Cum Laude Team Prize: \$10,000 Shrewsbury High School, Shrewsbury MA Coach: Catherine McDonagh Team: Anand Desai

Ruby Lee Shengzhi Li Anirvan Mukherjee Lingke Wang

Unintended Consequences

A Quantitative Analysis of the Effects of Ethanol on the World's Food Supply

Team 178

Summary

The Ethanol Corn-undrum

In recent years, corn-based ethanol has gained much attention as a source of alternative energy. Ethanol demand has skyrocketed, and it is now a common ingredient in most automobile gasoline today. However, corn is a staple food for many countries including the U.S. A trip to the grocery store will reveal thousands of products with high-fructose corn syrup. This has led to concerns about future food supplies in developing nations. Our group has analyzed a number of factors relating to ethanol production and consumption.

If our entire current corn crop were converted into ethanol, it would account for only 12% of the U.S. oil demand. Clearly, all of the corn cannot be converted to ethanol. Some of it must be used for animal feed, food (both high-fructose corn syrup and corn cobs), and seed. Therefore, more corn must be planted to replace 10% of our gasoline consumption with ethanol.

It has been stated that ethanol represents a dramatic reduction in carbon dioxide emissions versus gasoline. However, our analyses indicate that this is not the case. In fact, burning corn-based ethanol represents only a 3% decrease in total carbon dioxide emissions versus burning gasoline.

In addition, the planting of additional corn will reduce the farmland available for other food staples such as wheat and soybeans. This will lead to a dramatic increase in the prices of other grains. The price of soybeans has already skyrocketed in the past few months. These elevated prices will lead to greater food shortages in third-world countries, causing a caloric consumption decrease and starvation.

There are many more cost-efficient and emissions-friendly ways to obtain energy independence from foreign oil imports. Some of these ways include increasing the efficiency of the internal combustion engine and using alternative energy sources such as electricity, photovoltaic cells, and fuel cells. The government can stimulate use of these new technologies by increasing the corporate average fuel economy, implementing a market-based cap and trade system for carbon credits, or educating the general populace. Ultimately, we do not believe that ethanol is a viable replacement for gasoline as a motor fuel in the long term due to its lack of both cost and emissions efficiency.

Assumptions

- There are no major droughts, epidemics, natural disasters, or alien invasions that would significantly affect corn production in the next five years.
- > The total amount of farmland in the U.S. remains constant over the next five years.
- There are no major technological advances in the next five years that would lead to significantly increased corn production or ethanol yield.
- > The population of the world will remain approximately constant for the next five years.

Analysis

How much ethanol is needed to replace 10% of annual U.S. gasoline usage?

Significant research has been conducted on this matter in the past. According to David Pimentel, professor at the College of Agriculture and Life Sciences at Cornell University, the entire nation's corn crop would only amount to 7% of U.S. oil consumption (Pimentel, 2008). The Minnesota Pollution Control Agency's Peter Ciborowski (Manuel, 2007) states that the total corn crop would only meet 12% of gasoline fuel demand, a figure further supported by a 2006 University of Minnesota study (Morrison).

In March 2008, the U.S. Energy Information Administration estimated that 388.6 million gallons of gasoline will be used per day, or 141.8 billion gallons for the whole year. Ten percent of this comes down to 14.18 billion gallons. The energy equivalence of ethanol to one gallon of gasoline is 2.66 gallons of ethanol to 1.74 gallons of gasoline, or 1.53 gallons of ethanol per unit gallon of gasoline (Patzek, 2004). Based on this and the widely accepted figures of ~114,000 BTU/gallon gasoline and 76,000 BTU/gallon methanol (NAFA, 2008), ~1.5 gallons of ethanol convert to 1eegg, meaning approximately **21. billion gallons** of ethanol are required to replace 10% of annual U.S. gasoline usage.

Effect of ethanol usage on carbon dioxide emissions

Introduction

Liquid fuel consumption (i.e., petroleum) is projected to grow from 83 million barrels per day in 2004 to 118 million barrels per day in 2030 (Department of Energy International Energy Outlook Report, 2007). However, in order to reach the target CO_2 atmospheric level of 550 ppm by 2050, we must use as much power from carbon-neutral sources as from all present energy sources combined (Lewis, 2006).

