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Defeating the Digital Divide

1 Executive Summary

As the world becomes increasingly reliant on the internet, from online schooling to working
from home, broader and higher quality access has never been more important. However,
expanding internet infrastructure presents a unique challenge in terms of cost, economic
efficiency, and capacity requirements. Our team aims to optimize the process of improving
connectivity by predicting the price of bandwidth over the next 10 years, calculating band-
width needs for a variety of household scenarios, and determining the best distribution of
cellular nodes over a given region.

We first predicted future internet costs in the United States (US) and the United Kingdom
(UK) by using random forest regression, a supervised machine learning algorithm that com-
bines the predictions of multiple decision trees to give accurate forecasts. The model was
trained on a dataset of 48 mainland US states and their respective population densities, cost
of living, average download speeds, and average price per Megabit per second (Mbps). After
achieving a reasonable root mean square error of 0.660, the random forest was then applied
to the entirety of the US and UK. The population densities and cost of living were adjusted
based on the expected percent change over 10 years, and a regressed exponential function
was used to determine future average download speeds. These features served as input into
the random forest which then predicted the future price. The model ultimately predicted
a decrease of $0.23 per Mbps in the US and $0.57 in the UK over the next decade, which
proved to be a sensible result.

Next, we calculated the bandwidth demands for various household scenarios and determined
the bandwidth required to satisfy 90% and 99% of predicted demand. Each scenario involved
a household with a hypothetical weekly schedule of activities and information based on age,
education, and job status. We created a simulation of a typical week with 112 waking
hours and determined the bandwidth usage for each hour where the probability of a person
performing the activity was proportional to the percent of total time needed for the task.
For each scenario, the maximum bandwidth was recorded over 1000 trials, and the 90th and
99th percentiles of the distribution were found. 14.5 Mbps and 15.5 Mbps were sufficient
for 90% and 99% coverage for scenario 1, 20.8 Mbps and 21.8 Mbps for scenario 2, and 20.6
Mbps and 21.9 Mbps for scenario 3.

Finally, we developed a model that optimally distributes 4G and 5G cellular nodes in arbi-
trary regions. We studied the comparative advantages and disadvantages of each network
type—surmising that while 4G networks are often discounted, their 5G counterparts offer
fast speeds at shorter signal ranges. To calculate the locations for placing the nodes, we
calculated the center of mass by integrating mass with respect to position for each region.
We also determined that cities eligible for 5G networks should have population densities of
777 people per square mile or higher and an annual household income of at least $103,689.32.
Combining these two techniques yielded an efficient distribution plan for cellular nodes.
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2 Part I: The Cost of Connectivity

2.1 Restatement of the Problem

In this problem, we are tasked with predicting the cost per unit of bandwidth (Mbps) over
the next decade for consumers in the United States and the United Kingdom.

2.2 Assumptions

1. There will be no significant policy changes regarding standards for internet speed, cost,
and availability in the next 10 years. Due to the unpredictable nature of new legislation
and government initiatives, we are unable to account for these potential changes in our
modeling.

2. The amount of internet provided in Mbps per US dollar will be constant regardless of
how much money is spent. The majority of internet users will not spend enough money
such that they begin experiencing diminishing returns for each dollar spent. Economics
of scale are therefore not applicable to individual households.

3. Future internet usage and cost trends in the UK are comparable to those in US states
and depend on the same factors. The United States and the United Kingdom have
similar internet infrastructure and geographical trends such as population density (e.g.,
the two countries contain both high and low population density areas).

4. The population density and cost of living index in a given area increase by 1.31% and
2.20% respectively, which are sensible rates for the United States. The percent increase
in population density in California was found to be 1.31% according to the PPIC [1].
California has a large land area and contains a relatively uniform mix of urban and rural
areas. As a result, its overall increase in population density can likely be generalized
to the United States. The average increase in the cost of living index can be modeled
by the inflation rate [2]. Since we are looking at the change of the index over a long
period of time (10 years), it is reasonable to use a constant average inflation rate per
year in order to model the growth of the cost of living over a decade.

2.3 Model Development

2.3.1 Factor Identification

The population density is a relevant factor given the cost discrepancies between urban and
rural areas. For a sparsely populated region, the price of internet is significantly higher for an
individual consumer because fewer people are available to recuperate the fixed infrastructure
cost. On the other hand, the utility obtained per unit of internet infrastructure is greater in
densely populated areas where more consumers are available to handle the expenses. Thus,
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we incorporate the population density data of mainland US states [3] into our model along
with the expected annual change of 1.31

Next, the cost of living indicates the amount of money required to achieve a certain standard
of living in a given area. With a higher cost of living, the dollar price for goods and services,
including the internet, will also be greater. Therefore, we utilize a cost of living index [4]
that compares a state’s cost of living with the average for the United States. For example,
a state with an index value of 110 compared to the mean of 100 in the US has a 10% higher
cost of living. We utilize the average change in the index to model the internet costs for the
next 10 years while accounting for inflation.

Lastly, we include the average download speed for each state [5] to ensure that the model
accounts for any potential trends between the factor and internet cost. For example, it
is possible that areas with high download speed have well-established infrastructure and
therefore have cheaper internet. We also created two exponential regression models based
on US and UK download speed trends [6] to predict the values over the next 10 years. These
predictions are then used as part of the overall regression model.

Figure 1: Exponential regression models.

