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Defeating the Digital Divide: Internet Costs, Needs, and Optimal
Planning

Executive Summary
In a world increasingly reliant on high-speed Internet, disadvantages faced by those

who lack sufficient access have emerged as a major issue. Given the worldwide effects of the
COVID-19 pandemic, the Internet is now even more essential for a variety of activities
such as attending school remotely, safely accessing healthcare, working from home, civic
participation, and access to information [1, 2, 3]. For the foreseeable future, there are several
options for connecting to the Internet available for solving this crisis—from wired to mobile
and satellite—but the viability of each remains uncertain. With the need to analyze Internet
costs and bandwidth requirements for various communities, as well as the optimization of a
potential connection plan, this paper provides mathematically founded insights on this issue.

Since one crucial factor for providing high-speed Internet to those in need is its
cost, we first analyzed the cost per unit bandwidth (in Mbps, Megabits per second) for
representative US and UK consumers. We focused on wired, mobile, and satellite Internet,
both in the US and the UK. Within these categories, Internet bandwidth was modeled by
fitting the given data [8] to a logistic curve. After multiplying the current cost of Internet
access per unit bandwidth by the ratio of current bandwidth to predicted future bandwidth,
our model was able to project the average monthly cost per unit bandwidth of Internet for
the previously mentioned categories in 2025 and 2030.

We then developed a model to determine the average bandwidth required for
a given household. This was calculated by determining how a household’s income level
and its denizens’ ages affected the number of hours spent on different activities using the
Internet. We characterized the average bandwidth using a normal distribution to determine
the minimum bandwidth that would cover 90% and 99% Internet availability. The first
household, containing a couple in their early 30’s and a 3-year-old child, required 26.1 Mbps
and 31.2 Mbps, respectively. The second household, containing an elderly woman in her
70’s and two grandchildren, required 16.4 Mbps and 19.8 Mbps, respectively. The third
household, containing three former M3 Challenge participants in college and working part-
time, required 28.8 Mbps and 36.9 Mbps, respectively.

Finally, we optimized the number of mobile cellular towers for every subregion in
the three regions provided [8]. After classifying cellular towers as low-, medium-, or high-
band, we developed a set of linear inequalities that take into account both inherent properties
of each tower type as well as demographics specific to individual subregions. We were able to
calculate effective areas for the cellular towers using the COST Hata Model and bandwidth
needs with the model from Part II. Optimization was performed using integer programming
techniques, which successfully minimized the number of cellular towers for each subregion.

With the increasing need for high-speed Internet due to the rising popularity
of social media and online education and work resulting from the COVID-19 pandemic,
many people, particularly those in rural and low income areas, continue to struggle with
connectivity issues. We believe the models outlined in our paper provide valuable insight
that will help address the technical, logical, and economic challenges of providing adequate
Internet access worldwide.
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1 Introduction

This section delineates the components of the modeling problem and their objectives. Global
assumptions applying to the entire modeling process are also listed.

1.1 Restatement of the Problem

The problem we are tasked with addressing is as follows:

1. Build a mathematical model that predicts the cost per unit of bandwidth in dollars or
pounds per Megabit per second (Mbps) over the next 10 years for consumers in the
United States and the United Kingdom.

2. Create a mathematical model that predicts the Internet access required over the course
of a year for the following three households: a couple in their early 30’s (one is looking
for work and the other is a teacher) with a 3-year-old child; a retired woman in her
70’s who cares for two school-aged grandchildren twice a week; and three former M3
Challenge participants sharing an off-campus apartment while they complete their
undergraduate degrees full-time and work part-time. Apply this model to determine
the minimum amount of required bandwidth for 90% and 99% of the households’
Internet needs.

3. Develop a model that will create an optimal plan for placing cellular nodes providing 4G
and 5G access in three given hypothetical regions, taking into account the population,
demographic data, and bandwidth needed for the regions.

2 Part I: The Cost of Connectivity

High-speed Internet is necessary for attending school remotely, safely accessing healthcare,
working from home, civic participation, and information access [1, 2, 3]. However, ensuring
that everyone, specifically those in rural and low-income areas, has sufficient access can be
an economic challenge [4]. This section outlines a mathematical model for predicting the
cost per unit of bandwidth in dollars or pounds per Megabit per second (Mbps) over the
next 10 years for consumers in the United States and the United Kingdom.

2.1 Assumptions

1. No major disruptive technology will be introduced within the next 10 years. Currently,
the most recent technology implemented in the US and UK is 5G in 2019. 6G, which
is estimated to be able to obtain speeds up to 1 terabyte per second, is expected to
be commercially available only after 2030 [5]. For the scope of the next 10 years,
we will not include this in our model. In addition, entirely novel Internet connection
technologies cannot be predicted and are necessarily excluded.

2. The only sources of Internet are wired—including DSL, cable, and fiber-optic—mobile,
and satellite. All other sources of Internet connection are either obsolete or negligible.
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3. Most wired Internet service providers essentially have a monopoly over their consumers.
For example, Comcast and Charter are the only available Internet service providers
for more than 47 million people in the United States. For millions more, alternatives
provide slower speeds at higher costs [6].