One way to accomplish this is by utilizing ethanol fuel, specifically substituting 10% of annual U.S. gasoline usage with ethanol, equivalent to roughly 21 billion gallons of ethanol (#1). This section of the report deals with the effect of the usage of ethanol on CO_2 emissions. Some of the transportation modeling used in this section will be referred to again in the next section, which deals with the cost of the incorporation of ethanol.

The overall ethanol cycle has four main steps. The first step is the transportation of corn from the farm to refining plants. The next step is the actual production of ethanol from corn. Third, the ethanol is shipped from the plants to their destinations. Finally, the ethanol is burned as fuel in cars and other vehicles. Each of these steps is analyzed in detail below.

Step 1 - Transportation of Corn from Farm to Refining Plants

Most plants are located near farms to minimize transportation. Consider the graphs below:

In the graph to the left, each dot represents an ethanol refining plant, and in the graph to the right, darker areas have a higher corn farming land to total land area ratio. Overlaying the two results in the below:

Note that the dots from the refining plant graph and the dark regions from the farming land graph are well aligned. Aside from some farmland in Texas and scattered farmland in Region 3, we see that both plants and corn farming land are very highly concentrated in Region 1 and somewhat in Region 2.

The transportation of corn from the farm to refineries is a negligible process, since the transportation distance is generally less than 10 miles in Region 1, and is well less than 100 miles even in region 2, as can be discerned by the overlaid map above.

Step 2 – Production of Ethanol

The production of ethanol and the eventual burning of ethanol do not contribute to the atmospheric CO_2 level because they are evenly balanced out by the CO_2 taken in by the corn during growth.

The majority of carbon that is released from the burning of ethanol enters the process when the corn plant takes in CO_2 during photosynthesis. The net equation for photosynthesis is

$6CO_2 + 6H_2O + light \rightarrow C_6H_{12}O_6 + 6O_2$ (i)

The glucose $(C_6H_{12}O_6)$ in the plant is then converted into ethanol via the following reaction:

$$C_{\mathbf{b}}H_{1\mathbf{x}}O_{\mathbf{b}} + 3O_{\mathbf{x}} \rightarrow 2C_{\mathbf{x}}H_{\mathbf{b}}O + 2CO_{\mathbf{x}}$$
 (ii)

Finally, during combustion, ethanol undergoes the following reaction:

$$C_2H_6O + 3O_2 \rightarrow 2CO_2 + 3H_2O + energy$$
 (iii)

Thus, we start out by consuming 6 CO₂ molecules through photosynthesis and produce 2 in reaction (ii) through the production of ethanol. This also results in 2 ethanol molecules, and both of these, when burned, result in an additional 2 CO₂ molecules being released. So, the net CO₂ introduced by the overall ethanol cycle is 2(2)+2-6=0.

Thus, the creation and destruction of ethanol, collectively, result in a negligible change in atmospheric CO_2 levels.

Step 3 – Transportation of Ethanol from Refining Plants to Destination:

We divide the mainland U.S. into three contiguous regions based on corn production:

Region	States Contained	Population (millions, % of US)	Percentage of national corn production
1	OH, IN, KY, MO, KS,	59.92, 19.7%	84.4%
	SD, WS		
2	All states east of MT, WY,	185.43, 71.0%	14.8%
	UT, and AZ, that are not		
	in Region 1		
3	MT, WY, UT, AZ, and	58.66, 19.3%	0.8%
	states west of these		

Because the supply gradient moves from Region 1 towards Region 3, to optimize transportation, Region 1 provides for all regions, Region 2 provides for itself and Region 3, and Region 3 provides crops only to itself.

We must thus determine the most efficient supply-demand matrix that relates the production fraction vector to the demand fraction vector. We assume here that energy demand is proportional to population. We thus want a matrix of the form:

```
 \begin{pmatrix} a_{1,1} & 0 & 0 \\ a_{2,1} & a_{2,2} & 0 \\ a_{3,1} & a_{3,2} & 1 \end{pmatrix} \begin{pmatrix} 0.644 \\ 0.148 \\ 0.008 \end{pmatrix} = \begin{pmatrix} 0.197 \\ 0.710 \\ 0.193 \end{pmatrix}
```

where $a_{i,j}$ represents the fraction of corn delivered to Region *i* and produced in Region *j*. The sum of each column must be 1.