2.3.2 Random Forest Regression

To predict internet cost over time, we used the Scikit-learn Python library to train a random
forest regression model on the factors described above. This supervised machine learning
model employs an ensemble of decision trees to make an accurate and robust prediction.
Each decision tree is trained on a random subset of the dataset to reduce intercorrelation and
utilizes algorithms to determine optimal logical splits. Following the created splits, data can
be categorized and a regression output is produced. The outputs of the individual decision
trees are then averaged for the final ensemble prediction. Our random forest model consists
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of 20 decision trees, each limited to a max depth of five nodes to improve generalization to
unseen data.

Figure 2: First few rows of the training data.

The random forest regressor was first trained on the set of 48 US states using the features
of population density, cost of living index, and average download speed. The target column
consisted of the state’s average internet cost [7] in dollars per Mbps. After training, the model
was used to predict the cost of the internet for the US and UK over the next 10 years. This
was accomplished by making predictions for each country’s average feature values and then
applying the appropriate annual change to each input for the next prediction. The population
density was increased by 1.31%, the cost of living index by 2.20%, and the average download
speed by the amount indicated by the exponential regressions. By performing this process
over 10 iterations, we were able to find the predicted future internet costs for users in the
two countries.

2.4 Results

The random forest regression achieved a root mean square error (RMSE) of 0.660 when
predicting the internet costs for US states. This value represents a typical difference between
the predicted and actual internet prices in US dollars, which is an acceptable error given the
magnitude of the prices.

The 10-year US and UK regressions produce the trends shown in the graphs below. Although
there are some deviations, the model predicts a decrease of $0.57 (from $4.33 to $3.76) in
the average price per Mbps in the US and a decrease of $0.57 (from $3.18 to $2.61) in the
UK. As expected, the price of internet access decreases over time which can be attributed
to increased population density and improved infrastructure. Overall, the predictions are
consistent with the expected results.

2.5 Strengths and Weaknesses

The random forest model allows us to effectively combine multiple factors to make a predic-
tion. The algorithm is robust to skewed, non-linear data which makes it ideal for processing
features such as population density. Furthermore, the ensembling process minimizes the risk
of overfitting, a prevalent issue where a machine learning model learns the training data

6
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Figure 3: Projected cost of bandwidth in Mbps for the US and the UK.

too closely and later fails to accurately predict unseen examples. However, a weakness of
random forest regression is the fact that it is not easily interpretable since it consists of a
large number of decision trees. It is difficult to pinpoint the exact decision process that the
algorithm undergoes to arrive at its prediction.

3 Part II: Bit by Bit

3.1 Restatement of the Problem

In this problem, we are tasked with finding what minimum bandwidth households would
need to cover their internet usage 90% and 99% of the time. Three scenarios were given:

1. A couple in their early 30s (one is looking for work and the other is a teacher) with a
3-year-old child.

2. A retired woman in her 70s who cares for two school-aged grandchildren twice a week.

3. Three former M3 Challenge participants sharing an off-campus apartment while they
complete their undergraduate degrees full-time and work part-time.

3.2 Assumptions

1. We assume that each day and week will have the same probabilities. Each day and week
in the year will overall be extremely similar so we ignore any special circumstances.

2. We observe that each day’s usage (Sunday vs. Saturday vs. Monday etc.) does not
differ substantially, which resultantly solves the issue of the grandma caring for her
grandchildren. Beyond the grandmother, the aforementioned assumption also resolves
situational occurrences for each person, both now and in the future.

7
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3. The people in the given situations are in the US and not the UK. The data provided
is only relevant for the US.

4. People will always use best quality streaming for Youtube (HD) and Netflix (Ultra HD);
even if they only “need” less, e.g., 1 mb/s for SD quality, they will never use it at that
quality so we will assume that the bandwidth needed will be at the higher quality. SD
quality usually is unsatisfactory and people generally want to use the best quality for
the best experience if it’s available.

5. Each pre-college school day is 5 hours, giving a total of 25 hrs/week. Every class will
also be on a video conference format. Since a general school day is around 7 hours,
we made a general estimate that the amount of actual video-conferencing and internet
usage would come to around 5 hours.

6. College students also leverage online platforms for their classes in the wake of a pan-
demic. Their classes span an average of 16 hrs/week, via video conferencing software
[8]. In light of the additional time that college students have in a remote academic
setting, it is safe to say that they will consciously look to take a more rigorous—albeit
longer—college course load, leading us to take the higher bound of the class hrs/week
(16 hrs).

7. Teachers’ work hours are the same as students (5 hours) and they do not work after
school hours. Justification: Due to the variability in each day for a teacher—inclusive of
meetings and personal commitments—it’s difficult to pinpoint their daily commitment
to school-related curricula. As a result, we went ahead and assumed that they do not
provide after school help, for the most consistency in results.

8. People are awake to use the internet 16 hours a day. 8 hours is a recommended amount
of time for an average person to sleep [9].

9. People only access the internet through one medium at a time and do not multitask.
Most people generally only consume the internet through one source at a time. Fur-
thermore, this is a simplifying assumption that allows us to run the simulation and
assign each person a specific task and internet consumption for a specific hour.