4. The demand for high-speed Internet does not significantly affect the cost per Megabit
per second. During early 2020, Internet usage rose by 30-50% in parts of the United
States, but prices were not significantly affected [7].

5. The level of infrastructure and average Internet speed will not affect the cost of an
Internet plan. The change in the price of the Internet plan can be assumed to be
negligible, as we are determining the cost per unit bandwidth. The change in Internet
speed will be a much more significant effect, as is seen in the provided data [8].

6. Satellite data speed will be roughly similar in the US and the UK. We were unable to
find data for satellite Internet speed in the UK; however, since geography should not
significantly affect satellite coverage, this assumption is a reasonable simplification.

2.2 Model Development

The primary effect on the cost of Internet per unit bandwidth in the near future will be the
continuing increase in Internet speed. This is much more significant than a change in pricing
of Internet plans, as Internet service providers largely have monopolies over their operating
regions and can thus set costs as they desire. Speed increases of an order of magnitude can
occur, but prices not change [8]. We model average Internet speed over time using a logistic
curve.

S = L

(
1

1 + e−k(t−t0)

)
+ S0. (1)

L is the asymptotic maximum of the curve—taken at 1000 Mbps, the limit of current
technology such as fiber-optic cables [13]. k is a constant associated with the magnitude of
exponential growth. t0 is the midpoint of the logistic curve—the point in time of greatest
speed increase, which we project is in the near future. S0 is an additive constant used to
appropriately account for initial values. We first fit a logistic curve to the average Internet
speeds recorded from 2009 to 2017 for US and UK wired and mobile Internet [8]. We obtained
limited amounts of data on satellite speeds in the US from 1997 to 2009 [10], and added a
data point for 2020, obtained by taking the average measured speeds over the last 12 months
of the two largest satellite Internet companies in the US, HughesNet and Viasat [14, 15].
The values returned for k, t0, and c are included in Tables 2.2.1 and 2.2.2, as well as the R2

values for each of the fits.

Table 2.2.1: US Internet Speed Constants Determined from Curve Fitting
Variable Wired Mobile Satellite

k 0.225 0.455 0.214
t0 2034.9 2027.3 2040.5
S0 1.014 0.982 0.133
R2 0.997 0.878 0.999
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Table 2.2.2: UK Internet Speed Constants Determined from Curve Fitting
Variable Wired Mobile Satellite

k 0.184 0.030 0.214
t0 2038.6 2070.7 2040.5
S0 −1.249 −144.5 0.133
R2 0.991 0.804 0.999

As can be seen, all of the R2 values were at least 0.8, with the majority being at least
0.99. This indicates that our logistic growth model is a strong match for the data provided.
One reason why the R2 value for the UK mobile Internet data is a little lower than the rest
of the values is that the provided UK data has a jump in 2015 when LTE-A was introduced
in the UK.

Below are graphs of the regression for the average US and UK wired Internet speeds.

Figure 2.2.1: Regression of Average US Wired Internet Speeds
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Figure 2.2.2: Regression of Average UK Wired Internet Speeds

For predicting the cost per unit bandwidth in the near future, we assume that the cost
of each plan is approximately constant. Therefore,

C =
A

S
, (2)

where C denotes the cost per bandwidth, S denotes the Internet speed recorded, and A is a
constant determined by initial values. We use this equation for each of the Internet sources
(wired, mobile, and satellite). After finding the current costs and predicting the Internet
speeds over the next 10 years, we use Equation (2) to determine the cost per unit bandwidth
for each of the Internet sources. Finally, we determine the average cost as the following:

Cavg =
Cwired + Cmobile + Csatellite

3
. (3)

The current price per unit bandwidth can be multiplied by the ratio of current bandwidth
to predicted future bandwidth to obtain the predicted future price per unit bandwidth. We
can take an average of the three Internet types to obtain a final value. An unweighted
average is used because with the great variability of regional costs, no single metric is able
to be more than a signifier of a global trend. It is thus important to consider all forms of
available Internet, as well as an aggregate metric.

2.3 Results

Using the method described above and the speeds found in Table 2.2.1 and 2.2.2, we deter-
mine the following average monthly costs.
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Table 2.3.1: Average Monthly Cost per Mbps of Internet Types in the US
Year Wired Mobile Satellite Average
2020 $1.96 [16] $1.56 [17] $8.05 [18] $3.86
2025 $0.70 $0.21 $2.85 $1.25
2030 $0.27 $0.07 $1.04 $0.46

Table 2.3.2: Average Monthly Cost per Mbps of Internet Types in the UK
Year Wired Mobile Satellite Average
2019 $1.37 [8] $0.63 [8] $9.93 $3.98
2025 $0.46 $0.33 $2.85 $1.21
2030 $0.20 $0.23 $1.04 $0.49

Wired and mobile data for 2019 was obtained by averaging provided data points. Prices
were converted from GBP to USD with a conversion factor of 1.39 dollars/pound, the current
exchange rate.