Solving this matrix equation, we get

 $\begin{pmatrix} 0.23341 & 0 & 0\\ 0.76659 - t & 5.7207t - 0.25 & 0\\ t & 1.25 - 5.7207t & 1 \end{pmatrix} \begin{pmatrix} 0.844\\ 0.148\\ 0.008 \end{pmatrix} = \begin{pmatrix} 0.197\\ 0.710\\ 0.198 \end{pmatrix}$

for a free variable t. To force each entry to be between 0 and 1, we must have t a [0.0437,0.2185].

We now want to minimize transportation. Since the regions are roughly even in width, we want to minimize:

$$\sum_{1 \le t_i \neq s} (|t - f| \cdot \alpha_{t_i f}) = \alpha_{2,4} + 2\alpha_{2,4} + \alpha_{2,8} = 2.01659 - 5.7207t$$

Clearly, this is minimized as we maximize t, so t = 0.2185, and the transportation matrix is

```
\begin{pmatrix} 0.23341 & 0 & 0 \\ 0.54080 & 1 & 0 \\ 0.2185 & 0 & 1 \end{pmatrix}
```

This is particularly convenient because only Region 1 ships to other regions.

Shipping occurs by two means: trucks and trains. Trucks ship ethanol between train stations and specific locations, whereas trains, which are more fuel efficient, ship long distance.

The colored lines on the map to the left show the routes of the Class I railroads in North America. The map has been blackened in areas that are not within 100 miles of a railroad. As we can see, these are mainly in remote areas, such as in Wyoming and sparsely inhabited areas of Utah and Oregon. Hence, the vast majority of areas are within 100 miles of a railroad, which can give us an upper bound on truck usage (which is less efficient both in terms of cost and emission).

We now consider the burning of diesel for transportation.

The distance from a Region 1 location to a Region 2 location is, via a RMS average, about 1100 miles. The distance from a Region 1 location to a Region 3 location is about 1850 miles. Within any region, the transportation can be taken to be roughly 200 miles.

 2.16 kg of CO_2 result from the production of one gallon of diesel, and 10.10 kg result from the burning of one gallon, for a total of 12.26 kg/gal.

A train can carry one ton of freight about 422 miles on one gallon of diesel, which results in 12.26 kg of carbon dioxide.

$$1 \ ton_{Ethanol} = \frac{\left(\frac{2000 lbs}{2.2 \ kg}\right) \cdot 1000 \frac{g}{kg}}{0.769 \ g_{Ethanol}} \cdot \frac{1gal}{mL_{Ethanol}} \cdot \frac{1gal}{3785.412 \ mL} = 304.3807 \ gal_{Ethanol}$$

Team 178 | Page 8 of 20

Thus, transporting 304.3807 gallons of ethanol 422 miles results in 12.26 kg of carbon dioxide.

We can now take a weighted average for train distance:

$$\begin{pmatrix} 0.23341 & 0 & 0 \\ 0.54069 & 1 & 0 \\ 0.2165 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0.844 \\ 0.148 \\ 0.008 \end{pmatrix} = \begin{pmatrix} 0.197 \\ 0.710 \\ 0.193 \end{pmatrix}$$

d = 0.844(0.54069 · 1100 + 0.2185 · 1850) = 843.8mt

Thus, the net emissions from trains is given by

 $\left(\frac{643.3mi}{422mi}\right) \left(\frac{1}{304.3607gal}\right) (12.26kg) = \frac{0.06kg}{gal}$

Similarly, the emissions from trucks over 200 miles is given by

$$200mt \left(\frac{1}{6mpg}\right) \left(\frac{1}{6000gal}\right) 12.26kg = \frac{0.07kg}{gal}$$

Step 4 – Burning of Ethanol Refer to Step 2 – Production of Ethanol

Overall

Adding the numbers above, a total of 0.15 kg CO_2 is released per gallon of ethanol. This is the energy equivalent of 1/1.53 gallons of gas, which has an energy equivalent of 11gal/1.53 of gas. The equivalent volume of gas releases 11/1.53=7.18 kg CO_2 , which is significantly higher.