3.3 Model Development

3.3.1 Determining the Hours Each Person Spends on the Internet

Each person was first assigned a list of digital activities they would perform in a week. Each
activity had attributes like time spent, lower bound of bandwidth usage, and upper bound of
bandwidth usage. Age group, education level, and employment status were all factors used
to determine this list of digital activities [6]. The age group was the first categorization to
associate values with the ages of the people for the scenario. Utilizing the data provided,
we were able to determine internet tendencies for entertainment purposes depending on the

8
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age of the user. This included the amount of time they spent watching videos, listening to
audio, etc. Next, in order to account for the global shift to remote learning and work, we
added hours of schooling to those applicable, namely people in the age groups of 2–11, 12–17,
and 18–34. Similarly, teachers must work through online, remote instruction and encounter
similar internet usage as their students. As a result, school related activities were added on
top of entertainment activities that were already present in the list of digital activities.

For employment, those in part-time jobs were considered to be in-person workers because
remote part-time jobs are generally hard to obtain in general, especially for undergraduate
students. As a result, jobs were not added onto the list of internet activities as they do not
contribute to household bandwidth consumption.

3.3.2 Simulating Outcomes

Finally, we simulated the bandwidth demand for each scenario for every single hour for an
entire week. Given that people are awake around 16 hours a day, we simulated 7 · 16 = 112
hours of internet usage. For each hour, the probability that a person would be performing a
given internet activity is proportional to the percentage of time they spend on that activity
over the entire week. For example, if a user spends 25 hours a week in school out of 112
hours, they would have a probability of 25/112 or 22.3% chance of attending school for any
of the 112 hours. These random tasks would be selected for each person in the simulation,
and the individual bandwidth demand would be calculated. If the activity has a higher and
lower bound to bandwidth usage, the actual bandwidth usage is determined by uniformly
selecting a random floating point number between the bounds of the bandwidth usage. The
individual bandwidth is then summed up in order to find the total household bandwidth
demand for that given hour. This process is then repeated for each waking hour in the week.

We repeated the simulation 1000 times for every single scenario, representing 1000 weeks
of internet usage for each scenario. In each week/trial, we recorded the maximum band-
width demanded, since a household would require a bandwidth greater than the maximum
bandwidth demanded at every single hour in order to successfully cover the internet needs
for that week. The maximum values for all 1000 weeks were recorded and then sorted in
ascending order. Finally, the 90th percentile and the 99th percentile values were calculated
from the maximum bandwidth demand distribution. These represent the minimum band-
width needed to cover 90% and 99% of the demand, respectively, as 90% of the bandwidth
demands are less than the 90th percentile and 99% of the bandwidth demands are less than
the 99th percentile.

3.4 Results

By running the program through each scenario 1000 times and plotting the data, we achieved
3 histograms of distributions of the maximum bandwidth needed for a given hour. In these
histograms, the vertical orange line represents the required bandwidth to meet the total

9
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internet demand 90% of the time, and the vertical red line represents the required bandwidth
to meet the total internet demand 99% of the time.

Figure 4: Frequency histograms of the distribution of maximum bandwidth usage for 1000
simulation trials.

Furthermore, as shown in the summarized table, in scenario 1, the required bandwidth to
satisfy 90% of bandwidth demand is 14.5 Mbps, and 99% of demand is 15.5 Mbps. In
scenario 2, 20.8 Mbps is required for 90% of demand, and 21.8 Mbps is required for 99% of
demand. Finally, in scenario 3, 20.6 Mbps is required for 90% of demand, and 21.9 Mbps is
required for 99% of demand.

Scenario 90% Coverage 99% Coverage
1 14.5 Mbps 15.5 Mbps
2 20.8 Mbps 21.8 Mbps
3 20.6 Mbps 21.9 Mbps

Table 1: Summary of the minimum number of Megabits per second of internet required to
cover internet usage 90% and 99% of the time for each of the three scenarios.

10
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3.5 Strengths and Weaknesses

This model is accurate at predicting bandwidth usages and the amount of bandwidth required
in order to satisfy those demands. All values predicted were between 14 and 22 Mbps.
Our predictions are further supported by the FCC’s household broadband guide [10], which
recommends a medium service of 12–25 Mbps for moderate internet usage in households of
2–3 people. Moreover, this model is very flexible in considering multiple factors and internet
usage caused by various internet activities. In the case that more data about internet usage
for a new or existing activity comes up, our model and simulation can be easily adjusted to
predict given the new factor.

One significant weakness of this model is that the data utilized to calculate the probabilities
was from the first quarter of 2020. While the data is not too far off, current internet usage
tendencies will be different; currently, the model likely underpredicts the amount of needed
bandwidth as people are using digital devices more due to being stuck at home in the midst
of the pandemic. Moreover, people usually have activities they will perform at a certain
time, like kids going to school from roughly 8 AM to 3 PM, and this model essentially has
all activities being able to occur at any given hour interval.

4 Part III: Mobilizing Mobile

4.1 Restatement of the Problem

In this problem, we are tasked with developing a model for optimally placing cellular nodes
in a given region using population, demographic, and bandwidth usage data.

4.2 Assumptions

1. The price of 5G internet plans will remain constant across different regions. Due to the
small market share of 5G networks (namely under the domain of Verizon and AT&T),
there are limited offerings for pricing, all of which hover around the $89 point according
to a GSMA Intelligence report [11]. As a result, it made the most sense to assume that
this price is homogeneous across all purchased 5G plans.

2. The population densities remain constant across the hypothetical subregions created by
M3 (e.g., the Region A1, Region B3 provided by M3). While the M3 Data provided
the population and area of the subregions in their hypothetical diagram, there is no
way to account for fluctuations in population densities across the subregion.

