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Summary 
Our major claim is that the use of undercount correction by statistical methods, in 

particular through the Post-Enumeration Survey (PES), has a margin of error significantly 
greater than the undercount it corrects for. Furthermore, we believe that the errors in this 
undercount correction are intrinsic to a wide range of possible correction algorithms; in 
other words, there is no simple fix for these biases. Since these errors seem potent enough 
to cause an overcount greater than the original undercount, we recommend that no 
undercount correction take place. Finally, we suggest various clerical changes to the 
overall Census process and in particular to the imputation methodology that will 
eliminate the undercount caused by human error, an improvement that, while not 
eliminating undercount completely, will improve the results of the Census visibly. 
Finally, we suggest expanding the time the Census has from nine to twelve months, 
which would allow enough time for the Census to use more thorough matching and 
investigative methods, further increasing Census accuracy. 

Our next section discusses the current method for apportioning the House of 
Representatives. We begin by arguing that the fixed limit of 435 Representatives is both 
arbitrary and damaging, and that it must be expunged. Next, we propose a method of 
apportionment that causes the number of Representatives to safely and smoothly fluctuate 
near 500. This “Growth Factor Method” incorporates both population and population 
growth rate. We employ multiple tests to ensure that our method is both accurate and 
consistent. We conclude by comparing the current apportionment method with our 
Growth Factor Method in an attempt to show the latter's superiority and stability. 

In our third section, we explore the relative effectiveness of several methods that 
already exist to draw congressional districts in states. We measure these methods using 
five criteria set out in a popular dissertation concerning congressional districts. Rather 
than completely endorse either method, we develop our own method which combines the 
best aspects of both. While perhaps the method could be improved further, it already 
produces demonstrably better and fairer districting than current approaches. Further, the 
districts are produced in a manner that reduces the effects of political battles 
("gerrymandering"); and this method is also significantly faster than current approaches 
(on a modern home computer, even California can be partitioned in a few hours). 
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Part I: Should the Census figures be adjusted for the undercount? 

We will attempt to prove that the errors implicit in the PES and other undercount 
correction techniques lead to greater error in the Census than the original numbers, and so 
the Census should not be adjusted for overcount. 

In examining the 1990 Census, Darga (cite Darga) found that the PES-based 
undercount correction method had several significant sources of systematic bias (that is, 
errors that will not cancel out in the final survey). Let us examine these sources. 
Errors in Undercount Correction 

First, we give an overview of the current undercounting correction technique. 
After the official Census is taken, the Census Bureau sends enumerators to selected 
regions of the United States. These enumerators are tasked with conducting small-scale 
censuses of their own, mostly distributing special PES forms or conducting interviews. 
Afterward, these forms are sent to the Census Bureau, where they are matched with the 
records of the official Census. Any persons who are not matched are thus either 
overcounted or undercounted; persons participating in the PES but not in the Census 
would be undercounts, whereas those counted by the Census but not by the PES are 
overcounts. From this, overall overcount and undercount statistics are determined and 
corrected for. It should be noted that these statistics are not taken overall, but across 
thousands of strata; for example, there is a separate undercount correction for African-
American males between 20 and 30 living in the South. This approach would, in the 
ideal, work; however, there are several practicalities that lead to gross errors. 

The first source of error, matching error, is a core feature of the undercounting 
problem. During the PES, new reports must be matched to original Census records. The 
goal is to match PES results to people who participated in the actual Census. In theory, 
unmatched records are records of those who were not counted. However, the matching 
procedure is intrinsically complex. While approximately 80% of matches can be made by 
computer (because of overwhelming evidence linking a PES report and a Census form), 
the remaining 20% of “difficult cases” are matched by professional human matchers. In a 
study conducted by the Census, the Census distributed identical records to two groups of 
independent trained matchers (cite P8). Though the groups used the same guidelines, 
differences of several percentage points could be found. While 2-3% error may seem 
small, one must remember that the effect corrected for will be on the order of 2%. Thus, 
the matching process itself injects as much as 100% error. For example, a matching error 
of only 104 persons in the 1990 Census resulted in an overall decrease of 250,000 
persons in the undercount estimate, a 5% differential (cite Hogan). Similar effects should 
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be kept in mind when dealing with the PES in general; small effects are magnified due to 
the small size of the PES in comparison with the Census as a whole. 

Another significant source of error is the invention of fictitious data. Darga found 
that fabrication of data occurs often, and that those employees who do fabricate data will 
fabricate significant amounts of their data---usually on the order of 30% of all those they 
surveyed. Given the tiny effect of even small numbers of reports (see the effect of 104 
persons above), fabricated data represents a huge portion of the false undercount; Darga 
estimates its effect as causing approximately 8% of the overall estimate of undercount, 
and this is only for the cases of fabrication that are actually found out; West (cite West) 
determined that approximately 39% of fabrication is noticed, leading to a final estimate 
of 20% error due to fabrication. While not as large as the error due to matching problems, 
it is nonetheless significant, and also hard to combat. Due to the lack of time for training 
and the effects of having field employees, the fabrication rate seems hard to change. 
Finally, fabrications lean heavily toward reporting undercount, as it is significantly more 
difficult for an enumerator to report false counting than false omission. This means that 
the 20% error will indeed mostly act to inflate the undercount statistic. 