Cost to transport ethanol:

Recall from the emissions section that the average gallon of ethanol is transported 843.3 miles,

which results in $\left(\begin{pmatrix} 643.8mt \\ 422mt \end{pmatrix} \begin{pmatrix} 1 \\ 304.3607\,gal \end{pmatrix} + 200mt \begin{pmatrix} 1 \\ 6mpg \end{pmatrix} \right) = 0.146601$ gallons of diesel. Multiplying this by the average price of diesel, roughly \$3.65 per gallon, results in a cost of 5.4¢ for transportation.

The wages for the train locomotive engineer are negligible, since the train carries thousands of gallons of ethanol. However, the wages for the truck driver are not negligible. Namely, to travel 200 miles at average speed will result in 3 hours of wages, or about \$69.90. This is used to transport about 6000 gallons of gas, resulting in a 69.90/6000=1.2c cost per gallon.

Thus, the total cost of transportation for ethanol is roughly 6.6¢ per gallon. Accounting for minor intermediate processing raises this to about 7¢.

Effects of this policy on grain prices and developing nations over the next five years

Interpreting "this policy" to be that ethanol will replace 10% of all motor vehicle gasoline by March 1, 2013, a basic qualitative estimate may be made by considering modern economic principles, and this may be further grounded in quantitative data via analysis of grain prices in the past several decades. The three grains that were analyzed were corn, soybean, and wheat based on 2008 data from the University of Illinois (Table 1 for corn and Table 2 for wheat).

Assuming that usage of corn for domestic feed, food, seed, and industrial processes as well as for exports will remain approximately constant (USDA, 2008), it is evident that a higher number of bushels per corn must be supplied. Ways to achieve this include increasing imports, yield, or acreage.

It is impractical to increase imports, as import cost will be higher than domestic cost, since the U.S. itself exports much corn; in 2007, for example, the U.S. exported 56 million bushels (NCGA, 2008).

Yield is increasing constantly due to economic scaling, technological advances, and superior farming techniques. Based on historical data and estimates by the USDA (2008), the yield is expected to increase to an average of 170 by 2018. Interpolating linearly, the yield would increase to 160 by 2013. This would provide a 5.89% increase over the current yield of 151.1 bushels per acre (U. Illinois, 2008, Table 1).

Moreover, there is a constant amount of land devoted to farming in the next five years, which means the total amount of land cannot be increased for the corn crop. However, corn can be grown instead of other grains. Because of its regulated use in the mandated ethanol and significant government subsidies, growing corn will be more economically viable. For example, farmed acreage of wheat can decrease in favor of corn.

Thus based on this, we can suppose that the increase in supply of corn will be less than the increase in demand of corn (shown by S1 to S2 and D1 to D2). The supply of corn will increase much slower since there are significant roadblocks. On the other hand, the demand will increase much faster because of the policy. Thus, from the following graph, it can be deduced that the price of corn will increase significantly as a result of this policy.

Additionally, the supply of corn can only be increased by decreasing the supply of other grains such as wheat and soybeans (shown by change from S1 to S2). However, the demand of other grains remains the same since they are mostly used for food consumption, which we assume remains constant because population increase in the next five years is small. Hence, as seen from the following graph, the price of other grains such as wheat and soybeans will increase.

This will place significant pressure on developing nations where food is already scarce. According to Stewart Staniford (2008), a 60% increase in grain prices will lead to a 40% decrease in caloric consumption in third world countries. This will exacerbate the already critical food situation in places such as Africa. It has been seen throughout history that food scarcity is one of the leading causes of unrest and civil war. Countries in Africa and Asia will fall even further into the depths of war and poverty.

Are there better ways for the U.S. to attain national energy independence?

There exist a host of methods for the U.S. to attain national energy independence. Considering that the U.S. has one of the largest coal deposits in the world, America has no significant energy independence issues related to electricity production. The energy dependence crisis instead lies in

imported gasoline, mainly for motor fuels. The U.S. imports 10,118,000 barrels of oil per day, of which 5,517,000 barrels per day is from OPEC (EIA, 2008). Noting this massive volume, many methods must be implemented simultaneously to achieve energy independence.

