translate the assumption “disease transmission rate 
is directly proportional to the product of the number 
of people infected and the number of people who are 
susceptible” into the equation

where k is a (positive) proportionality constant. The 
larger the value for k, the larger      is. So a large k-value 
indicates a highly contagious disease.
 In order to find a solution to the differential equa-
tion, it will be helpful if we can get down to only one 
dependent variable. Since we assumed that the popula-
tion, P, is constant, then we can take advantage of the 
relationship P = I(t) + S(t) to write S as S(t) = P − I(t). 
Then we can rewrite equation (4) as follows:

Example 3:  
varying-Rate Disease Model

kI(t)S(t), (4)=

(5)kI(t) (P − I(t)).=

(6)
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Figure 5. Analytic solution of the varying-rate disease 
model output with k = 0.0006, P = 1000, and I0 = 20
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Example 3:  
varying-Rate Disease Model (CON’t.)

Approach 2.
Approximate Solution While we can find an analytic 
solution for the differential equation above, many 
differential equations, as well as other equations 
and systems of equations that describe real-world 
phenomena, cannot be solved directly. In these 
situations, it is common to approximate a solution, often 
referred to as using a “numerical method.” Numerical 
methods are a powerful tool in modeling, especially if 
you have not yet had formal training in techniques from 
calculus and differential equations.
 As an example, consider equation (5). Let’s suppose 
that we did not have the analytic solution (equation 
(6)) to evaluate at any time we choose. One numerical 
method would be to try to calculate approximate values 
of the infected population at specified later times. We 
know the initial population, I(0) = I0, and we have a 
model describing the rate of change of the population. 
Intuitively we should be able to predict the number of 
infected people at a later time, say t = 1. To do this, we 
can express the change in the infected population over 
that time frame time as

and plug what we know into the right-hand side of 
equation (5). We can then solve for I(1) in terms of I0. 
We should be careful, however. What we really have is 
an approximation to I(1) because we approximated    , 
but our goal was to determine approximate values of 
the infected population, and that is what we’ve accom-
plished. We could then use our value of I(1) in the same 

I (1) − I (0)
1 − 0

≈

Figure 6. Numerical solution of the varying-rate 
disease model output with k = 0.0006, P = 1000,  
I0 = 20, and time step Δt = 1 day

We show a plot of the approximated values of the 
infected population at different points in time in Figure 
6, and you can see the details of how we obtained these 
results in Appendix A.
 Notice that the plot of the numerical solution looks 
much like the plot of the analytic solution we saw in  
Figure 5. While we are pleased that the numerical 
solution does a good job of approximating the analytic 
solution, we should note that the graphs are not identi-
cal. Every numerical method introduces some error, and 
the forward Euler method is no exception. The study of 
error is a complicated issue, and we will not attempt to 
address it here.

5: building solutions

way to predict I(2), and so on. This numerical method, 
called the forward Euler method, is easily implemented 
in Excel.
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Finding a solution to your model may be achieved 
by various means, depending on your background 
knowledge in mathematics and software. Solving by 
ranking is an excellent method for students who do not 
have the mathematical training to produce algebraic 
formulas. Even with an equation, however, there are 
often multiple ways to arrive at a final answer. Software 
tools such as Excel can facilitate obtaining solutions.  
If you do you use a numerical approximation technique, 
it is important to be aware of error that might be 
introduced. If nothing else seems to help, try guess- 
and-check.

summary of building 
solutions

How you build a solution may depend on 

what mathematical tools are available  

to you.

There is often more than one way to  

tackle a problem, so just start and see 

what happens.

If you don’t immediately know how to  

solve the problem at hand, ask yourself 

the provided set of questions to help  

you get started.

Different solution methods can lead to 

solutions of different natures. This is 

perfectly acceptable.

in summary

Activity

Continue working with your model for a ranking 

system for roller coasters depending on your 

definition of “thrilling.” Use your ranking  

system to rank at least 10 roller coasters.  

You may find data you need at rcdb.com.

1

2

3

4
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6. analysis  
AND Model  
assessment

Often we are so excited that we built and solved 
a mathematical model that we forget to step back 
and carefully examine the results. While this is 
understandable since it took hard work to get to that 
point, it is essential to ask yourself, “Does my answer 
make sense?” Sometimes, the results may indicate a 
mistake in the calculations. Other times you may find 
that additional or alternate assumptions are needed for 
the solution to be realistic. If the results do make sense, 

We separate this section into two subsections. The first 
subsection, Does My Answer Make Sense?, gives some 
quick checks to determine whether your solution is at all 
reasonable. The second subsection, Model Assessment, 
gives more in-depth techniques to analyze the model.

then further analysis is needed to assess the quality of 
the model. Recall that open-ended questions may have 
more than one solution and that the results depend on 
the assumptions made and the level of sophistication 
of the mathematics used. An honest evaluation is 
necessary to explain when the model is applicable and 
when it is not. In this section we will talk about ways 
to analyze your results and how to assess the quality of 
your model.
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does my  
answer make sense?

During the modeling process, you may gather some 
intuition about what the output will be like. Here we 
provide some pointers on how to answer the question 
“Does my answer make sense?” by analyzing the output  
of the model.

•  Is the sign of the answer correct? For example, if your 
disease model is supposed to calculate the number 
of infected people at a certain time, then clearly an 
answer of −1000 would not make sense. Carefully 
check your calculations, especially if you are using 
software. For example, in Excel it is easy to select the 
wrong cell when defining a formula. Your model may 
be correct, but its implementation may be at fault.

•  Is the magnitude of the answer reasonable? If you 
are trying to estimate the speed of a car, for example, 
then it wouldn’t make sense if your model predicts a 
value of 1000 miles per hour. Sometimes, when the 
magnitude of a number is off, incorrect units may have 
been used somewhere in the process.

•  Does the model behave as expected? If the output 
of your model is visualized with a graph or plot of 
any kind, then carefully look at the intercepts, the 
maximum or minimum values, or the long-term 
behavior. Were you expecting a horizontal asymptote, 
yet your graph just increases without bound? If you 
have a data set and believe there is a relationship 
between two variables, plot the data. A mathematical 
error in the sign of the slope will be immediately 
obvious. It could be that you had some assumptions 
which were neglected, erroneous units, unrealistic 
parameters, or that the software was used incorrectly.

•  Can you validate the model? Sometimes it is possible 
to validate your model using available data. For 
example, if you used your roller coaster ranking model 
on the Top Thrill Dragster of Cedar Point, which held 
the record for the tallest roller coaster in the world 
and goes 120 mph, and the output said it was only 
mediocre, then likely your model is not doing what 
you want it to.
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Identifying Strengths and Weaknesses

Once you are convinced that the output is correct and 
the model is achieving what you want, assess the quality 
of model. This assessment needs be included in the 
write-up about your model to help people understand 
the conditions under which your model is applicable, 
which is strongly linked to the assumptions that were 
made along the way. It is necessary for you to provide  
an honest, exact assessment of the capabilities of  
your model.
 This is also a chance to highlight the strengths of the 
model. For example, even if a model was formulated 
using simple physics, it might require very little expert 
knowledge in order to provide meaningful insight. 
This can be a huge advantage over a more complex 
model that requires the user to program and run 

model  
assessment

Now that you have verified that your model is correct, it  
is time to step back and consider the validity of your 
model. This includes identifying the strengths and 
weaknesses of your model and understanding at a deeper 
level the behavior of the model. Performing a sensitivity 
analysis, wherein you analyze how changes in the input 
and parameters impact the output, can contribute to 
understanding the behavior of your model.

software, research other model parameters in order to 
fit the model to his or her own needs, or sort through 
complicated output to be able to draw a conclusion. It is 
also a strength if the people who might use your model 
can understand it and have faith in it.
 Let’s examine this process by looking at the 
constant-rate disease model. Recall our assumption 
that each infected person transmits the disease to r 
people every τ days. From this, we found the following 
exponential function to describe the infected population 
after nτ days: 

Figure 7 shows the graph of the model output for I0 = 20 
infected people, τ = 2 days, and r = 5.

6: analysis and model assessment

I(nτ) = (1 + r)nI0.
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This model has some valuable strengths:

•  This model is easy describe to others, which means 
that they might have increased confidence in its 
output. Allowing full understanding of all parts of the 
model can be valuable when trying to understand the 
significance of output given different input values.

•  We found an analytic solution. If we have values for  
I0, τ, and r, the function I(nτ) = (1 + r)nI0 can be used 
to solve for the number of infected individuals at  
any time.

•  Our model is consistent with our assumptions. Our 
primary assumption is that the disease is spread at  
a constant rate. Our model accurately describes  
this behavior, and therefore we have developed a  
meaningful solution.

This model also has a few notable 

weaknesses:

•  Our model is quite simple. In addition to being a 
strength, it is also a weakness. We may be concerned 
with the constant rate assumption, especially since it is 
not consistent with our intuition regarding the spread 
of disease.

•  This model is not valid for all types of disease. Our 
model only has two categories for individuals: suscep-
tible and infected. In real life, after being infected with 
some diseases a person recovers and then acquires 
immunity to that specific disease. This model wouldn’t 
accurately describe that situation.