3. A majority of households that have annual incomes ≥ $103,689.32 and are located
in a subregion with a minimum population density of 777 people per square mile will
naturally choose the 5G plan (these values are derived later on in our approach). With
5G plans discretely offering faster speeds than their 4G opponents, a family in the
position, both geographically and financially, would reasonably choose to do so.

11
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4. Walls and other natural barriers will not hinder 5G speeds inside the effective signal
range. It’s nearly impossible to quantify the effects of such obstacles with the data
provided. Moreover, the impact will depend on the material composition of the bar-
rier—another difficult metric to model.

4.3 Model Development

To optimize both internet connectivity and affordability for any given population, we sought
to create an efficacious combination of 4G and 5G internet access points—capitalizing on
their niche benefits, while mitigating any potential disadvantages. There are three relevant
factors that need to be considered when differentiating between 4G and 5G networks: signal
range, latency, and internet speed. The following best characterize the distribution of such
factors in the larger framework of the two networks: Simply put, 5G networks offer signifi-
cantly faster internet speeds, which come at the expense of an abridged signal range. On the
other hand, 4G networks have much more expansive coverage, but operate at higher latency
rates, and thereby, slower speeds [12].

Given the more frequent use of 4G networks, largely due to their feasibility for popula-
tions anytime and anywhere, we decided to pinpoint the location of these nodes first in
the hypothetical regions provided by the M3 Data. Using principles from packing problem
optimization, we created a mathematical model that can be used to place 4G towers at the
points of maximum effectiveness.

Our mathematical model calculates the center of mass for each region, where mass refers
to population, using the assumption that the population density is uniformly distributed
throughout the region. By utilizing a small tiling of the region, we can approximate the
moments of the x-axis and y-axis and obtain the coordinates of the center of mass. By
placing the 4G towers at the centers of mass, we will guarantee that the maximum number
of people can effectively utilize the bandwidth it provides. The number of internet nodes in
a given region will depend on the area of the region and the effective signal range for the
different internet towers.

First, set the origin at the bottom left of the region. While it does not necessarily have to
be here, this keeps consistency between different regions. Additionally, let the side length
of the square be ∆x. We can approximate ∆x using any subregion, whichever one is more
convenient/has the least amount of area outside of the tiling. After we approximate the area
of the subregion in terms of (∆x)2, since we are given the areas of the subregions, we can
approximate ∆x.

As mentioned, we seek the center of mass of each region. The center of mass, represented as
(x, y), has coordinates

x =
My

M

y =
Mx

M
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where Mx and My represent the moments about the x- and y-axis, respectively, and M
represents the area of the region (given in the data). Thus, in order to obtain the center of
mass, we first find the moments. Since we are working under uniform mass density, we can
simply let the density function δ(x, y) = 1, thus making the moments equivalent to

Mx =

∫∫
D

y dA

My =

∫∫
D

x dA

where domain D represents the domain of the moments and A represents the area of the
region. Since there is no easy way to bound domain D with functions, we instead use a
Riemann sum to approximate these integrals. Using the original tiling, we will plot the
centers of each square in region 2. The ones fully contained within the inner boundaries will
be used to approximate the moments. For convenience, suppose P is the set of all centers
contained within the region. If P = (xp, yp), then we have that

Mx ≈ ∆A
∑

(x,y)∈P

y

My ≈ ∆A
∑

(x,y)∈P

x

Though we can’t simplify the summation without knowing our actual region, we can calculate
∆A. By definition, we have that ∆A = ∆x · ∆y, but since we are tiling with squares, we
have that ∆y = ∆x, so

Mx ≈ (∆x)2
∑

(x,y)∈P

y

My ≈ (∆x)2
∑

(x,y)∈P

x

Calculating out these moments and then dividing by M will yield the coordinates of the
center of mass.

Another factor prevalent in the decision making process between 4G and 5G networks in-
cludes the price tag that each carries; in general, 4G systems are nearly ubiquitously cheaper
than their 5G counterparts—making household income an important factor in the model.
Hence, we decided that there had to be some minimum threshold for determining whether
a city should implement 5G internet nodes.

To encompass the threshold, we opted for a criteria-based model, in which a given region
must meet both of the following criteria to be eligible for 5G network implementations.

The first is a population density ≥ 777 persons per square miles. Since almost all 5G net-
works are located in urban centers because of the relatively small range of 5G signals, we
want to ensure that planting a 5G tower will deliver benefits to the most consumers possible.

13
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Urban clusters (regions that are slightly less packed than cities) are classified as having a
population density of 777 people per square mile. Using this data point as a minimum will
ensure that we maximize consumer utility. Furthermore, we found the top 10 leading cities
with 5G networks have population densities greater than this value.

The second is an average annual household income ≥ $103, 689.32. We gathered that the
average American spends $57.25 on internet service plans [13]. The average monthly income
in the United States is $5,555 [14]. Dividing these values yields that 1.03% of monthly
income is allocated towards an internet plan. Moving onward, we used a constant of $89 for
the cost of a 5G plan. This value was derived from the GSMA Intelligence report that found
the average 5G monthly cost in the United States [11]. In turn, this yielded the inequality

(Avg Annual Household Income)

12
· (0.0103) > 89.

When computed, this outputted a minimum household income = $103,689.32 for a family
to reasonably afford 5G service. If a given region meets both criteria, it will be eligible for a
5G network in the context of our model. Ideally the web of 5G nodes should be placed in a
central hotspot, the centroid of a population density curve. This will maximize the number
of people the network reaches as well as provide higher connection speeds to a larger number
of people. The table below illustrates the eligibility of the regions across population density
and yearly income.