Conventional economics state that the U.S. can either increase supply or decrease demand of oil. Ultimately, increasing supply is not plausible, as total world oil resources are limited and the further destruction of natural and especially virgin lands is a hefty sacrifice to make. Decreasing demand can be achieved through several ways:

- Tightening standards for fuel efficiency of motor vehicles, such as through raising Corporate Average Fuel Economy (CAFÉ) or implementing a market-based cap-and-trade system for miles per gallon (mpg) efficiency.
- Switching to alternative fuels, such as biofuels, fuel cells, or electricity.
- Educating the populace on current trends and consequences of overconsumption.

In considering these implementations, multiple facets must be taken into account, namely technology, economic viability, and education. One group that conducted an extensive analysis of all these factors was the Keystone Policy Summit on Energy Efficiency in 2007, of which one author (Shengzhi) was a board member.

Technology

Technology comes in the form of higher efficiency vehicles and alternative fuels.

A large number of technologies exist to increase fuel efficiency. A small sample of these technologies includes using superior transmission technologies such as automated manual transmission (AMT) and continuously variable transmission (CVT), variable valve timing and lift (VVT&L), on demand cylinder deactivation, turbocharging, direct fuel injection, and integrated starter generators (ISGs) (Von Stein, 2007). Additional initial capital is necessary to implement these technologies, however.

With crude oil reaching 104 USD per barrel (Sunnucks, March 3 2008), alternative energies sources are becoming increasingly more lucrative. Possible alternative energy sources for transportation include alternative combustion fuels (ethanol and other biofuels), electricity, and fuel cells.

Alternative combustion fuels face similar environmental problems to gasoline, and the net energy balance is often in the red. For example, Patzek (2004) states that production of ethanol leads to negative energy balance: 1.76 gallons of gasoline are needed to produce 1.74 eegg of ethanol. Other sources, however, suggest energy gains, e.g. Shapouri, et al. (1995) claims a 24% net increase in energy balance. A survey of many different analyses is shown in Figure 1.

Comparative Results of Corn Ethanol Fossil Energy Balance

Figure 1 Comparative Results of Corn Ethanol Fossil Energy Balance (National Corn Growers' Association, 2005)

Clearly, the net energy balance issue is not conclusive. Furthermore, burning ethanol and other biofuels also produces negative environmental impacts. Despite the argument that ethanol carbon dioxide emissions are nil, as that amount of carbon dioxide is sequestered from the environment during the growing season, the growth and processing of the corn have certain negative impacts, which were extensively analyzed in Part II. Zah, et al. (2007) conducted a comprehensive survey of many different biofuels and their environmental impacts, assigning a relative quantitative value to the environmental impacts (Fig. 2).

Figure 2 Total environmental impact vs. relative greenhouse-gas emissions (Zah et al., 2007)

The study asserts that using wastes or recycled products, such as sewage sludge or recycled oil, has much less environmental impact than using food crops, such as corn or soy.

In addition to food-based ethanol, cellulosic ethanol is another highly viable option that has seen much research in recent years. Cellulosic ethanol may be harvested from a large variety of crops such as sugarcane and even prairie grasses, such as switchgrass. This form of ethanol uses nearly the entire plant and is much more efficient in terms of using the plant's energy. As a more recent technology, however, cellulosic ethanol is still in a pilot stage and has not reached full commercial potential. Another viable source of transportation fuel is electricity. Electric motors are far more efficient than internal combustion engines (ICEs) and are capable of converting 75% of the battery energy into mechanical energy compared to the 20% converted by ICEs (Von Stein, 2007). Furthermore, electricity is created at the power plant using non-petroleum energy sources, thus releasing the U.S. from dependence on foreign oil. Electricity, however, is at a disadvantage due to its generally low power as well as its low mileage per charge. Modern advances, however, have greatly reduced these disadvantages; Tesla Motors, the world's leading supplier of electric cars boasts its top-of-the-line Tesla Roadster which can go from 0 to 60 mph in 4 seconds and has a remarkable 135mpg (Tesla, 2008).

The sun shines approximately 100,000 TW onto the surface of the Earth yearly, or more energy in one hour than we consume in one year. This map shows the land area required to be covered with solar cells, at only 10% efficiency, in order to satisfy the current energy needs of the entire U.S.