Internet costs are decreasing overall, in both countries and across all three mechanisms
of delivery, a welcome sign in an increasingly digital world. However, before one gets too
heartened by five-fold cost reductions it is important to consider that the actual prices to
the consumers are not likely to fall greatly. Increasing amounts of data are being transmit-
ted; Internet service providers will increase bandwidth availability at a price tier but not
necessarily lower prices. Nevertheless, these strong downward trends do indicate, however,
that the infrastructures of the United States and the United Kingdom are prepared to enter
into the third decade of the digital millennium.

2.4 Sensitivity Analysis

Table 2.4.1: Effect of Adjusting Variables on 2030 Costs
Variable US +10% US −10% UK +10% UK −10%
k wired 2.0% −1.3% 2.2% 1.5%
k mobile 0.0% −0.3% 5.3% 3.2%
k satellite 17.1% −13.4% 16.4% 12.6%
t0 wired 11.9% −6.3% 8.6% 4.6%
t0 mobile 1.6% −0.5% 9.2% 4.3%
t0 satellite 105.2% −42.1% 98.7% 38.6%
S0 wired 0.0% 0.0% 0.0% 0.0%
S0 mobile 0.0% 0.0% 3.4% 2.2%
S0 satellite 0.0% 0.0% 0.0% 0.0%

We conducted a sensitivity analysis on the variables k, t0, and S0 used in our model by
changing each constant by +10% and −10%. We then calculated the resulting change in
the average cost of Internet speed. As can be seen in Table 2.4.1, our model is resilient to
changes in the variables k, t0, and S0, which were determined by curve-fitting. The major
abnormality occurs in the variable t0 for the satellite Internet. This is due to the remoteness
of its normal value: at twenty years into the future it is far away from our data points, and
thus more sensitive to changes. Satellite costs are also higher, leading to a greater share
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of the overall average. Furthermore, t0 is the most affected variable because it denotes the
center point of the logistic curve, which is where the rate of change is highest. Ultimately,
the model is flexible, and one is able to look at its components to figure out the underlying
changes.

2.5 Strengths and Weaknesses

Our logistic model fits the data well as can be seen from the R2 values from Tables 2.3.1 and
2.3.1. Furthermore, our model accounts for the various types of Internet, including wired,
mobile, and satellite. We account for the expected increase in satellite Internet speeds.
This is particularly useful because satellite Internet can provide additional access to users
in rural communities who do not have other low-cost and high-speed options. Finally, our
model is robust and resilient to changes in the determining variables as can be seen from our
sensitivity analysis.

A weakness is that our model does not appear to be effective at predicting the speeds
more than 10 years into the future. This is because new technology in the form of 6G
and further innovations in existing technologies (fiber-optic, satellite) will be expected after
2030 [5].

3 Part II: Bit by Bit

In addition to being an economic burden, sufficient high-speed Internet can be a technical and
logistical challenge. In this section, we formulate a model that predicts a given household’s
Internet need over the course of a year and apply the model to the following five households:
a couple in their early 30’s (one is looking for work and the other is a teacher) with a 3-year-
old child; a retired woman in her 70’s who cares for two school-aged grandchildren twice a
week; and three former M3 Challenge participants sharing an off-campus apartment while
they complete their undergraduate degrees full-time and work part-time. Using the model,
we determined the minimum amount of required bandwidth that would cover 90% and 99%
of the households’ Internet needs.

3.1 Assumptions

1. Bandwidth follows a normal distribution. Following the methodology used for dimen-
sioning network links by Pras et al., it can be assumed that the bandwidth follows a
normal distribution [19].

2. Using a TV connected game console is considered online gaming. A TV connected
game console is used to play video games. Video games likely use similar bandwidth
to online games.

3. Watching traditional television, using a TV connected Internet device, and using video
on a computer are considered video streaming. Each of these activities involves watch-
ing video on a device which is considered streaming. They would likely use similar
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bandwidth depending on whether the streaming is done in high definition or standard
definition.

4. The expected bandwidth for video streaming a given activity is based on the proportion
used in high definition (HD) and the proportion used in standard definition (SD). Video
streaming can be done in either HD or SD. The proportion of each shows the probability
that a given definition would be used in the household.

5. Average income for a given age will remain constant. For 2006 to 2019, the percent
distribution of average incomes for households across the United States remained ap-
proximately the same [20].

6. Average income will not affect use of electronics if the consumer is retired. Those
considered to be retired will not be affected by the normal work hours associated with
annual income. Therefore the amount of hours spent using electronics will not be
affected by income.

7. College students will attend online classes during the next year. Due to the pandemic,
it is highly unlikely that colleges will allow students to return to campus during the
upcoming school year.

8. All jobs within the next year will be remote. Since introducing new members of the
workforce to the workplace can increase chances of spreading COVID-19, it has been
assumed that all jobs will be conducted from home.

3.2 Model Development

The model uses an expected income range based on the ages of the people in the household
to determine the number of hours the household spends on several different categories. This
expected number of hours is used to calculate the Megabits necessary for the household over
the period of a week, which is then divided by the number of hours the household would be
awake to calculate the necessary bandwidth.