Region Population Density (ppl per mi2) [6] Yearly Income (USD) [6] 5G Eligibility
A1 570 $27,941.00 No
A2 1778 $30,929.00 No
A3 1945 $47,163.00 No
A4 168 $34,273.00 No
A5 3452 $30,425.00 No
A6 650 $46,659.00 No
B1 1113 $99,652.00 No
B2 486 $134,375.00 No
B3 270 $173,188.00 No
B4 487 $112,306.00 No
B5 331 $108,056.00 No
B6 646 $147,500.00 No
B7 237 $132,045.00 No
C1 3863 $214,125.00 Yes
C2 11600 $104,209.00 Yes
C3 10120 $190,729.00 Yes
C4 5396 $139,261.00 Yes
C5 10069 $152,500.00 Yes
C6 3252 $206,875.00 Yes
C7 5262 $151,731.00 Yes

Table 2: 5G eligibility by subregion. Green numbers satisfy the bounds for population
density and yearly income, while red numbers do not.
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To calculate the coordinates of the 5G towers, we used the same mass-center approach,
essentially applying the findings of the 4G model to a smaller land-mass. Similarly, the
number of 5G towers will depend strictly on the area of the given region and the effective
signal range distance.

4.4 Results

Provided below are the results for 4G internet node placement for subregion B2, and 5G
internet node placement for subregion C2.

Figure 5: Tiling of subsection 2 with origin marked.

As stated in the previous section, we can approximate ∆x using any subregion within the
same region. In this example, we utilize subregion 3, with the area being approximated
relatively accurately to 22(∆x)2 as shown in the following figure:

Figure 6: Approximate tiling of subsection 3.

Since the area of subregion 3 is given to be 4.64 square miles, we can approximate ∆x to be

22(∆x)2 ≈ 4.64

∆x ≈ 0.46

Now, we look for the center of mass. As mentioned above, in order to obtain the center of
mass, we first find the moments. The approximations for the moments are

Mx ≈ ∆A
∑

(x,y)∈P

y

15
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My ≈ ∆A
∑

(x,y)∈P

x

for similarly defined set P . Using the equivalence we obtained earlier, that is, ∆A = (∆x)2,
we have that

∆A = (∆x)2 ≈ .21

Next, we will plug in all P , which were marked in Figure 5. All dots have x or y values of
form (2n− 1)∆x

2
for integers n ≥ 1, so we can multiply these values by the number of times

each value occurs. This gives us the following values for the moments:

Mx ≈ (.21)

(
∆x

2

)
(1 · 1 + 3 · 2 + 5 · 4 + 7 · 4 + 9 · 5 + 11 · 3 + 13 · 3 + 15 · 2)

Mx ≈ (.21)(101∆x)

My ≈ (.21)

(
∆x

2

)
(5 · 3 + 7 · 4 + 9 · 8 + 11 · 6 + 13 · 3)

My ≈ (.21)(110∆x)

Now that we have the values of our moments, we can plug these values back into our original
equations for x and y. Given that the mass M , which represents the area of the region, is
4.35, we obtain the following values:

x =
My

M
≈ 2.443

y =
Mx

M
≈ 2.243

Thus, for the given tiling, a 4G tower will be placed at (2.443, 2.243).

We will show the similar steps for another example, specifically subregion 2 of Region C, in
which a 5G tower would be placed.

Figure 7: Tiling of subregion 2.

Once again, let the side length of the square be ∆x. Although not shown, we can approximate
∆x using subregion 3 of Region C, which is approximately the size of a rectangle with side

16
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lengths approximately 2.5∆x and 8∆x. Since the area of subregion 3 is given to be 0.1, we
can approximate ∆x to be

(2.5∆x)(8∆x) ≈ 0.1

20∆x ≈ 0.1

∆x ≈
√

1

200
.

We have the same approximations for the moments:

Mx ≈ ∆A
∑

(x,y)∈P

y

My ≈ ∆A
∑

(x,y)∈P

x

Next, plugging in all of the P and substituting in ∆A = (∆x)2 = 1
200

gives us the following
values for the moments:

Mx ≈ 1

200
(89∆x)

My ≈
1

200
(67∆x)

Now that we have the values of our moments, we can plug these values back into our original
equations for x and y. Given that the mass M , which represents the area of the region, is
0.14, we obtain the following values:

x =
My

M
≈ 0.225

y =
Mx

M
≈ 0.169

Thus, for the given tiling, a 5G tower will be placed at (0.225, 0.169).

Overall, we can then reproduce the above steps for all of the subsections and regions. For
other subsections in the same region, the same tiling dimensions can be used, but for other
regions the tiling dimensions will be different. However, the steps can be followed in the
exact same pattern just with different values of ∆x. Note that if one wanted to have all
of the regions around locations with the same tiling, the coordinates can be converted into
square miles and then translated accordingly.

4.5 Strengths and Weaknesses

Our model is particularly accurate at determining the optimal point for placing 4G and
5G nodes due to our thorough mathematical approach. Moreover, given the rather tedious

17
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process of establishing 5G networks, our model is able to filter through cities based on
indicators that will determine if the region is a suitable area for 5G internet.

However, our model does not deem 4G and 5G networks in a given region as mutually
exclusive; therefore, there is a chance for overlap between the two networks. Families who
decide to enroll in the 4G plan, in spite of qualifying for the 5G plan, would cause an
operational inefficiency in our model.