A hot and upcoming transportation technology is the fuel cell. Fuel cell vehicles (FCVs) are expected to reach the market by 2010 (Von Stein, 2007). FCVs can convert 40-60% of the fuel energy to mechanical energy, a significant advance over ICEs. At the moment, fuel cells are still too expensive for mainstream use; however, prices are steadily decreasing. In the past 3 years, fuel cell prices have decreased ten-fold, and prices will only be decreasing over the next decade (General Motors Corporation, 2007).

A combination of multiple technologies take advantage of both the benefits of the cleaner and more efficient electric and fuel cell vehicles and the raw power and universal support for gasoline vehicles. This combination leads to the hybrid vehicle, of which the electric/ICE combination has been

highly successful. The most prominent and well-selling hybrid car is the Toyota Prius, with over a million sales as of March 2008.

Education

The public must be made more aware of the crisis and its consequences. This can be accomplished through a variety of methods such as public campaigning, public service announcements, radio discussions, internet web casts, and documentaries. Additionally, all schools should hold a short presentation to teach about the environmental crisis and how everyone can contribute to reducing it on Earth Day.

Fuel Efficiency

Increasing fuel efficiency standards depends directly on the government. The current standard given by CAFÉ is 27.5mpg for cars and 20.7 for light trucks. Manufacturers whose average fuel economy falls below these numbers must pay fines to the government. Interestingly, CAFÉ has not increased for over 20 years, and total fleet (including cars and light trucks) mpg reached its peak in 1987 at 26.2mpg. In 2004, fleet mpg was 24.7, 1.5mpg *below* standards in 1987.

Considering the massive technological advance, even the U.S. legislature believed it practical and necessary to increase CAFÉ. In December 2007, the Senate finally passed raising CAFÉ to 35mpg by 2020.

Another way to increase fuel economy is to implement a cap-and-trade system. This market-based approach would be similar to the carbon cap-and-trade system, except that mpg credits are used instead of carbon credits.

Year Beginning Sept. 1	Acres Planted (1000 acres)	Acres Harvested (1000 acres)	Yield Per Acre (Bushels)	Production (Million Bushels)	Beginning Stocks (Million Bushels)	Total Supply (Million Bushels)
1975/76	78719	67625	86.4	5841	558	6400
1976/77	84588	71506	88	6289	633	6925
1977/78	84328	71614	90.8	6505	1136	7643
1978/79	81675	71930	101	7268	1436	8705
1979/80	81394	72400	109.5	7928	1710	9638
1980/81	84043	72961	91	6639	2034	8675
1981/82	84097	74524	108.9	8119	1392	9511
1982/83	81857	72719	113.2	8235	2537	10772
1983/84	60207	51479	81.1	4174	3523	7699
1984/85	80517	71897	106.7	7672	1006	8680
1985/86	83398	75209	118	8875	1648	10534
1986/87	76580	68907	119.4	8226	4040	12267
1987/88	66200	59505	119.8	7131	4882	12016
1988/89	67717	58250	84.6	4929	4259	9191
1989/90	72322	64783	116.3	7532	1930	9464
1990/91	74166	66952	118.5	7934	1344	9282
1991/92	75957	68822	108.6	7475	1521	9016
1992/93	79311	72077	131.5	9477	1100	10584
1993/94	73239	62933	100.7	6338	2113	8472
1994/95	78921	72514	138.6	10051	850	10910
1995/96	71479	65210	113.5	7400	1558	8974
1996/97	79229	72644	127.1	9233	426	9672
1997/98	79537	72671	126.7	9207	883	10099
1998/99	80165	72589	134.4	9759	1308	11085
1999/00	77386	70487	133.8	9431	1787	11232
2000/01	79551	72440	136.9	9915	1718	11639
2001/02	75702	68768	138.2	9503	1899	11412
2002/03	78894	69330	129.3	8968	1596	10578
2003/04	78603	70944	142.2	10089	1087	11190
2004/05	80929	73631	160.4	11807	958	12776
2005/06	81779	75117	148	11114	2114	13237
2006/07	78327	70648	149.1	10535	1967	12514