3.2.1 Determining the Income Range

The expected income of a household is the sum of the average incomes for the ages of the
people in the household [21]. This income will be mapped to one of the following four ranges:
less than $25k, between $25k and $50k, between $50k and $75k, and more than $75k.

3.2.2 Determining the Hours Spent on the Internet

The hours spent on the Internet will be split into 7 categories: watching traditional television,
using a TV connected game console, using a TV connected Internet device, Internet on a
computer, total app/web on a smartphone, total app/web on a tablet, and total time spent
online for school/work. We represent the hours per week for each of the categories by the
following equation:
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h = a ·
(
i

e

)
, (4)

where h is the expected number of hours per week for that category for the household, a
is the expected number of hours per week based on the ages, i is the average number of
hours per week based on the income range, and e is the expected number of hours per week
across all of the income ranges. For each of these categories, using the average number of
hours per week spent for each age group from the Nielsen Corporation, we determine a for
the household [8]. Since the actual number of hours can vary depending on the income, we
multiply by i

e
, which accounts for higher or lower hours spent depending on the income level.

Below is a table of the i
e

factors that multiply a.

Table 3.2.1: Hours per Week
for Each Income Level Divided by the Expected Hours per Week for the Activity

Activity < $25k $25k–$50k $50k–$75k > $75k
Traditional Television 1.39 [8] 1.14 [8] 0.95 [8] 0.75 [8]

TV Connected Game Console 1.57 [8] 1.24 [8] 0.846 [8] 0.664 [8]
TV Connected Internet Device 1.42 [8] 1.23 [8] 0.965 [8] 0.668 [8]

Internet on Computer 1.29 [8] 1.05 [8] 0.982 [8] 0.845 [8]
Total App/Web on a Smartphone 1.13 [8] 1.04 [8] 1.04 [8] 0.896 [8]

Total App/Web on a Tablet 1.01 [8] 1.05 [8] 1.03 [8] 0.947 [8]
School/Work 0.784 [22] 0.987 [22] 1.15 [22] 1.16 [22]

3.2.3 Determining the Bandwidth (Mbps)

T =
∑

hkbk, (5)

where T is the total Megabits necessary and hk and bk are the average hours per week and
expected bandwidth, respectively, for category k. The hours per week must be converted
to seconds by multiplying by 3600 (number of seconds in an hour). Figure 3.2.1 and Table
3.2.3 below show the total Megabits for the three households. Household 1 refers to the
couple in their early 30’s with a 3-year-old child. Household 2 refers to the retired woman
in her 70’s who cares for two school-aged grandchildren twice a week. Household 3 refers
to the three former M3 Challenge participants sharing an off-campus apartment while they
complete their undergraduate degrees full-time and work part-time.

Table 3.2.2: Expected Bandwidth and Standard Deviation of Bandwidth
Activity Bandwidth (Mbps) Standard Deviation

Traditional Television 6.05 [8] 1.07
TV Connected Game Console 2 [8] 1
TV Connected Internet Device 1 [8] 0.5

Internet on Computer 2 [22] 1
Total App/Web on a Smartphone 1 [8] 0.5

Total App/Web on a Tablet 5 [8] 1.5
School/Work 2.5 [8] 1.5
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Figure 3.2.1: Bar Graph of Total Megabits for the Three Households

Table 3.2.3: Total Megabits for Each Household
Household Total Megabits

Couple in 30’s, 3-year-old child 2004688
Woman in 70’s, two grandchildren 1216215
Former M3 Challenge participants 1907057

Humans spend about 720 minutes a day using technology [23]. Since the information
provided was for a week, we can divide the total Megabits by 5040 minutes (302400 seconds).
This value is the average bandwidth necessary for each person, so we must multiply by the
total number of people in the household to obtain the average bandwidth µ.

3.2.4 Minimum Amount of Required Bandwidth

Bandwidth follows a normal distribution. The equation for a normal distribution is

d =
1

σ
√

2π
e−

(R−µ)2

2σ2 , (6)

where d represents the bandwidth distribution, R is the minimum bandwidth for a given
Internet availability, µ is the average bandwidth, and σ is the standard deviation. The
bandwidth requirements for a given percentage of Internet availability (i.e., a fraction of
time over which Internet needs must be met) are then given by

α = φ

(
R− µ
σ

)
=⇒ φ−1(α) =

R− µ
σ

, (7)

where α is the Internet availability and φ is the cumulative distribution function for a stan-
dard normal distribution. The standard deviation σ for each Internet activity is obtained by
finding the average distance between the mean bandwidth and the upper and lower bounds
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of recommended bandwidth required per activity. Since variances add, the total standard
deviation, σt, can be calculated using the equation

σt =
√∑

(dk · σk)2, (8)

where dk is the average bandwidth (total Megabits for the category divided by 302400 sec-
onds) and σk is the standard deviation for each category k.

3.3 Results

Using the method described above, we calculated the average bandwidth for each household
and the minimum bandwidth necessary for 90% and 99% Internet availability. The results
are shown in Table 3.3.1.