5 Conclusion

5.1 Further Studies

Our first model is formed on the basis of a layered decision making tree—encompassing
correlations, proportional relationships, and a random forest regression. As a result, it
becomes increasingly difficult to identify the exact process that our algorithm followed to
eventually arrive at its output. Our second model relies heavily on data procured from the
first quarter of 2020—when COVID-19 was a paramount confounding variable in the internet
usage for any given household. With the pandemic creating a new sense of normality, we
can expect to see definitive changes in our use of web-based services, and in turn, access to
the internet. Our third model doesn’t distinguish particular subregions in terms of the type
of connectivity—4G or 5G—provided. As a result, households that, under geographic and
fiscal circumstances, qualify for 5G may choose to willingly implement 4G in their homes,
leading to inaccuracies in our initial predictions. Recreating our models to account for and
track each factor with specific weighting would greatly improve the accuracy of our results.

5.2 Summary

We provided an estimation of the projected internet costs in the US and the UK over the next
decade. By first training a machine learning model on factors such as population densities,
cost of living, current average download speeds, and current average price per Mbps on data
from the continental United States, we were then able to apply the model to the US and
UK as a whole. The algorithm ultimately predicted that US prices would drop by $0.23 per
Mbps and UK prices would drop by $0.57 over the next decade.

Next, we utilized the computational capabilities of code to run a simulation with a thousand
trials to accurately determine the required bandwidth to cover 90% and 99% of internet
usage for three scenario households. Using factors like age, education level, and employment
status to determine the internet usage tendencies of individuals, we were able to obtain a
distribution of maximum bandwidth usage for each household in a week. Looking at the
90th and 99th percentiles allowed us to figure out the minimum bandwidth needed to cover
the projected internet usage.

Finally, we developed a method to supply a given area with internet capabilities using 4G

18
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and 5G towers depending on characteristics of a region. Variables like annual household
income and population density allowed us to determine whether a region is suitable for use
of 5G towers, which provides better connection at a greater cost and lower signal radius. In
order to place cell nodes in the most optimal locations, the center of mass of each region was
found, allowing us to place the fewest 4G and 5G towers while maximizing area coverage.

Ultimately, ensuring access to both stable and high-speed internet sources curates a paradigm
shift for future generations—in which technical or fiscal disparities don’t govern end outcomes
for any individual. Investing in the infrastructure to efficiently set up such network capabil-
ities is fundamental to establishing a better tomorrow. With the continued understanding
and modeling of disruptive technologies including, but not limited to, 5G towers and band-
width allocation, we can foster a resilient working class with the tools at their disposal to
stand out, conquer obstacles, and reach excellence.
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7 Appendix

7.1 Part 1: The Cost of Connectivity

q1.py
1 # import necessary libraries

2 import numpy as np

3 import pandas as pd

4 from sklearn.ensemble import RandomForestRegressor

5 from sklearn.metrics import mean_squared_error

6
7 # read the data from file

8 df = pd.read_csv("q1.csv")

9
10 # drop the state column as it is not needed for prediction

11 df.drop("State", axis=1, inplace=True)

12 # convert values from string to float

13 df = df.astype(float)

14 # drop rows with any missing values

15 df.dropna(axis=0, inplace=True)

16
17 # create feature and target dataframes

18 X = df.drop("Cost per Mbps", axis =1)

19 y = df["Cost per Mbps"]

20
21 # initialize random forest regression model

22 model = RandomForestRegressor(n_estimators =20, max_depth =5)

23 # training

24 model.fit(X, y)

25 # prediction

26 preds = model.predict(X)

27 # RMSE calculation

28 error = mean_squared_error(y, preds , squared=False)

29
30 print(error)

31
32 # regression functions for download speeds

33 def download_speed_US(x):

34 a = 1.4994*10**( -168)

35 b = 1.21291

36 year = 2020 + x

37 return a*b**year

38
39 def download_speed_UK(x):

40 a = 2.3341*10**( -183)

41 b = 1.23357

42 year = 2020 + x

43 return a*b**year

44
45 # calculating US internet cost for the next 10 years starting from current values

46 for i in range (10):

47 print(model.predict(np.array ([[33.86*(1+i*0.013099) , 101.90425531914893*(1+i*0.022) , download_speed_func(i)]]))[0])

48
49 # calculating UK internet cost for the next 10 years starting from current values

50 for i in range (10):

51 print(model.predict(np.array ([[725*(1+i*0.013099) , 102*(1+i*0.022) , download_speed_UK(i)]]))[0])



7.2 Part 2: Bit by Bit

main.py
1 from Simulation import Simulation

2 from Person import Person

3 from Activity import *

4 import matplotlib.pyplot as plt

5
6 # Simulation 1: Couple in early 30s

7
8 # Create a two new person objects , teacher and lookingForWork , and initialize it with

9 # all the internet related activities he/she will do during a week

10 teacher = Person ([ TraditionalTV (23.8) , TVGameConsole (1.73) , TVInternetDevice (6.87) , InternetComputer (4.77) ,

11 VideoComputer (1.28) , TotalSmartphone (26.98) , VideoSmartphone (2.28) , AudioSmartphone (0.85) ,

12 TotalTablet (5.85) , VideoTablet (1.07) , AudioTablet (0.22) , School (25)])

13
14 lookingForWork = Person ([ TraditionalTV (23.8) , TVGameConsole (1.73) , TVInternetDevice (6.87) , InternetComputer (4.77) ,