${\rm Table \ I.}$ All Variables (1975/76 - 2007/08) for U.S. Corn

Team 178 | Page 17 of 20

2007/08	93	3600	86542 15	51.1	13074	1304	14393
Exports (Million Bushels)	Feed and Residual Use (Million Bushels)	Food, Seed, Ind. (Million Bushels)	Total Consumption (Million bushels)	Ending Stocks (Million Bushels)	Average Farm Prices (\$/bu)		
1664	3582	521	5767	633	2.5		
1645	3602	542	5789	1136	2.2		
1896	3730	581	6207	1436	2		
2113	4274	608	6995	1710	2.3		
2402	4563	640	7604	2034	2.5		
2391	4232	659	7282	1392	3.1		
1997	4245	733	6975	2537	2.5		
1821	4573	855	7249	3523	2.6		
1886	3876	930	6693	1006	3.2		
1850	4115	1067	7032	1648	2.6		
1227	4114	1153	6494	4040	2.2		
1492	4659	1234	7385	4882	1.5		
1716	4789	1251	7757	4259	1.9		
2028	3934	1297	7260	1930	2.5		
2367	4382	1370	8120	1344	2.4		
1727	4609	1425	7761	1521	2.3		
1584	4798	1533	7915	1100	2.4		
1663	5252	1556	8471	2113	2.1		
1328	4680	1613	7621	850	2.5		
2177	5460	1715	9352	1558	2.3		
2228	4693	1628	8548	426	3.2		
1797	5277	1714	8789	883	2.7		
1504	5482	1804	8791	1308	2.4		
1981	5472	1846	9298	1787	1.9		
1937	5664	1913	9515	1718	1.8		
1941	5842	1957	9740	1899	1.9		
1905	5864	2046	9815	1596	2		
1588	5563	2340	9491	1087	2.3		
1900	5795	2537	10232	958	2.4		
1818	6158	2686	10662	2114	2.1		
2134	6155	2981	11270	1967	2		
2125	5598	3488	11210	1304	3		
2450	5950	4555	12955	1438	4		

12010 11 All Valiables (1973/70 - 2007/06) 101 0.3. Wheat							
Year Beginning June. 1	Acres Planted (1000 acres)	Acres Harvested (1000 acres)	Yield Per Acre (Bushels)	Production (Million Bushels)	Beginning Stocks (Million Bushels)	Total Supply (Million Bushels)	
1975/76	74900	69499	30.6	2127	435	2564	
1976/77	80395	70927	30.3	2149	666	2817	
1977/78	75410	66686	30.7	2046	1113	3161	
1978/79	65989	56495	31.4	1776	1178	2955	
1979/80	71424	62454	34.2	2134	924	3060	
1980/81	80788	71125	33.5	2381	902	3285	
1981/82	88251	80642	34.5	2785	989	3777	
1982/83	86232	77937	35.5	2765	1159	3932	
1983/84	76419	61390	39.4	2420	1515	3939	
1984/85	79213	66928	38.8	2595	1399	4003	
1985/86	75535	64704	37.5	2424	1425	3866	
1986/87	71998	60688	34.4	2091	1905	4017	
1987/88	65829	55945	37.7	2108	1821	3945	
1988/89	65529	53189	34.1	1812	1261	3096	
1989/90	76615	62189	32.7	2037	702	2761	
1990/91	77041	69103	39.5	2730	537	3303	
1991/92	69881	57803	34.3	1980	868	2889	
1992/93	72219	62761	39.3	2467	475	3012	
1993/94	72168	62712	38.2	2396	531	3036	
1994/95	70349	61770	37.6	2321	569	2981	
1995/96	69132	60955	35.8	2183	507	2757	
1996/97	75105	62819	36.3	2277	376	2746	
1997/98	70412	62840	39.5	2481	444	3020	
1998/99	65821	59002	43.2	2547	722	3373	
1999/00	62664	53773	42.7	2296	946	3339	
2000/01	62549	53063	42	2228	950	3272	
2001/02	59432	48473	40.2	1947	876	2931	
2002/03	60318	45824	35	1606	777	2460	
2003/04	62141	53063	44.2	2345	491	2899	
2004/05	59674	49999	43.2	2158	546	2775	
2005/06	57229	50119	42	2105	540	2726	
2006/07	57344	46810	38.7	1812	571	2505	