•  This model predicts the disease spreads to everyone. 
In other words, under this set of assumptions, the dis-
ease will propagate through a population until every 
individual has the disease. This (hopefully) is not a 
reasonable scenario.

In this case, we have a model based on sound math-
ematics that provides us with good insight into disease 
propagation but also leads to some questionable real-
world outcomes if taken as the final answer. In general, 
awareness of your model’s capabilities leads to better 
overall solutions. In such awareness, you know when it 
is appropriate to use your model, and you also have a 
starting point from which to build future (more specific 
and/or realistic) models. Identifying your model’s weak-
nesses does not detract from the hard work you’ve done; 
it is always preferable for the modeler to acknowledge 
weaknesses in the model. If the reader identifies weak-
nesses that the modeler has missed, then the readers’s 
assessment of the model and the modeler suffers.

Figure 7. Graph of constant-rate disease model output with r = 5, τ = 2, and I0 = 20
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When doing model assessment it is also vital to consider 
the model’s sensitivity to changes in the assumptions 
and parameters used to build it. A model is considered 
sensitive with respect to a parameter if small changes in 
that parameter lead to significant changes in the output.
There are several ways to conduct a sensitivity analy-
sis. A simple approach would be to consider a range of 
values for a certain parameter while keeping all other 
parameters fixed, calculate the output, and then deter-
mine the impact on the output. For example let’s take a 
look at the effect of changes to the transmission rate in 
the variable-rate disease model with P =1000 and I0 =20.
 Looking at Figure 8, we see how incremental 
changes to the transmission rate affect the output of 
our model. In particular, we note that when 0.0006 ≤ k 
≤ 0.001, the disease has infected most (if not all) of the 
population after 15 days, but it takes just over 20 days 
for the disease to reach most of the population when k = 
0.0004. When k = 0.0002, a good proportion of the pop-
ulation still has not been infected after 15 days. What 

does this mean? Well, that depends on the problem you 
are solving. In this example, we learned that changes to 
k can increase (or decrease) the spread of the disease 
to the entire population. If a population were infected 
with such a disease, then this model could demonstrate 
that a drug that may inhibit the disease transmission 
rate could create the time needed to develop an effective 
course of treatment.
 In our sensitivity analysis, the changes in k were 
fairly small (0.0002). How do you know how big (or 
small) your variation should be? In some cases you may 
have real-world data to help you make a decision. If 
that’s not available, use common sense as your guide and 
play around with the numbers to develop intuition. For 
example, in the variable-rate disease model, we could 
also hold k constant and investigate whether changes 
to the initial infected population I0 affect our outcome. 
In this instance we will definitely vary I0 in increments 
larger than 0.0002.

sensitivity analysis

Figure 8. Analytic solution of the varying-rate disease model output with P = 1000, I0 = 20, and k ranging from 
0.0002 to 0.001 in increments of 0.0002

6: analysis and model assessment
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If time allows, assessment and sensitivity analysis 
can lead to improvements in the model. Modeling, as 
pointed out earlier, is an iterative process, and refine-
ments can almost always be made to develop more 
realistic scenarios. If the modeling is being done in a 
timed setting, such as for a competition or a homework 
assignment, then this may not be possible (although it 
is generally possible to indicate the type of refinements 
that would improve the model). However, for long-term 
projects, the model assessment really is an intermediate 
step before (possibly) starting the modeling loop over 
again. Discussing possible modifications to the model, 
even if you cannot make them, demonstrates that you 
are able to think beyond just the first approach. We 
demonstrate how this could be done with the variable-
rate disease model.
 In our previous disease model, the population was 
split into two classes: infected and not infected. If, 
however, we consider something such as an influenza 
outbreak, we know that people are capable of transmit-
ting the flu for a short period of time, but eventually 
they develop immunity and will no longer spread the 
disease. This dynamic is certainly not captured with our 
initial disease models. With our new considerations in 
mind, we want infected individuals to be able to move 
out of the infected population after their bout with the 

flu is over. It doesn’t make sense to put them back into 
the susceptible population because we know that they 
have developed immunity. So we need to create another 
class, R, which represents those who have recovered 
from the disease. 
 We begin by defining the following:

P = the total number of people in the population,
S =  the number of people in the population who are 

susceptible,
I =  the number of people in the population who are 

infected and transmitting the disease,
R =  the number of people in the population who have 

“recovered” (i.e., they are not susceptible and no 
longer transmit the disease). 

Notice that for any time, P = S +I +R.

 We will assume that each individual who becomes 
infected takes the same amount of time to recover. That 
is, our model will not take into account the possibility 
that one person recovers in 3 days while another takes 
5 days to stop being a carrier of the disease (although a 
later refinement of our model might include a random 
distribution of recovery intervals).

model  
refinement
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Let’s move forward looking at a specific example.  
Suppose at time t = 0, 12 people of a total population of 
1000 become infected with a novel disease. We assume 
that each infected person recovers after exactly 4 days 
and that each infected person transmits the disease to 
2 others during that 4-day period. So we will let τ = 4 
days.
 At time t = 0, then, we have I0 = 12, S0 = 988, and  
R0 = 0. After a 4-day time period, i.e., when t = τ, all 12 
of the infected individuals move to recovered status.  
In the meantime, they have infected 24 susceptible  
individuals. So we have

I(τ) = 2 · I0 = 2 · 12 = 24,
S(τ) = 988 − I(τ) = 988 − 24 = 964, and  

R(τ) = R0 + I0 = 0 + 12.

We can continue as shown in Table 2 and Figure 9.
Our refined model now shows a situation more 
consistent with our intuition regarding a disease such 

as influenza; it starts out slowly, spikes, and then dies 
out as the remaining infected population recovers. This 
model is not perfect, but it does provide us with insight 
into the dynamic interaction of the affected populations.

t S(t) I(t) R(t) P(t)

0 988 12 0 1000

τ 964 24 12 1000

2τ 916 48 36 1000

3τ 820 96 84 1000

4τ 628 192 180 1000

5τ 244 384 372 1000

6τ 0 244 756 1000
 

Table 2. Infected, susceptible, and recovered  
populations over time for parameter values P = 1000, 
r = 2, τ = 4, and I0 = 12

Figure 9. Graph of constant-rate disease SIR model output for susceptible (S), infected (I), and recovered (R) 
populations for parameter values P = 1000, r = 2, τ = 4, and I0 = 12
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in summary Activity

1

2

3

4

5

6

Be sure to allocate time to analyze your 

results since it is indeed a critical part 

of the entire modeling process.

Always examine the output you get from 

your model and ask yourself if it makes 

sense. If your answer doesn’t make sense, 

verify that you haven’t made a mistake in 

implementing your model.

If your solution is consistent with your 

assumptions but not consistent with the 

real-world phenomenon you are trying 

to describe, you may need to refine your 

model by adjusting your assumptions.

List strengths and weaknessES of  

your model.

Try to determine how sensitive your 

model is to parameters and assumptions.

Include specific improvements you would 

have incorporated given more time.

Read the solution to the recycling problem. 

What are the strengths and limitations of that 

model? What are parameters in the recycling 

model that could be examined for sensitivity? 

How might the sensitivity of the recycling 

model be analyzed? Write a few paragraphs 

assessing this model.
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7. putting it all 
together

Now that a model has been created, solved, and assessed, the time comes to write everything up as a polished 
solution paper. This step is just as important as the effort necessary to get to this point. Keep in mind that you are 
the expert about the problem, and now your role is to explain what you did in detail to people unfamiliar with your 
solution approach. To this end, it is critical that you take good notes from the initial brainstorming process through 
the final analysis to be sure you have kept track of all the assumptions you made. Good writing also takes time, so be 
sure to allocate a period of time to step back from the math modeling and focus on quality writing. In this section we 
discuss how to structure your report and some key points for successful technical writing.

This step is just as important as the effort 
necessary to get to this point. Keep in mind 
that you are the expert about the problem.
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structure

coasters, but it does give the reader an idea of what 
will be showing up later in the document. It may seem 
counterintuitive, but the introduction and abstract are 
typically written last. This is because, after all else has 
been written, the author has a complete picture of the 
manuscript and may then best tailor these sections 
accordingly.
 The body of the solution paper will likely be several 
pages long and split up into sections about assumptions, 
variables, the model, the solution process, analysis, 
and overall conclusions. Let the reader know about 
the overarching assumptions you made to make the 
problem solvable. Some specific assumptions may need 
to be included again later, within the paper’s main text, 
in order to clarify certain ideas as they are developed. 
However, the most important message here is that all 
assumptions are included and listed at some point in 
your write-up. You should be sure to justify why those 
assumptions are reasonable and include citations as 
needed. Plagiarism of any kind is never acceptable.
 When you next begin to describe your model 
and how you solved it, clearly state the variables you 
will be using and the corresponding units. If there are 
relationships between variables, explain where the come 
from and, if needed, refer to any necessary assumptions. 
Mathematical equations and formulas should be 
centered, each occuring on their own line. We provide 
some more specific details on this in the following 
section.
 Finally, the paper must have a conclusion section 
that recaps the important features of the model. It 
is critical that this section includes an analysis of 
your results, as described in the previous section. An 
honest assessment of the strengths and weaknesses is 
important. In particular, you can comment on how the 
model can be verified and how sensitive the model is to 
the assumptions. We proceed by giving some tips about 
technical writing.