Table 3.3.1: Bandwidth Needed for Each Household
Household Average

Bandwidth
(Mbps)

Bandwidth for
90% Internet

(Mbps)

Bandwidth for
99% Internet

(Mbps)
Couple in 30’s, 3-year-old child 19.9 26.1 31.2

Woman in 70’s, two grandchildren 12.1 16.4 19.8
Former M3 Challenge participants 18.9 28.8 36.9

Below are bar graphs for the average bandwidth and minimum bandwidth for 99% Inter-
net availability. Household 1 refers to the couple in their early 30’s with a 3-year-old child.
Household 2 refers to the woman in her 70’s who cares for two school-aged grandchildren
twice a week. Household 3 refers to the three former M3 Challenge participants.

Figure 3.3.1: Bar Graph of Average Bandwidth for the Three Households
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Figure 3.3.2: Bar Graph of Minimum Bandwidth for 99% Internet Availability

Our model concludes that for 90% and 99% Internet availability, the households require
26.1 Mbps and 31.2 Mbps, 16.4 Mbps and 19.8 Mbps, and 28.8 Mbps and 36.9 Mbps,
respectively.

3.4 Sensitivity Analysis

Table 3.4.1 shows the sensitivity analysis for our residential broadband access bandwidth
model. The variables present in our model are the hours spent on different activities requiring
Internet access. For the above calculation in Table 3.3.1, the expected values of bandwidth
required per activity and hours of usage are used. For the sensitivity analysis, we increased
and decreased the value of i

e
by 10%.

Table 3.4.1: Effects of Changes in i
e

on Average Bandwidth

Household Average
Bandwidth

(+10% for i
e
)

Average
Bandwidth
(-10% for i

e
)

Couple in 30’s, 3-year-old child 21.9 17.9
Woman in 70’s, two grandchildren 13.3 10.9
Former M3 Challenge participants 20.8 17.0

As expected, positive changes in the i
e

factor resulted in positive changes in the average
bandwidth necessary at each of the households, and negative changes in the severity factor
resulted in negative changes in the average bandwidth. It is also seen that the model is
resilient to changes in the hours per week for each activity based on income.

3.5 Strengths and Weaknesses

Our model’s primary strength is that it takes into account different income levels and the
hours spent on each activity for different age groups. By taking into account the income
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levels, the model considers economic gaps that could affect technology used by the different
groups. Also, by considering the many age groups, the model can account for varied uses
of technology in households of different ages. Furthermore, the model ensures a minimum
calculated bandwidth meets the Internet needs given a certain Internet availability by using
a normal distribution, accounting for all the different possible bandwidths necessary. Finally,
as shown in the sensitivity analysis, our model is resilient to changes in variables.

A weakness is that this model assumed that all jobs and college classes will be online for
the next year due to COVID-19, as COVID-19 is still present, and there is not much data
describing the trend of online classes post-COVID-19. For this reason, there is uncertainty
regarding post-pandemic online behavior regarding education and work.

4 Part III: Mobilizing Mobile

Mobile broadband is transmitted from towers or nodes, so to minimize the cost-effectiveness
of high-speed Internet, we must optimize the distribution and placement of cellular nodes
[24]. This section outlines a model that determines the optimal distribution of low-band,
mid-band, and high-band cellular towers in a region.

4.1 Assumptions

1. There is a uniform population density with uniform demographics within each region.
This is reasonable to assume since each subregion may contain similar neighborhoods
that contain similar demographics. It is unreasonable to assume a non-uniform popu-
lation density as this information is not provided in [8].

2. All three types of cellular towers have equal cost. This is reasonable to assume since the
majority of the cost of a cellular tower is not due to which type of band it is running,
but due to physical requirements of construction [25].

3. Each individual within a subregion will only use Internet provided by cellular towers
within that subregion. This is reasonable to assume because a cellular tower in another
subregion would not provide optimal Internet service for the user since it is further
away.

4. The optimal number of cellular towers in a certain subregion is independent of the cel-
lular towers in other regions. This is clear if users are only using cellular towers within
their subregion, and it allows us to consider each subregion separately to determine
the optimal setup of cellular nodes.

5. The given regions A, B, and C are all suburban areas. From [8], one can verify that
the population densities are below the threshold for urban areas.

6. The number and type of cellular towers needed are dependent on the area of the subre-
gion and the specific demographics of the subregion. In particular, we do not consider
the shape of each subregion. The specific dimensions of each region are not given, and
considering the shape of each subregion is out of the scope of our model.
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7. The effective area covered by a cellular tower is the region such that the Internet speed
recorded is at least midway between the minimum and maximum speeds for the cellular
tower. This is a reasonable assumption as areas closer to the cellular tower will have
faster speeds, and areas farther from the cellular tower but within its reach will have
slower speeds.

8. The transmitted frequency from each cellular tower is the frequency halfway between
the maximum and minimum frequencies for the range. This is reasonable because the
average frequency recorded is expected to be halfway between minimum and maximum
frequencies.