Another error is due to the ambiguities present in the Census's notion of “usual 
residence.” For example, college students commonly report their “usual address” as their 
parents' home while the PES is conducted, but claim their “usual address” as their college 
dormitory while the Census itself is conducted.1 This means that many college students 
represent both an undercount and an overcount; however, due to the aforementioned 
difficulties in reporting overcount, there is a bias toward undercount. This ignores the 
further issue of local statistics, which are in fact far more important for many uses than 
national-level statistics. For example, the national distribution of college-age students 
will shift dramatically toward suburban areas due to the misreporting examined above. 
Overall, the errors due to this seem to be on the order of a 5% increase in undercount, but 
the damage done is significantly larger than this, due to the corruption of local statistics 
that an undercount correction would entail---statistics used for more in-depth analysis 
than pure population counting. Since Census statistics are used for ten years by the 
government to inform policy decisions, the rectitude of these local statistics is at least as 
important as the accuracy of the total population count; we will give an example later, 
when examining the undercount correction method as a whole. 

More errors are caused by the assignment of PES reports to the incorrect Census 
block (blocks designated by the Census subdividing the US into approximately 8 million 
pieces). Each PES report must be located in a specific Census block. However, reports 
                                                 
1  
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are often miscategorized, with errors leading to approximately 100% error.2 To combat 
this, the Census matchers actually search for reports within a radius of two blocks. 
However, while this recovers many reports, an even larger search radius would enable yet 
better matches. This expansion of radius would, however, be infeasible due to the time 
constraints on the Census; meanwhile, significantly better training would be required to 
lower the number of misattributed reports. 

The number of unresolved cases represents a pernicious thorn in the side of the 
undercount correction. For the 1990 Census, approximately 1.6% of households were 
marked as unresolved. While the small size of this number is a testament to the ingenuity 
of Census enumerators, it is nonetheless rather close to the overall undercount size and 
could swing the undercount anywhere between 10 million undercounted and 1 million 
overcounted (that is, if all unresolved cases were undercounts, the result would be 10 
million undercounts overall, whereas if all were overcounts, a total overcount of 1 million 
persons would be found)34; in other words, it could create as much as 100% error. This is 
another error implicit in and intrinsic to the undercount correction process. 

Finally, to discuss errors related to the Census questionnaire and data gathering, 
some Census terminology must be clarified. On the Census form, three housing unit 
statuses were available: Occupied, Vacant, and Delete. Forms were classified as Vacant if 
the self-response return had no names on the roster and the respondent-reported 
household size was 0. Forms that had no names on the roster or blank respondent-
reported household sizes were classified as Unresolved Occupied/Vacant.  

In determining the expected household size, a programming error affected the 
status resolution for some Vacant enumerator returns. The Interview Summary 
Population of 0 was recorded as blank, which may have caused up to 133,438 Vacant 
returns as Deletes and up to 258,963 Vacant returns as Unresolved Occupied/Vacant. 
Additionally, up to 145,367 (or 75.78%) of 191,826 housing units that had their 
occupancy status imputed may have been affected by the error. Reducing these minor 
errors will increase the accuracy of the estimate of the nation's population.5 

                                                 
2 Parmer, Randall (1991). P-11 Report: Balancing Error Evaluation. U.S. Bureau of the Census, 
1990 Post-Enumeration Survey Evaluation Project, Series #M-2. 
3 Parmer, Randall (1991). P-11 Report: Balancing Error Evaluation. U.S. Bureau of the Census, 
1990 Post-Enumeration Survey Evaluation Project, Series #M-2. 
4 Breiman, Leo (1994). The 1991 Census Adjustment: Undercount or Bad Data. Statistical 
Science, 9(4):458-537. 
5 Rosenthal, Miriam. (2003). Operation Analysis of the Decennial Response File Linking and 
Setting of Housing Unit Status and Expected Household Size. Census 2000 Evaluation L.2. 
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More data gathering ambiguity was caused by confusion of the enumerators. The 
unresolved enumerator returns, which constitute 1.34% of the 38,796,478 enumerator 
returns, were a result of contradictory and missing responses on the Census form. The 
irrelevance of the Interview Summary Section in some unusual situations was a source of 
contradictions. Another source of unresolved enumerator returns could have been caused 
by enumerators' lack of a thorough review of the forms.6 