A technical report typically starts with a summary page, 
also called an executive summary or an abstract, that is 
of one page or shorter. This is not an introduction; it’s 
actually a place to summarize how the problem was 
solved and to provide a brief description of the results. 
It might seem strange to put the conclusion at the 
beginning, but this “bottom-line up front” approach is 
convenient for those reading your report.
 The abstract or summary page should restate the 
problem, briefly describe the chosen solution methods, 
and provide the final results and conclusions. You 
should describe your results in complete sentences 
that can stand on its own, without using variables. 
The summary lets the reader know what to expect in 
the report but does not overwhelm him or her with 
unfamiliar mathematical notation. Imagine that a reader 
will decide whether to continue reading the rest of your 
paper itself based on this abstract. As an example, see 
the solution to the recycling problem.
 After the summary, the paper should include a 
formal introduction that includes a restatement of the 
underlying real-world application as if the reader does 
not have any prior knowledge. This section usually 
contains some motivation or relevant background 
information as well but should not include a lengthy 
history lesson. Both the general modeling question 
as well as the concise problem statement that you 
developed should be at the forefront of this section. 
This section must provide a paragraph that describes 
how you approached the problem. For example, if we 
consider the task of ranking roller coasters based on 
how thrilling they are, then it would help to define 
“thrilling” up front. For example, “Our model is based 
on the notion that rides with high accelerations, 
inversions, and significant heights are thrilling.” 
Note that this statement doesn’t exactly explain how 
those features are quantified or implemented for 
a mathematical ranking system for thrilling roller 
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It is critical that the narrative of your solution doesn’t read like a story about how you came up with your model.  
For example, consider the following two excerpts about an assumption made for the recycling model.

Example 1:  
A study of drop-off recycling par-
ticipation in Ohio found that 15.5% 
of citizens who do not have access 
to curbside recycling use drop-off 
recycling [8]. We have assumed that 
this data is representative of the U.S.

TECHNICAL WRITING DOS 
& don’ts

Which of the following is more effective?

Example 1:  
For an ideal gas, we have

where P is the absolute pressure of 
the gas, V is the volume of the gas, 
n is the amount of substance of gas 
(measured in moles), T is the abso-
lute temperature of the gas, and R is 
the ideal, or universal, gas constant.

Example 2:  
We were stuck because we did not 
know how many people in the U.S. 
recycle. We googled and found an 
article that Ohio’s participation in 
drop-off recycling was 15.5% for 
people who did not have access to 
curbside recycling, so we used that 
number in our model.

The second example is written in 
a way that makes the assumption 
sound invalid or that it was chosen 
only because no other informa-
tion could be found. However, the 
first one sounds as though some 
research was done and a useful 
and legitimate source was identi-
fied, which provided an applicable 
statistic.

Example 2:  
For an ideal gas, the absolute  
pressure is directly proportional to 
the product of the number of moles 
of the gas and the absolute tempera-
ture of the gas and inversely pro-
portional to the volume of the gas, 
with proportionality constant R, the 
ideal, or universal, gas constant.

1. Do not write a book report.

2. Do not use words when using mathematics would be more appropriate. 

P = nRT
V

,

7: putting it all together

In this case, the mathematics is 
easier to follow, and you can  
imagine that the more complicated 
the calculations, the harder it would 
be to try to describe in words.
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Communicating mathematics requires proper punctuation, such as periods at the end of a computation if the  
computation ends the sentence, as in Example 1 below. Use commas when appropriate.

Example 1:  
If s is the length of the side of the square box, then the 
area of a side is given by

A = s2, 

and the volume is given by

V = s3.

3. do use proper sentence structure when explaining mathematics.

4. do NOT substitute mathematical symbols for words within sentences, as in the 

second of the following two examples.

5. do pay attention to significant figures.

Example 2:  
If s is the length of the side of a square box then we can 
find the area and volume.

A = s2 

V = s3

Example 1:  
For this work L is the length of the side of a rectangle. 

Example 2:  
For this work L = the length of the side of the rectangle.

For example, your calculator might read a value of 27.3416927482, but you may not need to report all of those digits 
unless you are trying to show accuracy in the later decimal places.

6. do use scientific notation when numbers vary by orders of magnitude,

meaning that the exponent is really what matters in understanding the significance of the value. For example, the  
diameter of the sun is 1.391e6 km, while the diameter of a baseball is 2.290e−4 km.
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in summary

Take notes throughout your entire modeling process so that you do not leave out anything 

important, especially assumptions made along the way.

Give yourself enough time to focus on the writing process and to proofread the report.

Keep in mind that this is a technical document, not a story about your modeling experience.

Follow the guidelines for technical writing.

Some additional references on technical writing can be found at [3].

Pat yourself on the back for your accomplishments.

7. Do label figures 
and use a large enough font so that the axes are  
clearly readable.

8. Do not forget to include units as  

appropriate.

9. Do check carefully for spelling and 

grammar mistakes, 
especially those that spell check might miss. For  
example, it’s easy to confuse their, there, and they’re.

10. Do give credit where credit is due. 
This means including citations and building your  
bibliography as you go.

Technical writing takes practice, but the end result 
should be something of which to be extremely proud. In 
reviewing your final paper, you can step back and look 
at all you have accomplished throughout the modeling 
process. Ultimately your model can lead to the creation 
of new knowledge and provide deeper insight about the 
world we live in. Remember that modeling also takes 
practice so the next time you tackle an open-ended 
problem you will already have a new set of tools that 
will make the entire experience go more smoothly.

7: putting it all together

1

2

3

4

5

6
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A. FORWARD EULER  
METHOD

Let’s explore how the forward Euler methods works in 
the context of the varying-rate disease model.
 As a reminder, our model is described with the  
differential equation  

where I is the number of infected individuals, P is the 
total population, and k is a positive constant. We’ll use 
the same parameter values we used to plot the analytic 
solution: k = 0.0006, P =1000, and I0 =20.
 The method we will use here is called the forward 
Euler method, which takes advantage of the fact that the 
derivative is the same thing as slope of the tangent line. 
We’ll demonstrate the method on this example, but do 
not want to overwhelm the reader with too many  
details. We point you toward [9, 4] for a deeper look 
into this very powerful approximation method.

 We start with the initial population, I0 = 20. That 
is, when t = 0 days, I = 20. In other words, we know 
that the point (0, 20) is on the graph of the solution. We 
also know what the slope of the solution curve is at that 
point because we have an equation for      :

Now we can write the equation of the line through the 
point (0, 20) with slope of 11.76 as follows. Recall that 
the independent variable is t and the dependent variable 
is I.

I − 20 = 11.76(t − 0),
           I = 11.76(t − 0) + 20.

= k I (0) (P − I (0))

=kI0 (P − I0)
= (0.0006) · 20 · (1000 − 20)  
= 11.76.

dI  
dt

t = 0

kI(t)(P − I(t)),
dI  
dt

=
dI  
dt
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Hence, we have a line with slope of 11.76 and y-inter-
cept (or I-intercept, in this case) of 20.
 We can use this linear function as an approxima-
tion for the true solution. We assume that the solution 
to the differential equation is approximately the same 
as this line for points nearby. Perhaps we’ll assume it’s a 
good enough approximation through time t = 1. We can 
find the number of infected individuals at t = 1.

I(1) = 11.76(1 − 0) + 20 = 31.76.

(Note: While it’s not possible to have a fractional per-
son—or, more specifically, 0.76 of an infected individual 
—it doesn’t deter us from continuing to approximate the 
solution using this method. We do suggest noting that 
something unrealistic has occurred and encourage you 
to re-examine it later when assessing your model.) Thus 
we have a line segment from (0, 20) to (1, 31.76).
 Now you can image us starting the process over. In 
other words, we assume that the point (1, 31.76) is on 
the solution curve, and we can use the derivative to give 
us the slope at that point:

As before, we can find the equation of the line through 
the point (1, 31.76) with slope of 18.45.

I − 31.76 = 18.45(t − 1)
                I = 18.45(t − 1) + 31.76.

We will assume that this makes a good enough approxi-
mation for the solution through t = 2. Thus we estimate 
the population at time t = 2 to be  

I(2) = 18.45(2 − 1) + 31.76 = 50.21.

Once again, we have identified a solution method 
requiring multiple iterative calculations, which can be 
easily performed using technology such as Excel.
 As before, now that we have a table of values in 
Excel, we can generate a plot of our numerical solution. 
(See Figure 10.)