4.2 Model Development

The primary considerations for the construction of cellular towers in a subregion is that the
entire area is covered and that there is sufficient bandwidth to meet the needs of every person.
In this section, we develop a flexible model to determine the quantity of low-band, mid-band,
and high-band towers necessary to meet the demand for Internet. Low-band towers have
the greatest range, but are the least powerful, operating on a frequency of 600 MHz to 700
MHz. Mid-band towers operate on a frequency of 2.5 GHz to 3.5 GHz. High-band towers
have the shortest range, but operate on a frequency of 24 GHz to 39 GHz [8].

Alow · nlow + Amid · nmid + Ahigh · nhigh ≥ A, (9)

Blow · nlow +Bmid · nmid +Bhigh · nhigh ≥ B. (10)

On a high level, our model is described by Equations (9) and (10). For each type of tower,
we determine an effective area of coverage per tower. We then multiply this by the number
of towers in that band and sum across all three bands to obtain the total area of coverage,
which must be greater than or equal to A, the area of the subregion. A similar process is
used for bandwidth: the total bandwidth for one tower is multiplied by the amount of that
type of tower and this is summed across the three bands, resulting in a value greater than
or equal to the total need for bandwidth in the subregion. This additionally allows for the
easy adapting of this model to a specific model of tower, which has a definite value for its
total bandwidth. The optimal distribution of towers will follow Equations (9) and (10) and
minimize x+ y + z over the integers:

Alow ·Blow · nlow + Amid ·Bmid · nmid + Ahigh ·Bhigh · nhigh ≥ A ·B. (11)

It is also required for the necessary bandwidth to be present in all parts of the subregion,
leading to Equation (11). For each band of tower, the effective area multiplied by the
bandwidth multiplied by the number of towers is summed; the resulting quantity must be
greater than or equal to the total area of coverage multiplied by the total requisite bandwidth.
With all three of these conditions, the resulting solution will always be valid.
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4.2.1 Calculating Effective Areas

Table 4.2.1: Variables Used in Model for Effective Area
Variable Meaning

R rate achievable (Mbps)
B frequency bandwidth (Hz)
LB median path loss (dB)
f frequency of band
hB effective height of the base station (m)
hR effective height of the receiver (m)
d distance from base station (km)

a(hR, f) factor that depends on the environment (urban,
suburban, etc.)

SNR received signal to noise ratio
P power transmitted from base station (dBm)
N noise (dBm)

By the Shannon-Hartley Theorem [25], the Internet speed achievable R is

R = B log2 (1 + SNR) . (12)

From Equation (12), we can determine the received signal to noise ratio from the rate. We
use the rate R equal to the average of the minimum and maximum rates for each cellular
tower according to Assumption 7 in section 4.1.

Then, as in Assumption 6, we assume the frequency transmitted f is the middle of each
frequency band from [8]. To relate the frequency f and Internet speed R to the distance,
we use the COST Hata Model. The COST Hata model is used to find the median path loss
Lb of a wireless signal from the distance [26]. It is based on the Okumura model, which can
be used to find path loss through urban environments. The model works best for low-band
and mid-band towers, but it can also be utilized for high-band towers as it is dependent on
the frequency. We have the following equation [26]:

LB = 46.3 + 33.3 log10

(
f

1 MHz

)
− 13.82 log10

hB
1 m
− a(hR, f) (13)

+

(
44.9− 6.55 log10

hB
1 m

)
log10

d

1 km

where the variables are defined as in Table 4.2.1. Here, a(hR, f) is defined for suburban or
rural environments to be

a(hR, f) =

(
1.1 log10

f

MHz
− 0.7

)
hR
1 m
−
(

1.56 log10

f

MHz
− 0.8

)
. (14)

The path loss or attenuation can also be found through the following equation [32]:

SNR =
γP

N
, (15)
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where γ is the attenuation. This can also be converted to dB:

SNR = P −N − Lb (in dB). (16)

The noise can be calculated based on the value of the frequency bandwidth B for each type
of cellular tower [27]. Furthermore, the value of P and B is known for each type of cellular
tower given [28]. In addition, it is known that the average height of a house is 6 meters, so
we use hR = 6 m [30]. We also use the average height of a cellular tower as 60 m [31].

For each type of tower, we determine the distance r such that the rate achievable is
midway between the lower and upper bounds of the cellular tower in [8]. The effective area
A covered by the cellular tower is then given by the area of a circle with radius r:

A = πr2. (17)

The obtained values for r and A are shown in Table 4.2.2.

Table 4.2.2: Tower Types and Effective Area Covered
Band r (miles) A (square miles)
Low 2.735 23.49
Mid 0.465 0.679
High 0.0323 0.00328

As can be seen in Table 4.2.2, the effective area covered by the high-band tower is rather
small. This is expected because the high-band tower has higher frequencies and covers much
smaller areas.

4.2.2 Calculating Bandwidth Needs

We lack detailed information on the demographics of each subregion and thus used the
median ages and incomes to calculate bandwidth needs as outlined in the previous section of
paper (though limiting the activities to only smartphone and tablet use). We multiplied the
bandwidth need of the median person in each subregion by the population of that subregion
to arrive at the total mean bandwidth usage in Mbps. In computing the effective areas, we
implicitly included extra capacity in the area where the download speed is less than half of
the advertised speed, so peak loads are able to be dealt with.