15 VideoComputer (1.28) , TotalSmartphone (26.98) , VideoSmartphone (2.28) , AudioSmartphone (0.85) ,

16 TotalTablet (5.85) , VideoTablet (1.07) , AudioTablet (0.22) ])

17 # Create a new simulation with two people , teacher and lookingForWork , and simulate internet usage per hour for a week

18 # The simulation is repeated 1000 times

19 simulation1 = Simulation ([teacher , lookingForWork], 1000)

20 simulation1.run()

21
22 # Output results

23 print("Simulation 1: ")

24 print("90% Threshold " + str(simulation1.maxBandwidthWeek[round(simulation1.trials * 0.9) - 1]))

25 print("99% Threshold " + str(simulation1.maxBandwidthWeek[round(simulation1.trials * 0.99) - 1]))

26
27 # Simulation 2: Retired Woman with Grandchildren

28
29 # Create three Person objects with related activities

30 retired = Person ([ TraditionalTV (50.6) , TVGameConsole (0.17) , TVInternetDevice (3.20) , InternetComputer (3.17) ,

31 VideoComputer (0.5), TotalSmartphone (17.73) , VideoSmartphone (0.97) , AudioSmartphone (0.42) ,

32 TotalTablet (7.22) , VideoTablet (0.65) , AudioTablet (0.10) ])

33
34 child1 = Person ([ TraditionalTV (12), TVGameConsole (2.72) , TVInternetDevice (7.72) , School (25)])

35 child2 = Person ([ TraditionalTV (12), TVGameConsole (2.72) , TVInternetDevice (7.72) , School (25)])

36
37 # Create new simulation with all 3 objects and run 1000 trials

38 simulation2 = Simulation ([retired , child1 , child2], 1000)

39 simulation2.run()

40
41 print("Simulation 2: ")

42 print("90% Threshold " + str(simulation2.maxBandwidthWeek[round(simulation2.trials * 0.9) - 1]))

43 print("99% Threshold " + str(simulation2.maxBandwidthWeek[round(simulation2.trials * 0.99) - 1]))

44
45 # Simulation 3: Three undergraduates

46
47 # Create three Person objects

48 student1 = Person ([ TraditionalTV (11.35) , TVGameConsole (3.63) , TVInternetDevice (6.95) , InternetComputer (3.97) ,

49 VideoComputer (1.73) , TotalSmartphone (24.83) , VideoSmartphone (3.03) , AudioSmartphone (1.62) ,

50 TotalTablet (3.88) , VideoTablet (0.98) , AudioTablet (0.20) , School (16)])

51
52 student2 = Person ([ TraditionalTV (11.35) , TVGameConsole (3.63) , TVInternetDevice (6.95) , InternetComputer (3.97) ,

53 VideoComputer (1.73) , TotalSmartphone (24.83) , VideoSmartphone (3.03) , AudioSmartphone (1.62) ,

54 TotalTablet (3.88) , VideoTablet (0.98) , AudioTablet (0.20) , School (16)])

55
56 student3 = Person ([ TraditionalTV (11.35) , TVGameConsole (3.63) , TVInternetDevice (6.95) , InternetComputer (3.97) ,

57 VideoComputer (1.73) , TotalSmartphone (24.83) , VideoSmartphone (3.03) , AudioSmartphone (1.62) ,

58 TotalTablet (3.88) , VideoTablet (0.98) , AudioTablet (0.20) , School (16)])

59
60 # Create and run simulation

61 simulation3 = Simulation ([student1 , student2 , student3], 1000)

62 simulation3.run()

63
64 print("Simulation 3: ")

65 print("90% Threshold " + str(simulation3.maxBandwidthWeek[round(simulation3.trials * 0.9) - 1]))

66 print("99% Threshold " + str(simulation3.maxBandwidthWeek[round(simulation3.trials * 0.99) - 1]))

67
68 # Plots

69 # Plots the histograms for all three scenarios

70
71 plt.hist(simulation1.maxBandwidthWeek , bins=’auto’) # arguments are passed to np.histogram

72 plt.title("Scenario 1 Simulation: Max Hourly Bandwidth Usage in a Week")

73 plt.xlabel("Bandwidth Usage (Mbps)", fontsize = 14)

74 plt.ylabel("Frequency", fontsize = 14)

75 plt.axvline(x = simulation1.maxBandwidthWeek[round(simulation1.trials * 0.9) - 1], color = "orange")

76 plt.axvline(x = simulation1.maxBandwidthWeek[round(simulation1.trials * 0.99) - 1], color = "red")

77 plt.show()

78
79 plt.hist(simulation2.maxBandwidthWeek , bins=’auto’) # arguments are passed to np.histogram

80 plt.title("Scenario 2 Simulation: Max Hourly Bandwidth Usage in a Week")

81 plt.xlabel("Bandwidth Usage (Mbps)", fontsize = 14)

82 plt.ylabel("Frequency", fontsize = 14)

83 plt.axvline(x = simulation2.maxBandwidthWeek[round(simulation2.trials * 0.9) - 1], color = "orange")

84 plt.axvline(x = simulation2.maxBandwidthWeek[round(simulation2.trials * 0.99) - 1], color = "red")

85 plt.show()

86



87 plt.hist(simulation3.maxBandwidthWeek , bins=’auto’) # arguments are passed to np.histogram

88 plt.title("Scenario 3 Simulation: Max Hourly Bandwidth Usage in a Week")