Figure 10. Numerical solution of the varying-rate disease model output with k = 0.0006, P = 1000, I0 = 20, and 
time step Δt = 1 day
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= k I (1) (P − I (1))

= (0.0006) · 31.76 · (1000 − 31.76)  
= 18.45.

dI  
dt

t = 1
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B. the 2013 M3 Challenge 
Problem and the solution 
paper from team 1356

Waste Not, Want Not: Putting Recyclables in Their Place 
Plastics are embedded in a myriad of modern-day products, from pens, cell phones, and storage containers to 
car parts, artificial limbs, and medical instruments; unfortunately, there are long-term costs associated with these 
advances. Plastics do not biodegrade easily. There is a region of the Northern Pacific Ocean, estimated to be 
roughly the size of Texas, where plastics collect to form an island and cause serious environmental impact. While 
this is an international problem, in the U.S. we also worry about plastics that end up in landfills and may stay 
there for hundreds of years. To gain some perspective on the severity of the problem, the first plastic bottle was 
introduced in 1975 and now, according to some sources, roughly 50 million plastic water bottles end up in U.S. 
landfills every day.

The United States Environmental Protection Agency (EPA) has asked your team to use mathematical modeling to 
investigate this problem.

How big is the problem? Create a model for the amount of plastic that ends up in landfills in the United States.  
Predict the production rate of plastic waste over time and predict the amount of plastic waste present in landfills 
10 years from today.

Making the right choice on a local scale. Plastics aren’t the only problem. So many of the materials we 
dispose of can be recycled.  Develop a mathematical model that a city can use to determine which recycling 
methods it should adopt. You may consider, but are not limited to: 

•	 providing locations where one can drop off pre-sorted recyclables

•	 providing single-stream curbside recycling

•	 providing single-stream curbside recycling in addition to having residents pay for each container of garbage 
collected  

Your model should be developed independent of current recycling practices in the city and should include some 
information about the city of interest and some information about the recycling method.  Demonstrate how your 
model works by applying it to each of the following cities:  Fargo, North Dakota; Price, Utah; Wichita, Kansas.

How does this extend to the national scale?  Now that you have applied your model to cities of varying 
sizes and geographic locations, consider ways that your model can inform the EPA about the feasibility of recycling 
guidelines and/or standards to govern all states and townships in the U.S.  What recommendations does your 
model support? Cite any data used to support your conclusions.

Submit your findings in the form of a report for the EPA.  

The following references may help you get started: 
http://www.epa.gov/epawaste/nonhaz/municipal/index.htm 
http://5gyres.org/what_is_the_issue/the_problem/
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Analysis of Plastic Waste Production and Recycling Methods 
 

EXECUTIVE SUMMARY 
 In 2010 alone, the U.S. generated approximately 250 million tons of trash [1]. Much of 
this waste consisted of plastics, which build up in landfills and flow into oceans through storm 
drains and watersheds [2], breaking up into little pieces and absorbing contaminants in the 
process. A major method to reduce waste is recycling, where materials like glass, paper, and 
plastic are reformed to create new products. There are many different methods of collection of 
recyclable materials, including drop-off centers, where citizens transport their recyclables; single 
stream curbside collection, where the city collects the recyclables of each household; and dual 
stream curbside collection, where the city collects recyclables that are pre-sorted by each 
household. To encourage or subsidize recycling programs, some cities may implement a Pay-As-
You-Throw (PAYT) program, where citizens pay a fee based on the amount of garbage they 
throw away. 
     The EPA tasked us to analyze the production and discard rate of plastic waste over time. 
We were also asked to create a model of possible methods for recycling collection to determine 
which methods are appropriate for what cities. Using a linear regression model over years passed 
since 2000, we estimated that 35.1 million tons of plastic waste will be discarded in 2023. We 
also modeled the use of drop-off centers, single stream curbside collection, and dual stream 
curbside collection to calculate the total amount of recyclables collected as well as the cost to the 
city using each recycling method. 
     For collection using drop-off centers, we developed a simulation that randomly 
simulated the number of households who would recycle when drop-off centers were placed 
around the city. The simulation took into account the area, population, average household, 
maximum distance citizens are willing to travel, and number of drop-off centers. Using these 
data, we calculated the amount recycled and then calculated the net cost to the city by subtracting 
operating costs of Material Recovery Facilities (MRFs) from revenue generated by selling 
recycled products. 
     For curbside collection, we calculated the number of trucks needed to service a given 
city, based on population density. Based on labor, upkeep, and fuel, we calculated the costs of a 
curbside collection program. Again, using the calculated amount of collected material, we 
determined the net revenue generated by these products. 
     We determined that by using a drop-off center method, Fargo and Wichita would 
generate profits, while Price would incur costs that could be partially covered by using Pay-As-
You-Throw. Using a curbside collection method, Fargo and Price would incur costs that could be 
partially covered by Pay-As-You-Throw, while Wichita would generate profits using either 
single or dual stream collection. Thus, either drop-off or curbside collection methods may be 
feasibly implemented in cities around the U.S., depending on population and area of each city. 
We concluded that small cities tend to incur net costs from recycling programs, while larger 
cities like Wichita may profit from using a dual stream curbside collection program. 

    To assess use of recycling programs on a national level, we programmed a computer 
simulation generating an image of all the counties of the U.S., where blue dots on the U.S. map 
represented counties where at least one of our three proposed recycling programs earned a net 
profit. In general, we recommend that the EPA extend recycling program guidelines to the 
national level. 
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I. INTRODUCTION 
1. Background 
 Each year, the U.S. consumes billions of bags and bottles. However, of the plastics that 
the U.S. produces, only 5% is recovered [2]. Unrecycled plastics present a growing hazard 
because they contain dangerous chemicals like polycarbonate, polystyrene, PETE, LDPE, 
HDPE, and polypropylene, which accumulate over time and build up in our oceans and landfills. 
As such, it is important to assess the scale of our plastic waste production problem over time.  

Our foremost method of reducing wastes like plastics is through recycling, where useful 
materials including glass, plastic, paper, and metals are recovered so that they may be used to 
create new products [3]. There exist several methods of recycling collection; in general, cities 
may use either use drop-off centers or curbside collection. With drop-off centers, the residents 
carry the burden of transporting their recyclable waste, while curbside collection places this 
burden on the city. If a city implements curbside collection, it may choose to use single stream, 
dual stream, or pre-sorted methods; in single stream, all recyclables are collected as one unit, 
whereas in dual stream, recyclables are separated into paper and glass, cans, and plastic [4]. 
Further separation exists with the pre-sorted collection method, where recyclables are fully 
separated by material type [5]. There are advantages and disadvantages associated with each 
method of collection, and in choosing the type of recycling program to implement, cities must 
consider, among other factors, the practicality of individual household collection, as well as the 
volume of recyclables that would be collected using each program [6]. Some communities may 
use Pay-As-You-Throw (PAYT) programs, which encourage residents to recycle their waste so 
as to avoid fees dependent on the weight of their trash [7]. We assess in this analysis whether it is 
more efficient to use drop-off centers or curbside collection, depending on the city where the 
recycling program is being implemented, as well as the effect of using PAYT programs to 
generate additional revenue for the city. 
 
2. Restatement of the Problem 
 In this analysis, we were requested by the EPA to create a model to predict the change in 
plastic production rate over time, as well as the amount of plastic waste in landfills in the year 
2023. We were further asked to look at various recycling methods, not limited to the recycling of 
plastics, and to analyze the recycling method a city should develop, using as sample points the 
cities of Fargo, North Dakota; Price, Utah; and Wichita, Kansas. Finally, the EPA requested that 
we provide recommendations for developing recycling methods on the national level based on 
the model we designed.  
 
3. Global Assumptions 
 Throughout our analysis, we will make the following assumptions: 

1 A city’s population is approximately evenly distributed. Population mostly varies on a 
large scale: in the small microcosm of a city, the population density will not vary much. 

2 A city’s shape is approximately square. Most cities are shaped like this, as are the three 
sample cities we were provided with. 

3 A city’s roads are laid out in a grid plan. The popularity of the grid plan is pervasive, 
dating back to Ancient Rome, and most cities are organized as such, like our three sample 
cities. [8, 9, 10]. 
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4 A household’s recycling stance is consistent. That is, a household that recycles always 
recycles, and a household that does not will never recycle. Recycling is a habit, and 
households that recycle tend to recycle consistently. 

 
II. ANALYSIS OF THE PROBLEM AND THE MODEL 
 
1. Plastic Waste Production 
Assumptions 

1 We used data collected from the past ten years because the first plastic bottle was 
introduced in 1975 [11], and recycling has only become important recently. In other 
words, values used before 2000 would not adequately take into account the recycling 
methods which have now become widespread. 

 
Approach 
 We created our model by performing linear and logistic regressions on the amount of 
plastic waste discarded per year for the last decade in thousands of tons as provided by the EPA 
[1].  
 