4.3 Results

Using integer programming as shown in min-cell-towers.py, we minimize the number of cel-
lular towers nlow + nmid + nhigh given the constraints described in Equations (9) and (10).
In tables 4.3.1, 4.3.2, and 4.3.3, optimizations for the number of cellular towers for each
subregion in regions A, B, and C, respectively, are displayed.
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Table 4.3.1: Number of Cellular Towers for Each Subregion of Region A
Subregion Low-band Towers Mid-band Towers High-band Towers

1 1 1 0
2 0 2 0
3 0 2 0
4 1 1 0
5 0 1 1
6 1 0 1

Table 4.3.2: Number of Cellular Towers for Each Subregion of Region B
Subregion Low-band Towers Mid-band Towers High-band Towers

1 3 0 1
2 2 0 1
3 1 0 1
4 1 0 1
5 4 0 1
6 2 0 1
7 3 0 1

Table 4.3.3: Number of Cellular Towers for Each Subregion of Region C
Subregion Low-band Towers Mid-band Towers High-band Towers

1 0 1 1
2 0 1 1
3 0 1 1
4 0 1 1
5 0 1 1
6 0 1 1
7 1 0 1

In region A, it is seen that it is usually more optimal to use low-band and mid-band
towers to cover the entire region. This is because the regions in A had moderate area while
a generally lower required bandwidth. In region B, it was most optimal to use 1 high-band
tower and some number of low-band towers to cover the region. This makes sense as the
subregions in B were much larger, and we need low-band towers to provide optimal coverage.
In region C, it is most optimal to use 1 mid-band tower and 1-high band tower in most of
the regions. This is clear because most of the subregions of C had small area while requiring
a moderate amount of bandwidth.

4.4 Sensitivity Analysis

We conducted a sensitivity analysis by raising and lowering each of the constants Alow, Amid,
and Ahigh by 10%. By running min-cell-towers.py again, we found that the number of cellular
towers of each type was not affected in any of the 20 subregions from regions A, B, and C.
This shows that our model is robust and resilient to changes in the effective area of each
cellular tower.
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4.5 Strengths and Weaknesses

Our model’s greatest strength is its robust flexibility that allows it to be applied to a vari-
ety of situations, as the technical specifications of the cellular towers—in bandwidth, radio
frequency, and dimensions—are all parameterized in various locations. Additionally, more
precise results can be obtained in real life; the hypothetical regions presented to us did not
have detailed demographic information for each of the subregions. With this added data, the
model will produce better results. It can also be adapted to urban areas, as the COST Hata
model of path loss is specifically designed to apply to a variety of realistic environments.

Unfortunately, we were unable to consider cellular towers that overlap between subregions
due to a lack of data. We were not given detailed shapes or dimensioned maps of the
hypothetical regions. It may be possible to create a more cost-effective plan for building
cellular towers than we have created. However, excess capacity is not detrimental, as Internet
loads vary.

5 Conclusion

5.1 Further Studies

Our first model does not currently account for technology in the form of 6G and future
innovations in current technology which would likely impact the cost of bandwidth in the
future. Taking this into account would strengthen our model, as it would be able to predict
the cost more than 10 years from now. Our second model focuses mainly on the immediate
years following COVID-19, so as more data becomes available for the long-term trends as
a result of COVID-19, we will be able to better predict the necessary bandwidth for a
given household. Finally, our third model does not consider the shape of each subregion
and disregards the overlap of a cellular tower across multiple regions. With more detailed
information and a thorough analysis about these factors, the accuracy of our model could
be improved.

5.2 Conclusion

In Part I, we predicted the average cost per bandwidth (Megabits per second) for Internet
in the United States and United Kingdom in 2030. We developed a logistic model for
Internet speed in three different technologies: wired, mobile, and satellite. Our robust
model estimated future Internet speeds and costs for each technology, which were averaged
to produce a global indicator. In the United States, the cost of Internet per unit bandwidth
was predicted to go down from $3.86 in 2020 to $0.46 in 2030. In the United Kingdom, the
cost of Internet per unit bandwidth was predicted to go down from $3.98 in 2019 to $0.49
in 2030.

In Part II, we determined the minimum amount of bandwidth required that would cover
90% and 99% of total Internet needs for each of the three households. This was calculated by
determining how each household’s income level and ages for the individuals in the household
affected the number of hours spent on the Internet. We mapped necessary bandwidth to a
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normal distribution to determine the minimum bandwidth that would cover a certain Internet
availability. The first household was determined to require 26.1 Megabits per second to meet
90% of their Internet needs and 31.2 Megabits per second to meet 99% of their Internet
needs. The second household was determined to require 16.4 Megabits per second to meet
90% of their Internet needs and 19.8 Megabits per second to meet 99% of their Internet
needs. the third household was determined to require 28.8 Megabits per second to meet 90%
of their Internet needs and 36.9 Megabits per second to meet 99% of their Internet needs.