89 plt.xlabel("Bandwidth Usage (Mbps)", fontsize = 14)

90 plt.ylabel("Frequency", fontsize = 14)

91 plt.axvline(x = simulation3.maxBandwidthWeek[round(simulation3.trials * 0.9) - 1], color = "orange")

92 plt.axvline(x = simulation3.maxBandwidthWeek[round(simulation3.trials * 0.99) - 1], color = "red")

93 plt.show()

Simulation.py
1 from Person import Person

2 from Activity import *

3
4 # Class to run simulations

5 class Simulation:

6
7 # Store number of trials and the various Person objects

8 # Create variables to store bandwidthUsed , which stores all the raw generated bandwidth data

9 # and maxBandwidthWeek which stores the max amount of bandwidth used on any single hour for all trial weeks

10 # in the situation

11 def __init__(self , personList , trials):

12 self.trials = trials

13 self.personList = personList

14 self.bandwidthUsed = []

15 self.maxBandwidthWeek = []

16
17 # Run the simulation

18 def run(self):

19 # Run a specified number of trials

20 for trial in range(self.trials):

21 # Store the bandwidth used every hour for this trial week

22 bandwidthPerWeek = []

23
24 # Each trial consists of simulating one week and calculating bandwidth used at every single hour during

25 # that week

26 for hour in range (112):

27 # Stores the total amount of bandwidth used by all people during the hour

28 totalHourBandwidth = 0

29
30 # Calculate the amount of bandwidth used by each individual and sum it up to get total bandwidth used

31 # in that hour

32 for person in self.personList:

33 totalHourBandwidth += person.getRandomActivityBandwidth ()

34
35 bandwidthPerWeek.append(totalHourBandwidth)

36
37 self.bandwidthUsed.append(bandwidthPerWeek)

38 self.maxBandwidthWeek.append(max(bandwidthPerWeek))

39
40 # Sort the maximum bandwidth usage for each week in ascending order

41 self.maxBandwidthWeek.sort()

Person.py
1 import random

2
3 # Person class to store internet browsing tendencies of a person

4 class Person:

5 def __init__(self , activityList):

6 # Store a list of activities that the person would perform in a week that requires internet

7 self.activityList = activityList

8
9 # Calculate endpoints of intervals for each subsequent activity in order to randomly select activities to

10 # perform in a given hour proportional to how long is spent on that activity in a week.

11 self.probabilityThreshold = []

12 tempSum = 0

13 for activity in activityList:

14 tempSum += activity.hours

15 self.probabilityThreshold.append(tempSum)

16
17 # Randomly select an activity using the calculated interval endpoint

18 def getRandomActivityBandwidth(self):

19 randNum = random.uniform(0, 112)

20 for i in range(len(self.probabilityThreshold)):

21 if randNum < self.probabilityThreshold[i]:

22 return self.activityList[i]. getBandwidthUse ()

23 return 0



Activity.py
1 import random

2
3 # Parent Class Activity contains the general attributes and methods for an activity requiring internet

4 class Activity:

5 # Store values about hours spent , lower bound of bandwidth use for a task , and upper bound

6 def __init__(self , hours , minBandwidth , maxBandwidth):

7 self.hours = hours

8 self.minBandwidth = minBandwidth

9 self.maxBandwidth = maxBandwidth

10
11 # Returns a random amount of bandwidth used between the lower and upper bounds

12 # If both bounds are equal to each other (data about variation in bandwidth use wasn’t available),

13 # return the constant bandwidth value

14 def getBandwidthUse(self):

15 if self.minBandwidth == self.maxBandwidth:

16 return self.minBandwidth

17 else:

18 return random.uniform(self.minBandwidth , self.maxBandwidth)

19
20 # Child classes that have predefined lower and upper bounds for bandwidth in Mbps.

21 class School(Activity):

22 def __init__(self , hours):

23 Activity.__init__(self , hours , 2, 5)

24
25
26 class TraditionalTV(Activity):

27 def __init__(self , hours):

28 Activity.__init__(self , hours , 6.5, 6.5)

29
30
31 class TVGameConsole(Activity):

32 def __init__(self , hours):

33 Activity.__init__(self , hours , 1, 3)

34
35
36 class TVInternetDevice(Activity):

37 def __init__(self , hours):

38 Activity.__init__(self , hours , 5, 8)

39
40
41 class InternetComputer(Activity):

42 def __init__(self , hours):

43 Activity.__init__(self , hours , 1.5, 1.5)

44
45
46 class VideoComputer(Activity):

47 def __init__(self , hours):

48 Activity.__init__(self , hours , 2, 4)

49
50
51 class TotalSmartphone(Activity):

52 def __init__(self , hours):

53 Activity.__init__(self , hours , 1, 1)

54
55
56 class VideoSmartphone(Activity):

57 def __init__(self , hours):

58 Activity.__init__(self , hours , 5, 8)

59
60
61 class AudioSmartphone(Activity):

62 def __init__(self , hours):

63 Activity.__init__(self , hours , 1, 1)

64
65
66 class TotalTablet(Activity):

67 def __init__(self , hours):

68 Activity.__init__(self , hours , 1, 1)

69
70
71 class VideoTablet(Activity):

72 def __init__(self , hours):

73 Activity.__init__(self , hours , 5, 8)

74
75
76 class AudioTablet(Activity):

77 def __init__(self , hours):

78 Activity.__init__(self , hours , 1, 1)
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