Model 

 
Discarded Plastic Waste (thousands of tons) = 463.27 * (years since 2000) + 24443.6 
R2 = .803; S = 801 
 
 The R2 value of .803 means that 80.3% of the variability in the amount of plastic waste 
discarded is explained by the linear relationship between years passed since 2000 and plastic 
waste amount. The standard deviation of the residuals was 801. 
 Based on this model, the amount of unrecycled plastic waste discarded in 2023 will be 
463.27 * 23 + 24443.6 = 35098.81 thousands of tons, or 35.1 million tons. 
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Discarded Plastic Waste (thousands of tons) = 23733.8 + (28014.1 - 23733.8) / (1 + 
     exp((Years since 2000 - 2.71325) / -0.752611)) 
S = 422 
 
 The previously mentioned R2 value only makes sense under the assumption that the linear 
model was appropriate. Since there is a prominent bend in the data, we fit them with a logistic 
curve as well. A statistical software found the four parameters using a successive approximation 
method, and produced the model above. 
 The standard deviation of the residuals in this model is only 422, which is almost twice as 
small as it was in the linear model. Unfortunately, this model assumes that the tonnage of 
discarded plastic waste will level off, which is not entirely reasonable. It does, however, give a 
best-case result (e.g. if recycling initiatives work perfectly). The projected value of discarded 
waste for 2023 is 28014.1 thousand tons (within 4 decimal places), which is the maximal value 
according to the model. 
 In summary, the linear model (which seems to overpredict the later values) yields a value 
of 35.1 million tons, while the logistic model (which levels off) predicts that it will level off at 
28.0 million tons. The US population has been increasing linearly since 2000 [12], so the linear 
model gives a more plausible value for the next ten years. 
 
2. Recycling Methods 
Assumptions 

1 City shape can be approximated as a square or diamond. Most cities in the U.S. are 
square-like in shape, including Fargo, North Dakota, Price, Utah, and Wichita, Kansas.  

2 The streets of the city are laid out in a grid. Many large cities have streets following a 
grid, including Fargo, North Dakota; Price, Utah; and Wichita, Kansas all use grid 
systems  

3 There is no overlap between use of drop-off centers and curbside collection. 
4 The composition of recyclables in the MSW stream is fixed over the entire planning 

horizon. 
 
Model 1: Drop-off Centers 
Approach 
Assumptions 
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1 Each household makes a collective decision on whether or not to recycle because it is 
convenient for a household to transport all of their recyclables to a drop-off center 
together. 

2 The probability of a household’s deciding to recycle varies linearly with the household’s 
distance to the nearest drop-off center. 

3 Recycling households recycle all recyclable waste. 
 

To assess the amount of recyclables collected by a recycling program dependent on drop-
off centers, we created a computer simulation where we assumed uniform population density and 
where we place equally spread drop-off centers around the city, as many as would fit without 
overlapping coverage. To determine whether each household would recycle, a random number 
from 0 to 1 is generated, and if the number is less than the household’s probability of recycling, 
which we assumed varies linearly with the household’s distance to the nearest drop-off center, 
the household recycles. We also determined the cost of maintaining each recycling center and the 
revenue the center would generate, and used these data to calculate the total cost to the city of the 
drop-off center program. In our simulation, we accepted as inputs the area of the city, population 
of the city, average number of people in a household, maximum distance citizens are willing to 
travel, and number of drop-off centers. 
 
Taxicab Distance 
 Because streets are assumed to be organized in a grid, we calculate distance as “taxicab 
distance”, or distance in which the only path allowed consists of horizontal and vertical lines. In 
other words, given px and py as the coordinates of the drop-off center, and x and y as the 
coordinates of the household, the distance between them, d, can be calculated as: 
 
 d = |y - py| + |x - px| 
 
A Household’s Maximum Distance to a Drop-off Center 
Assumption 

1 Recycling households make biweekly trips to a drop-off center. 
 

We recommend that cities conduct a survey to determine the distance their citizens are 
willing to travel in order to recycle, though we calculated this distance in our model. U.S. 
citizens are willing for their household to pay $2.29 a month for curbside collection [13]. Since 
this is the amount that they are willing to pay to recycle at greatest convenience, we can assume 
that it is equivalent to the maximum amount they are willing to pay as the driving cost to a drop-
off center. 
  

The average price of a gallon of gas is $3.784 [14] and the average mileage of a passenger 
car in 2010 was 23.8 mpg [15]. The cost of traveling a distance d is: 

 
Cost = ($3.784/gallon) * d / (23.8 miles/gallon) 
 

 The distance citizens are willing to travel each week is:  
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($2.29 dollars/month) / (4.35 weeks/month) = $0.53 dollars/week = ($3.784/gallon) * (d 
miles/week) / (23.8 miles/gallon) 
d miles/week = ($0.53 dollars/week) * (23.8 miles/gallon) / ($3.784 dollars/gallon) = 
3.33 miles/week 
 
Since citizens must drive to the drop-off center and back, the maximum distance driven 

to the drop-off center is 1.665 miles/week. Assuming that households make biweekly recycling 
trips, the maximum distance from a household to a drop-off center for the household to consider 
recycling is 1.665 miles/week * 2 weeks = 3.33 miles. 

 
A study of drop-off recycling participation in Ohio supports our model, finding that the 

functional usage area of a full-time urban drop-off center is about 3.5 miles [16]. 
 
Number of Recycling Households Covered by a Drop-off Center 
Assumption 

1 The available data from Ohio are representative of the U.S. as a whole. 
 

Each drop-off center will receive recyclables from households up to 3.33 miles away. Using 
taxicab distance, which only allows horizontal and vertical movement, the area within 3.33 miles 
is bounded by a diamond (a square rotated 45°). The diagonal of the diamond is twice the 
distance from the center to a corner, or 2 * 3.33 miles = 6.66 miles. Since the diamond is a 
square, diagonal length = square root(2) * side length, so the side length is 4.71 miles. The area 
of the diamond is side length ^ 2 = 22.18 sq. mi. This is the coverage area of the drop-off center, 
which contains all the households that will consider using the drop-off center. 

 
The number of households in the drop-off center’s coverage area is: 
 
Households = 22.18 sq. mi * (population / land area) / (average household size) 
 
A study of drop-off recycling participation in Ohio found that 15.5% of citizens who do 

not have access to curbside recycling use drop-off recycling [16]. Assuming that this data is 
representative of the U.S. as a whole, the number of recycling households covered by each drop-
off center is: 

 
Recycling households = 22.18 sq. mi * (population / land area) / (average household 

size) * .155 
 
In our simulation, we assigned 15.5% as the median household probability of recycling. 

The closer a household is to the drop-off center, the more likely it is to recycle. Within the drop-
off center coverage area, the closer half of households has a greater than 15.5% recycling 
probability and the farther away half of households has a less than 15.5% recycling probability. 
The distance from the center to the boundary of the closer half of households is the diagonal of 
the square with half the area of the entire coverage area, which is: 

 
Halfway distance = square root(22.18 sq. mi. / 2) * square root(2) = 4.71 miles 
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We assumed that the probability of a household recycling varies linearly with the 
distance to the nearest recycling center. At a distance of 4.71 miles, the probability is 15.5%. At 
the boundary distance of 6.66 miles, the probability is 0%. Extending the line through these 
points, at the center, with a distance of 0 miles, the probability is 52.9%. In our simulation, the 
number of recycling households covered by each drop-off center is approximately the same as 
that calculated using the formula previously given. 

 
Drop-off Center Placement 

In our simulation, we placed as many drop-off centers as possible in each city so that 
none of the coverage areas overlap, with at least one drop-off center in each city. The cost 
efficiency of drop-off centers decreases when their coverage areas overlap. 
 
Annual Amount Recycled 
 The average American generates 4.5 pounds of waste per day [17], about 75% of which 
is recyclable [18]. Thus, the average American generates 4.5 pounds * 0.75 = 3.375 pounds of 
recyclable waste per day. 
 
 Annual Amount Recycled (tons) = (recycling households) * (average household size) * 
3.375 lb * 365 days/year * 0.005 lb/ton * (# drop-off centers) 
 
 This formula can be used in place of our simulation to calculate annual amount recycled, 
as long as there is no overlap between drop-off center coverage areas and the drop-off center 
coverage area is entirely contained within the city. For example, because the drop-off center 
coverage area (22.18 sq. mi.) is much larger than the area of Price, Utah (4.2 sq. mi.), this 
formula cannot be used in place of our simulation for Price, Utah. 
 Using our simulation, we were able to calculate the annual amount recycled for Fargo, 
North Dakota; Price, Utah; and Wichita, Kansas, as well as to visualize the households 
contributing recyclables to each city. In the screenshots below, the white dots represent the drop-
off centers; the green dots represent households that are recycling; and the red dots represent 
households that are not recycling. 
 
Fargo, North Dakota 
Annual Amount Recycled (tons) = 5209.66 
Number of people recycling= 8458 
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Land Area = 48.82 sq. mi. 
Population = 105,549 people 
Average household size = 2.15 people 
 
Price, Utah 
Annual Amount Recycled (tons) = 1876.88 
Number of people who recycle = 3047 
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Land Area = 4.2 sq. mi. 
Population = 8,402 people 
Average household size = 2.60 people 
 
Wichita, Kansas 
Annual Amount Recycled (tons) = 16929.56 
Number of people who recycle = 27486 
 

 
 
Land Area = 159.29 sq. mi. 
Population = 382,368 people 
Average household size = 2.48 people 
 
Drop-off Center Cost 

A report by design engineering company R.W. Beck, Inc. recommends front load 
dumpsters as the most cost-effective type of drop-off center. Under this plan, front load 
dumpsters would be set up at each drop-off center site and recyclables would be collected in two 
streams, commingled containers and paper. The annual cost of a front load dumpster site is about 
$5,575 per year [19]. Thus, the total annual cost of drop-off centers is: 

 
Annual cost of drop-off centers = $5,575 * (# drop-off centers) 

 
Revenue Generated 
 To calculate the total revenue per ton generated from selling recycled products, we used 
the following formula, taking into account the market price per ton for each product [20, 21, 22, 
23, 24, 25, 26, 27]: 
 

Revenue per ton = RevenuePaper + RevenueGlass + RevenueFerrous Metals + RevenueAluminum + 
RevenuePlastic + RevenueTextiles + RevenueWood = (.7012*$112.82) + (.0492*$13) + 
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(.1131*$217.75) + (.0107*$310) + (.0401*$370) + (.031*$100) + (.0362*$296) 
+($135*.0180) = $128.78 per ton of recycled material 

 

 [1] 
 
 Based on a study conducted on recycling collection and processing options in New 
Hampshire [28], cities can decide between small, medium, and large Materials Recovery 
Facilities (MRFs) depending on the annual tonnage. The cost per ton using dual stream and cost 
per ton using single stream varies depending on the size of the MRF. For drop-off centers, we are 
assuming that dual stream is used. 
 