In Part III, we minimized the total quantity of cellular towers necessary to provide cov-
erage to each of the three hypothetical regions by constructing a model that determined how
many low-band, mid-band, and high-band towers were needed. We split up each region into
its constituent subregions, for each of which we determined the mean demand for bandwidth
based on its demographics and our model from Part II. Additionally, we used models of radio
wave propagation to determine the area on which a cellular tower of a specific band would
be effective and utilized this information to ensure that the full area of each region retained
high-speed coverage. The model we created is robust and can be applied to any set of region
data, and would improve in precision with more accurate and comprehensive data about a
region.
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7 Appendix

7.1 average-speed.py

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy.optimize import curve_fit

4

5 # Data for average wired and mobiles speeds

6 #wired

7 usWSpeed = [4.2 ,4.7 ,5.3 ,6.7 ,8.6 ,10.5 ,11.9 ,15.3 ,18.7]

8 ukWSpeed = [3.7 ,3.8 ,4.6 ,5.6 ,7.9 ,9.9 ,11.6 ,14.9 ,16.9]

9 #mobile

10 usMSpeed = [0.9 ,1.3 ,1.6 ,2.8 ,5.5 ,4.0 ,5.1 ,10.7]

11 ukMSpeed = [2.3 ,2.7 ,3.2 ,3.1 ,5.6 ,20.4 ,27.9 ,26.0]

12

13 #Included below is sample code for US/UK Wired Speed

14 #Small modifications are needed for Mobile speeds

15

16 #x-axis for data points

17 time1 = [t for t in range (9)]

18

19 #logistic function for model

20 def logistic(t, L, k,t0 ,c):

21 return L/(1 + np.exp(-k*(t-t0)))+c

22

23 #introduce parameter bounds to refine model

24 param_bounds =([1000 ,-np.inf ,0,-np.inf],[np.inf ,np.inf ,np.inf , np.inf])

25 #curve fit

26 popt , _ = curve_fit(logistic , time , ukSpeed , bounds=param_bounds)

27 L,k,t0,c = popt

28

29

30 # Sample calculation to compute R^2 values

31 residuals = [ukSpeed[i] - logistic(time[i],L,k,t0,c) for i in range (9)]

32 residualSquares = [residual **2 for residual in residuals]

33 residualsSum = sum(residualSquares)

34 totalSquares = sum ([( ukSpeed[i]-sum(ukSpeed)/9) **2 for i in range (9)])

35 rSquared = 1 - (residualsSum)/totalSquares

36 print(rSquared)

37

38

39 #create plot; remember to shift t by 2009 to convert to years

40 x_line = np.arange(min(time), max(time)+15, 1)

41 y_line = logistic(x_line , L,k,t0 ,c)

42 years = [t+2009 for t in time]

43 x_line = np.arange(min(time)+2009, max(time)+15+2009 , 1)

44 plt.rcParams[’text.usetex ’] = True

45 plt.scatter(years ,ukSpeed)

46 bestFit = plt.plot(x_line , y_line , color=’red’)

47 plt.xlabel("Year")

48 plt.ylabel(r’Average Internet Speed (Mbps)’)

49 plt.legend ([r’$S = \frac {%.5f}{1+e^{-%.5f(t-%.5f)}}+%.5 f$’ %(L,k,t0+2009 ,c



)])

50 plt.xticks ([2009+2*i for i in range (13)])

51 plt.show()

7.2 min-cell-towers.py

1 from pulp import LpMinimize , LpProblem , LpVariable

2

3 # Bandwidths of low -, medium -, high - band cellular towers in Mbps

4 B_low = 140

5 B_mid = 500

6 B_high = 2000

7

8 # Effective areas of low -, medium -, high - band cellular towers in square

miles

9 A_low = 23.49325202

10 A_mid = 0.6789549833

11 A_high = 0.003281288918

12

13 # Total bandwith and total area (varies by subregion)

14 B = 399.2085357 #in Mbps

15 A = 1.21 #in square miles

16

17 model = LpProblem(name="min -cell -towers", sense=LpMinimize)

18

19 # Define the decision variables

20 n_low = LpVariable(name="n_low", lowBound=0, cat=’Integer ’)

21 n_mid = LpVariable(name="n_mid", lowBound=0, cat=’Integer ’)

22 n_high = LpVariable(name="n_high", lowBound=0, cat=’Integer ’)

23

24 # Add constraints

25 model += (A_low*n_low + A_mid*n_mid + A_high*n_high >= A)

26 model += (B_low*n_low + B_mid*n_mid + B_high*n_high >= B)

27 model += (A_low*B_low*n_low + A_mid*B_mid*n_mid + A_high*B_high*n_high >=

A*B)

28

29 # Set objective

30 obj_func = n_low + n_mid + n_high

31 model += obj_func

32

33 # Solve the optimization problem

34 status = model.solve ()

35

36 # Print results

37 for var in model.variables ():

38 print(f"{var.name}: {int(var.value ())}")
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