Table II All Variables (1975/76 - 2007/08) for U.S. Wheat

Team 178 | Page 19 of 20

>	60433	51011	40.5	2067	456	2613
2007/00 Exports	Feed	Food Use	Seed Lise	Total	Ending	Averade
(Million	and	(Million	(Million	Consumption	Stocks	Farm
Bushels)	Residual	Bushels)	Bushels)	(Million	(Million	Prices
,	Use			bushels)	Bushels)	(\$/bu)
	(Million					
1172	Busnels)	580	100	1800	888	3 56
950	74	588	92	1704	1113	2 73
1124	193	587	80	1983	1178	2.70
1194	158	592	87	2031	924	2.00
1375	86	596	101	2158	902	3.8
1514	59	611	113	2296	989	3.99
1771	135	602	110	2618	1159	3.69
1509	195	616	97	2417	1515	3.45
1426	371	643	100	2540	1399	3.51
1421	407	651	98	2578	1425	3.39
909	284	674	93	1961	1905	3.08
999	401	712	84	2196	1821	2.42
1588	290	721	85	2684	1261	2.57
1415	151	726	103	2394	702	3.72
1232	139	749	104	2224	537	3.72
1070	482	790	93	2435	868	2.61
1282	245	790	98	2414	475	3
1354	194	835	100	2481	531	3.24
1228	272	872	96	2468	569	3.26
1188	345	853	89	2475	507	3.45
1241	154	883	104	2381	376	4.55
1001	308	891	102	2302	444	4.3
1040	251	914	92	2298	722	3.38
1042	394	910	81	2427	946	2.65
1089	280	929	92	2390	950	2.48
1062	304	950	80	2396	876	2.62
962	182	926	83	2154	777	2.78
850	116	919	84	1969	491	3.56
1158	203	912	80	2353	546	3.4
1066	182	910	78	2235	540	3.4
1003	160	915	78	2155	571	3.42
909	125	933	81	2049	456	4.26
1200	110	945	86	2341	272	6.65

REFERENCES

David Pimentel. 2008. Kennebec Journal. http://kennebecjournal.mainetoday.com/view/columns/4793307.html

Morrison, D. 2006. University of Minnesota News. http://www1.umn.edu/umnnews/Feature_Stories/Ethanol_fuel_presents_a_cornundrum.html

John Manuel. Environmental Health Perspectives, Vol. 115, No. 2. (Feb., 2007), pp. A92-A95.

Energy Information Administration. March 2008. http://www.eia.doe.gov/basics/quickoil.html

National Agricultural Statistics Service. 2008. http://www.eia.doe.gov/basics/quickoil.html

Patzek, T.D., et al. 2005. ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS? Environment, Development and Sustainability (2005) 7: 319–336

NAFA Fleet Management Association. 2008. Energy Equivalents of Various Fuels. http://www.nafa.org/Content/NavigationMenu/Resource_Center/Alternative_Fuels/Energy_Equivalents/Energy_Equivalents.htm

Lewis, Nathan S. and Daniel G. Nocera. "Powering the planet: Chemical challenges in solar energy utilization." PNAS 24 Oct. 2006.

Department of Energy, Energy Information Association. "International Energy Outlook Report 2007."

Von Stein, E. 2007. Energy Efficiency and Transportation Technologies. From: http://youthpolicysummit.org/images/archived/keystone7.doc

Sunnucks. March 3. 2008. Crude oil tops \$104 per barrel; gas prices follow upward trend. http://www.bizjournals.com/phoenix/stories/2008/03/03/daily39.html

The Keystone Center 2007 Youth Policy Summit on Energy Efficiency Final Policy Recommendation. http://youthpolicysummit.org/images/Reports/finalenergyreport_yps_2007.pdf

Shapouri, et al. 1995. Estimating the Net Energy Balance of Corn Ethanol http://www.ethanol-gec.org/corn_eth.htm

National Corn Growers' Association. 2005. Argonne National Laboratory Ethanol Study: Key points. http://www.ncga.com/ethanol/pdfs/Wang2005.pdf R. Zah et al., Ökobilanz von Energieprodukten: Ökologische Bewertung von Biotreibstoffen (Empa, St. Gallen, Switzerland, 2007).

http://www.epa.gov/otaq/climate/420f05001.htm

Tesla Motors. 2008. Tesla Motors. www.teslamotors.com

General Motors Corporation. 2007. Fuel cell technology: Prospects, promises, and challenges. www.gm.com/company/gmability/adb_tech/400_fcv/fc_challenges.html