Fargo, North Dakota 

We calculated that Fargo would collect 5,209.66 tons of recyclables. This suggests that a 
medium tonnage mini MRF, which has an annual tonnage of 5,283, is sufficient for the city. The 
cost per ton of a medium mini MRF using dual stream is $124.62. Since the material revenue per 
ton was previously found to be $128.78, we can calculate the net cost per ton as:  

 
Net cost = $124.62 - $128.78 = -$4.16 
 
The total cost to the city can then be calculated as: 
 
Total cost = -$4.16 per ton * 5,209.66 tons + $5,575 per drop-off container * 1 container 
= -$16,097.19 (profit) 

 
Price, Utah 

We calculated that Price would collect 1876.88 tons of recyclables. Price would use a low 
tonnage mini MRF, and the net cost per ton would also be $89.69. Then, the total cost to the city 
is: 

 
Total cost = $89.69 per ton * 1876.88 tons + $5,575 per drop-off container * 1 container 
= $173,912.37 

 
Wichita, Kansas 
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We calculated that Wichita would collect 16,929.56 tons of recyclables, suggesting that 
Wichita would require a high tonnage mini MRF, which has an annual tonnage of around 7,500. 
For a high tonnage mini MRF, the cost per ton for dual stream is $95.40. Since the material 
revenue is $128.78 per ton, the net cost per ton is: 

 
Net cost = $95.40 - 128.78 = -33.38 
 

This represents a profit of $33.38 per ton of recycled material. The total cost to the city is then: 
 
Total cost = -$33.38 per ton * 16,929.56 tons + $5,575 per drop-off container * 1 

container = -$559,533.71 (profit) 
 

Pay-As-You-Throw 
 If the city implements a Pay-As-You-Throw (PAYT) program, it will collect revenue 
from citizens who must pay an amount depending on the volume of waste they generate. We can 
calculate revenue generated by such a program by using the formula [29]:  
 

RevenuePAYT = (WeightWaste / VolumeContainer * PriceContainer - PriceStartup, Maintenance per day) * 
Population 

 
 The average American generates 4.5 lbs of waste and recycles 1.5 lbs [17]. PAYT 
programs cost around $0.28 per capita, based on surveys of Wisconsin and Iowa [30]. We also 
simplified VolumeContainer * PriceContainer as Container price/pound, since the containers are meant 
to hold specific amounts of weight. Thus, the revenue generated by PAYT for citizens who 
recycle can be calculated as:  
  
RevenuePAYT, Recycle = ((4.5 lbs - 3.375 lbs) * Container price/pound - $0.28/365) * 
PopulationRecycle 
 
RevenuePAYT, Don’t recycle = (4.5 lbs * Container price/pound - $0.28/365) * PopulationDon’t recycle 
 
Total revenuePAYT = RevenuePAYT, Recycle + RevenuePAYT, Don’t recycle =  ((4.5 lbs - 3.375 lbs) * 
Container price/pound - $0.28/365) * PopulationRecycle+ (4.5 lbs * Container price/pound - 
$0.28/365) * PopulationDon’t recycle 
 
Fargo, North Dakota 
Total revenuePAYT = (1.125 lbs * x - $0.28/365) * 8,458 peopleRecycle + (4.5 lbs * x - $0.28/365) * 
(105,549 - 8,458 peopleDon’t recycle) 
 
Price, Utah 
Total revenuePAYT = (1.125 lbs * x * - $0.28/365) * 3047 peopleRecycle + (4.5 lbs * x - $0.28/365) 
* (8,402 - 3,047 peopleDon’t recycle) 
 
Wichita, Kansas 
Total revenuePAYT = (1.125 lbs * x - $0.28/365) * 27,486 peopleRecycle + (4.5 lbs * x - $0.28/365) 
* (382,368 - 27,486 peopleDon’t recycle) 
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The following table provides the total revenue generated by a PAYT program if the 

container price per pound were $0.01, $0.05, or $0.10. 
 

 
 

 
 
Sensitivity Analysis 

We tested the sensitivity of our simulation of the annual amount recycled in a city using a 
drop-off recycling program. We changed population and area by +/- 2%, 5%, and 10% and 
examined the resulting change in annual amount recycled. For simplicity, we only examined the 
changes for one of our sample cities: Fargo, North Dakota. 

 

 
 
 The annual amount recycled responds approximately linearly to both area and population. 
The response is not precisely linear because the randomness used in the simulation to determine 
whether each household recycles introduces some variation between different runs of the 
simulation. Since the slopes are small, a slight error in the initial parameters would not 
significantly change the simulation’s output. 
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Model 2: Curbside Collection 
Assumptions 

1 Each city has only one recycling processing plant, located at the geographic center, as we 
found that one large-scale processing center is more than enough to cover one city’s 
recycling needs. 

2 Recycling collection comes biweekly. 
 
Approach 

We subdivided the city into zones for which one garbage truck was responsible. Each 
truck is responsible for driving to its zone, collecting all the recyclable waste it can, and 
delivering it to the central processing center, which then sorts and processes the recyclable waste. 
 
Recyclable Waste Collected and Cost to City 
 We divide the cost to the city into three parts: the cost of gasoline, the wages of the truck 
drivers, and the price of truck upkeep.  The cost is as follows: 
 
Cost = (Price of diesel fuel in dollars/gallon) * distance / (Truck miles/gallon) + (Num houses) / 
(Houses/hour) * (Driver wage/hour) + Truck_Upkeep 
 

The number of houses visited per hour varies depending on whether a single stream or 
dual stream collection method is used; for single stream, 171 households are visited per hour, 
while for dual stream, 130 households are visited per hour [31]. The mileage of a truck is 5 mpg, 
with a cost of $4.02 per gallon. The average wage of a truck driver is $16 dollars/hour [19].  
 

Thus, the formulas for single stream and dual stream collection costs are as follows: 
 
Single stream cost = ($4.02 dollars/gallon) * distance / (5 miles/gallon) + (Num houses) / (171 
houses/hour) * ($16 wage/hour) 

 
Dual stream cost = ($4.02 dollars/gallon) * distance / (5 miles/gallon) + (Num houses) / (130 
houses/hour) * ($16 wage/hour) 

 
We assume that a truck driver can only collect for 7 hours a day: (8 hour work day, minus 

an hour for lunch and driving). So, a truck driver has a maximum amount of households s/he can 
visit in a biweekly circuit (171 * 7 * 10=11970 for single-stream and  130*7*10=9100 for dual-
stream). When a driver is tasked with more houses that s/he can visit, we simply used this 
ceiling. To demonstrate, the graphs below show efficiency, in terms of tons of recyclable waste 
collected per thousand dollars, versus the number of trucks in each city. 
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Using the model, we calculated the optimum number of trucks for each city for either 
dual stream or single stream curbside collection depending on the efficiency of the collection, 
quantified using the tons of recycled material collected per $1,000, and the total amount of 
recycled waste collected. The results for optimum number of trucks are shown below: 
 
 

City  Single Stream  Dual Stream 

Fargo 5 6 

Price 1 1 

Wichita 13 17 

 
Given the optimum number of collection trucks, the annual cost and tons of recyclable 

waste collected can then be determined using our computer simulation.  

City Single Stream  Dual Stream  

 Tons of Waste Collection Cost Tons of Waste Collection Cost 

Fargo 25292.85 $205,787.20 25933.39 $319,383.30 

Price 2064.37 $24,526.54 2064.37 $27,005.94 

Wichita 93947.82 $713,424.24 88719.32 $798,496.11 
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To calculate the revenues and costs generated or incurred from curbside collection, we 
needed to determine the cost of recycling and sorting at large-scale MRFs. To calculate the net 
costs per ton of material in processed in a MRF, we used data from Resource Recycling Systems 
[31] to find operating, capital, and maintenance costs for MRFs of different tonnage capacity. A 
graphical representation of the processing and operating costs is shown below[31]: 

 
 
Fargo, North Dakota 
Single stream:   

Using our model, we calculated that Fargo would generate 25,292.85 tons of recyclables 
annually using single stream curbside pickup. The operating cost is about $130 per ton for a dual 
stream MRF of the same tonnage capacity [31]. However, single stream MRFs have greater 
processing costs in the range of $10-15 per ton (averaged at $12.5), because of greater sorting 
required [4]. Using the revenue generated from selling recovered material, as calculated in the 
Drop-Off Center section to be $128.78, the net cost and total cost are: 

 
Net cost per ton = ($130+ $12.5 )- $128.78 + = $13.72 per ton 
 
Total cost = 25,292.85 tons * $1.22 per ton + Collection cost = $347,017.90 + 
$205,787.20 = $552,805.1 

 
Dual stream: 
 Using our model, we calculated that Fargo would generate 25,933.39 tons of recyclables 
annually using dual stream. The operating cost is about $130 per ton. Thus, net cost and total 
cost are:  
 

Net cost per ton = $130 - 128.78 = $1.22 per ton 
Total cost = 25,933.39 tons * $1.22 per ton + Collection cost = $31,638.74 +  
$319,383.30 = $351,022.04 

 
Price, Utah 
Single stream: 

62



Team #1356, Page 16 of 20 
 

 Using our model, we calculated that Price would generate 2,064.37 tons of recyclables 
annually using single stream. A mini MRF, with an annual tonnage of 2,649, is sufficient. The 
operating cost is about $245.62 per ton for single stream. Thus, net cost and total cost are:  
 

Net cost per ton = $245.62 - 128.78 = $116.84 
 
Total cost = 2,064.37 tons * $116.84 per ton + Collection cost = $24,526.54 + $241,201 
= $265,727.53 

 
Dual stream: 

Using our model, we calculated that Price would generate 2,064.37 tons of recyclables 
annually using dual stream.  A mini MRFis again sufficient. The operating cost is about $218.47 
per ton for dual stream. Thus, net cost and total cost are:  
 

Net cost per ton = $218.47 - 128.78=89.69 
 

Total cost = 2064.37 tons * $89.69 per ton + Collection cost = $24,526.54 + $27,005.94 
= $212,159.29 

 
Wichita, Kansas 
Single stream: 

Using our model, we calculated that Wichita would generate 93,947.82 tons of 
recyclables annually using single stream. Thus, net cost and total cost are:  
 

Net cost per ton = ($95 + $12.5) - $128.78 = -$21.28 
 

Total cost = 93,947.82 tons * -$21.28 per ton + Collection cost = -$3,173,557 + 
$713,424.24 = -$1,285,785.61 

As the cost is negative, the city receives a profit. 
 

Dual stream: 
Using our model, we calculated that Wichita would generate 88,719.32  tons of 

recyclables annually using dual stream. Thus, net cost and total cost are:  
 

Net cost per ton = $95 - $128.78 = -$33.78 
Total cost = 93,947.82 tons * -$33.78 per ton + Collection cost = -$3,173,557.36 +  
$798,496.11 = -$2,375,061 

The city again receives a profit. 
 

 
Pay-As-You-Throw 

We can apply the Pay-As-You-Throw revenue formulas calculated in the Drop-Off 
Centers section: 
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 Total revenuePAYT = RevenuePAYT, Recycle + RevenuePAYT, Don’t recycle =  ((4.5 lbs - 3.375 lbs) 
* Container price/pound - $0.28/365) * PopulationRecycle+ (4.5 lbs * Container price/pound - 
$0.28/365) * PopulationDon’t recycle 
 

Given that 40% of people to whom curbside recycling is available recycle [16], we 
calculated the total revenue each city can expect from a Pay-As-You-Throw program alongside 
curbside recycling. The variable “x” is used to represent the container price per pound, which is 
up to the city to set.  
 
Fargo, North Dakota 
Total revenuePAYT = (1.125 lbs * x - $0.28/365) * (.40 * 105,549 peopleRecycle) + (4.5 lbs * x - 
$0.28/365) * (105,549 - .40 * 105,549 peopleDon’t recycle) 
 
Price, Utah 
Total revenuePAYT = (1.125 lbs * x - $0.28/365) * (0.40 * 8,402 peopleRecycle) + (4.5 lbs * x - 
$0.28/365) * (8,402 - 0.40 * 8,402 peopleDon’t recycle) 
 
Wichita, Kansas 
Total revenuePAYT = (1.125 lbs * x - $0.28/365) * (0.40 * 382,368 peopleRecycle) + (4.5 lbs * x - 
$0.28/365) * (382,368 - 0.40 * 382,368 peopleDon’t recycle) 

 
The following table provides the total revenue generated by a PAYT program if the 

container price per pound were $0.01, $0.05, or $0.10. 
 

 
 

 
 
3. Testing the Models 
     To test our models for accuracy, cities with a current drop-off recycling, single-stream 
curbside collection, or dual-stream curbside collection program can be run through the models. 
The population, area, and other required attributes of the city will be input into our models, and 
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the accuracy of our models would be confirmed if the model results for annual amount recycled 
and net annual cost to the city are similar to the values in reality. 
4. Recommendations 
 When designing a recycling program, the city should identify markets for recycled 
materials. The characteristics of the market determine how recyclables should be collected, 
processed, and eventually sold [32]. 
 To extend our model to the national level, we took US Census data from 2000 which 
recorded the population density. We then tested each county. On the national level, the EPA 
should strongly encourage recycling programs for almost every county or region, particularly in 
denser, less rural regions.  

 
 The diagram below marks all the centers of all the counties where at least one of our 

three proposed recycling programs turns a profit to the community, based on the models were 
proposed earlier. 

 
  

 
In general, across the U.S., very small cities such as Price, Utah will incur losses from a 

recycling program. A drop-off program cannot be used to full advantage because much of the 
potential coverage area of one drop-off center lies beyond the city limits. In relatively large, 
densely populated cities such as Wichita, Kansas, dual-stream curbside collection is generally 
recommended to bring the highest profits. This is due to low participation in drop-off recycling; 
on average, only 15.5% of potentially covered households participate. The revenue benefits of a 
pay-as-you-throw initiative must be balanced against the cost of its unpopularity among citizens. 
A pay-as-you-throw initiative is generally recommended for small cities such as Price, Utah that 
seek to adopt a recycling program but incur losses no matter what the program. In these cases, a 
pay-as-you-throw initiative is recommended to offset losses to the city. 
 
III. CONCLUSION 
     Effective recycling programs are critical for cities to address the waste accumulation in 
landfills. Based on our models, we conclude that drop-off centers, curbside collection, and pay-
as-you-throw initiatives can all be feasible recycling programs, depending on the population and 
area of a given city. All the models are resistant to minor changes in the input values and can be 
applied to any city. 
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     The population growth of the U.S. has a notable effect on the change in the amount of 
plastic waste discarded in landfills each year. Partly because U.S. population growth has been 
linear in recent years, we determined that a linear model was most appropriate for predicting the 
amount of plastic waste discarded. Our linear model predicts that 35.1 million tons of plastic 
waste will be discarded in 2023, an increase of 13% over 2010. 
     Using a drop-off program, Fargo, North Dakota, and Wichita, Kansas would both 
generate profits from the sales of recovered materials. The net profits leave an unpopular PAYT 
initiative unnecessary. In Price, Utah, however, a drop-off program sustains losses because of the 
very small size of the city. For this reason, we recommend that Price adopt a PAYT initiative to 
raise revenues and offset costs of the drop-off program. 
     Using any curbside program, single-stream or dual-stream, Fargo, North Dakota and 
Price, Utah incur losses. In both cities, a drop-off program is recommended: in Fargo, because a 
drop-off generates profits and in Price, a drop-off generates less losses than a curbside collection. 
In Wichita, Kansas, however, both a single and dual stream curbside collection generate a profit, 
leaving all three programs feasible. Dual-stream curbside collection is strongly recommended, 
however, for the highest profits. 
     Nationally, small cities generally incur losses with any recycling program, as seen in our 
model results for Price, Utah. Dual-stream curbside collection is generally recommended for 
large, densely populated cities, who can take advantage of efficiencies of scale. The revenue 
benefits of a PAYT initiative must be balanced against the cost of its unpopularity among 
citizens, though it is recommended for small cities to help offset their losses. Recycling has 
environmental benefits for any city but is especially important for large, densely populated cities, 
where it has economic as well as environmental benefits. 
 
BIBLIOGRAPHY 

 
1 "2010 Facts and Figures Fact Sheet (PDF) - US Environmental ..." 2012. 4 Mar. 2013 

<http://www.epa.gov/wastes/nonhaz/municipal/pubs/msw_2010_rev_factsheet.pdf> 
2 2013. <http://5gyres.org/what_is_the_issue/the_problem/> 
3 "Municipal Solid Waste | Wastes | US EPA." 2004. 3 Mar. 2013 

<http://www.epa.gov/msw/> 
4 "Dual Stream” vs. “Single Stream” Recycling Programs | UMBC ..." 2012. 3 Mar. 2013 

<http://umbcinsights.wordpress.com/2012/08/28/dual-stream-vs-single-stream-recycling-
programs/> 

5 "Curbside Collection Study - Eureka Recycling." 2010. 3 Mar. 2013 
<http://www.eurekarecycling.org/page.cfm?ContentID=72> 

6 "Organizing a Community Recycling Program." 2012. 3 Mar. 2013 
<https://www.bae.ncsu.edu/topic/vermicomposting/pubs/ag473-11-community-
recycle.html> 

7 "Pay-As-You-Throw Programs| Conservation Tools | US EPA." 2003. 3 Mar. 2013 
<http://www.epa.gov/payt/> 

8 "Moving to Fargo, ND| Fargo, ND Moving Companies." 2009. 4 Mar. 2013 
<http://www.upack.com/moving-companies/north-dakota/fargo/> 

9 "Explore Utah - Getting Around in Utah - Navigating Utah's Streets ..." 2011. 4 Mar. 
2013 <http://www.exploreutah.com/GettingAround/Navigating_Utahs_Streets.shtml> 

10 Wichita travel guide - Wikitravel." 2005. 4 Mar. 2013 <http://wikitravel.org/en/Wichita> 

66



Team #1356, Page 20 of 20 
 

11 "A Brief History of Plastic - The Brooklyn Rail." 2008. 4 Mar. 2013 
<http://www.brooklynrail.org/2005/05/express/a-brief-history-of-plastic> 

12 "National Intercensal Estimates (2000-2010) - U.S Census Bureau." 2011. 4 Mar. 2013 
<http://www.census.gov/popest/data/intercensal/national/nat2010.html> 

13 "Estimating Consumer Willingness to Supply and Willingness to Pay ..." 3 Mar. 2013 
<http://le.uwpress.org/content/88/4/745.refs?related-urls=yes&legid=wple;88/4/745> 

14 "Gasoline and Diesel Fuel Update - Energy Information ... - EIA." 2011. 3 Mar. 2013 
<http://www.eia.gov/petroleum/gasdiesel/> 

15 "Fuel Economy | National Highway Traffic Safety Administration ..." 2010. 4 Mar. 2013 
<http://www.nhtsa.gov/fuel-economy> 

16 "Ohio EPA 2004 Drop-Off Recycling Study." 2010. 3 Mar. 2013 
<http://www.epa.ohio.gov/portals/34/document/general/swmd_drop_off_study_report.pd
f> 

17 "Municipal Solid Waste Generation, Recycling, and Disposal in - US ..." 2009. 3 Mar. 
2013 <http://www.epa.gov/osw/nonhaz/municipal/pubs/msw2008rpt.pdf> 

18 "Recycling Stats | GreenWaste Recovery." 2008. 3 Mar. 2013 
<http://www.greenwaste.com/recycling-stats> 

19 "Enterprise Portal Information - Home." 2006. 4 Mar. 2013 
<http://www.portal.state.pa.us/> 

20 "SCRAP TIRE RECYCLING - Tennessee." 2008. 4 Mar. 2013 
<http://www.tn.gov/environment/swm/pdf/TFscraptires.pdf> 

21 "Recycled Wood Products - Sonoma Compost." 2007. 4 Mar. 2013 
<http://www.sonomacompost.com/recycle_wood.shtml> 

22 "Plywood Thickness and Weights: Sanded Nominal Thickness 1/4 3 ..." 2008. 4 Mar. 
2013 <http://parr.com/PDFs/PG_plywoodthickness.pdf> 

23 "Recycling and Composting Online." 4 Mar. 2013 <http://www.recycle.cc/freepapr.htm> 
24 "Glass." 2010. 4 Mar. 2013 <http://www.ndhealth.gov/wm/recycling/Glass.htm> 
25 "Daily Scrap Metal Prices - Maxi Waste Limited." 2007. 4 Mar. 2013  

<http://www.maxiwaste.co.uk/scrapdailyprices.php> 
26 "Aluminum: How Sustainable is It? | Streamline." 2010. 4 Mar. 2013 

<http://www.streamlinemr.com/articles/aluminum-how-sustainable-is-it> 
27 "Textile Recycling FAQs - Trans-Americas Trading Co." 2011. 4 Mar. 2013 

<http://tranclo.com/recycling-faq.asp> 
28 "Solid Waste Publications for Sullivan County - Waste Management ..." 2013. 4 Mar. 

2013 <http://waste.uvlsrpc.org/index.php/solid-waste-publications-sullivan-county/> 
29 "Georgia Department of Community Affairs." 2007. 4 Mar. 2013 

<http://www.dca.state.ga.us/main/quickmenuListing.asp?mnuitem=PROG> 
30 Skumatz, LA. "Measuring Source Reduction: Pay-As-You-Throw Variable Rates as ..." 

2000. <http://www.epa.gov/osw/conserve/tools/payt/pdf/sera.pdf> 
31 "Extending Recycling's Reach with MRF Hub and ... - NC SWANA." 4 Mar. 2013 

<http://www.ncswana.org/files/2012%20Fall%20Presentations/Frey-
NC%20SWANA%20MRF%20Optimization%20presentation%20100212.pdf> 

32 "Organizing a Community Recycling Program." 2012. 4 Mar. 2013 
<https://www.bae.ncsu.edu/topic/vermicomposting/pubs/ag473-11-community-
recycle.html> 

67



 

[1]  S. Chaturapruek, J. Breslau, D. Yazdi,  
T. Kolokolnikov, and S. McCalla. Crime modeling 
with Lévy flights. SIAM Journal on Applied  
Mathematics, 73(4):1703–1720, 2013.

[2]  Consortium for Mathematics and Its Applications. 
2013 MCM problem A: The Ultimate Brownie Pan. 
http://www.comap.com/undergraduate/contests/mcm/
contests/2013/problems/.

[3]  A. Crannell. A Guide to Writing in Mathematics 
Classes. http://www.math.wisc.edu/~miller/m221/ 
annalisa.pdf.

[4]  P. Dawkins. Paul’s Online Math Notes: Euler’s 
Method. http://tutorial.math.lamar. edu/Classes/DE/ 
EulersMethod.aspx.

[5]  FreeMind. http://freemind.sourceforge.net/wiki/ 
index.php/Main_Page.

[6]  A. Greenleaf, Y. Kurylev, M. Lassas, and G.  
Uhlmann. Cloaking devices, electromagnetic  
wormholes, and transformation optics. SIAM  
Review, 51:3–33, 2009.

[7]  D. Hailman and B. Torrents. Keeping dry: Running 
in the rain. Mathematics magazine,  
8(24):266–277, 2009.

[8]  Ohio EPA 2004 Drop-Off Recycling Study. 2010. 3 
Mar. 2013 http://www.epa.ohio.gov/portals/34/ 
document/general/swmd_drop_off_study_report.pdf.

[9]  M. Stubna, W. McCullough, and G. L. Gray. Euler’s 
Method Tutorial. http://www. esm.psu.edu/courses/
emch12/IntDyn/course-docs/Euler-tutorial/.

[10]  Y. van Gennip, B. Hunter, R. Ahn, P. Elliott, K. Luh, 
M. Halvorson, S. Reid, M. Valasik, J. Wo, G. Tita,  
A. Bertozzi, and P. Brantingham. Community  
detection using spectral clustering on sparse  
geosocial data. SIAM Journal on Applied  
Mathematics, 73(1):67–83, 2013.

references

appendices & REFERENCES

68

 



 

 

this handbook was made possible with enthusiasm and funding from the following organizations:

National Science Foundation

motivation and acknowledgments

We came to this project as members of the Moody’s Mega Math Challenge’s Problem Development Committee, 
where we have responsibility for soliciting, writing, editing, and vetting potential problems to use in this math 
modeling scholarship contest. Something that was made clear from the start was that many high school students are 
unfamiliar with how to do modeling, how to get started, and how to reach a solution. In addition, we have taken part 
in NSF workshops where the focus is on engaging math education, motivating students to study and pursue careers 
in STEM, and keeping them in those disciplines when the going gets rough through better understanding and  
enthusiasm for the subjects.

The support of several individuals and organizations was critical to making the handbook happen:  First, Frances 
G. Laserson, President of The Moody’s Foundation, which has funded the Moody’s Mega Math Challenge since its 
inception in 2006. Her commitment to education, specifically in applied math, economics, and finance, has been 
instrumental in enabling us work on the content contained here. Dr. Peter Turner, Dean of Arts and Sciences at 
Clarkson University and Vice President for Education and Chair of the Education Committee for the Society for 
Industrial and Applied Mathematics (SIAM), has supported both the Challenge and SIAM’s increased attention to the 
high school and undergraduate communities of students interested in STEM and, in particular, math modeling. Peter 
has also been principal investigator, along with Dr. James C. Crowley, executive director of SIAM, on the “Modeling 
across the Curriculum” workshops funded by the National Science Foundation (NSF) and through which the content 
of this handbook was also enriched. And finally, Michelle Montgomery, SIAM Director of Marketing and Outreach 
and Project Director for Moody’s Mega Math Challenge, and her staff team at SIAM. Michelle’s group organizes the 
Moody’s Mega Math Challenge, participates enthusiastically in the NSF workshops, and seeks to optimize outreach 
to young people through multiple projects and channels to fulfill one of SIAM’s key goals: increasing the pipeline of 
individuals going into applied mathematics and computational science programs and careers.

#WeDidIt
Karen, Katie and Ben



3600 Market Street, 6th Floor  
Philadelphia, PA 19104-2688 USA
www.siam.org