Overall Effects of Errors   

Overall, we see that various errors in the undercount correction process could 
swing the undercount estimate by as much as 250%. Thus, the undercount estimation 
procedures currently in use are completely unreliable. Darga, for example, finds that the 
undercount estimate of 5 million Americans for the 1990 Census transforms into an 
estimate of 1.5 million after correcting for the errors above. Unfortunately, it would be 
difficult, if not impossible, to correct these errors without the years of analysis available 
to Darga and others; meanwhile, the Census must be ready within nine months. 
Furthermore, as discussed above, the errors we have identified are intrinsic to the 
undercount correction problem and thus present no simple fixes. This is not a case of 
flawed methodology but rather of an impossible task. But the inaccuracies in the 
undercount correction pale in comparison to the errors created in local data. Most of the 
errors discussed affect certain strata of the population disproportionately. Thus, the 
undercount correction procedure will cause great errors in demographic data. Darga 
provides an example based on the effect undercount correction would have had on the 
1990 Census: 

The counts of White, Native American, and Asian/Pacific renters in 
Detroit and Chicago would be decreased by 5% in 2000, but they 
would be inflated by 11% in 2010. Thus, there would seem to be a 
dramatic increase in renters and a shift away from home ownership 
in these cities relative to the actual trend. In contrast, other central 
cities in these same metropolitan areas would have their counts for 
these demographic categories inflated by 21% in 2000 and by only 
4% in 2010. The faulty adjustment factors would therefore make it 
appear that huge numbers of white renters had moved from Detroit 
and Chicago to other nearby central cities before 2000, but that they 
moved back in the next decade. 

Of course, there was no such actual migration to and fro. 

                                                 
6 Rosenthal, Miriam. (2003). Operation Analysis of the Decennial Response File Linking and 
Setting of Housing Unit Status and Expected Household Size. Census 2000 Evaluation L.2. 
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It should be clear that any type of undercount correction is a flawed technique and 
that its use in the 2010 Census would cause more harm than good. It is thus our 
recommendation to the Census Bureau and the House of Representatives that no 
undercount correction be done for the 2010 Census. However, we propose several 
alternative suggestions that may improve the results of the Census, bringing higher 
accuracy (and perhaps even lowering undercount) without endangering local statistics or 
increasing bias. 

Modifications to Current Census Techniques 

First, we recommend an expansion of the time allotted to the Census from nine to 
twelve months. This will give time to enable both the better training of staff (due to 
budgetary reasons, it isn't possible to train these employees during the years between 
Censuses) and the more specific matching of records. To determine the effects of this, we 
examine the major sources of imputations for the 2000 Census. Imputation is the method 
by which the Census Bureau assigns household data to households whose occupancy 
status or occupant number is unknown. Thus, it represents a sort of “educated guessing.” 
According to reports by the Census Bureau,7 many of the imputations were caused by 
time constraints and enumerator error. Thus, an increased amount of time allotted to the 
Census would decrease the number of imputations in two ways. Furthermore, improved 
training would increase the accuracy of reports and may also decrease the amount of 
fabricated data (as noted by West,8 experienced enumerators fabricate at a much lower 
rate than inexperienced enumerators). 

The extra time allotted can be used to check the program used for data collection 
to make sure that small bugs are squashed before the production version. Additionally, 
the questionnaire can be enhanced in several ways. More comprehensive instructions for 
unusual cases would be beneficial. A redesigned Interview Summary Section would 
improve the uniformity of responses.  

Finally, to complement the time now allowed to the Census, we suggest increasing 
the Census budget to pay for enumerator training and to increase enumerator salaries. The 
benefits of better training have already been amply discussed; larger salaries will increase 
the status of the enumerator position and hopefully bring employees to carry out their 
work with more precision and care, both increasing accuracy and decreasing undercount. 
We estimate the overall effectiveness of these methods from the Census report on 

                                                 
7 http://www.census.gove/dmd/www/pdf/Report21.PDF 
8 West, Kirsten K. (1991). P-6 Report: Fabrication in the P-Sample: Interviewer Effect. U.S. 
Bureau of the Census, 1990 Post-Enumeration Survey Evaluation Project, Series #G-2. 
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imputations.9 According to the report, 93% of occupancy imputations were caused by 
enumerator error (in other words, enumerator inexperience forced almost all of the 
educated guessing of occupancy status that the Census Bureau had to do), as were some 
status imputations and some household size imputations. These together can be estimated 
to amount to approximately 500,000 people.  

Furthermore, some large families were not included in the 2000 Census due to a 
change from seven to six individual slots on the Census forms. However, using the longer 
allowed time and greater enumerator training, these families could be contacted directly 
by the enumerator, thus including them in the Census. Even for an extremely 
conservative estimate, where this would help only 10% of large families, this would 
reduce the number of imputations by another 220,000. Overall, the mechanisms 
suggested herein should decrease Census error and provide higher accuracy without the 
damaging effects of undercount correction on local statistics and without the large errors 
implicit in current undercount correction techniques. 

Part  II. What method  should  Congress  select  for  apportioning  the 
House of Representatives? 

In this section, we will discuss the optimal distribution of House seats given the 
population of each state. In addressing this issue, it will be crucial to discuss the actual 
number of House seats available. We will first present mathematical and social reasons 
that the current number of Representatives (i.e., 435) is nonoptimal and argue for an 
increase of this size to 500 members. Next, we will discuss an algorithm for the 
apportioning of House seats that will be more precise and fairer than current methods. 
Making use of an exponential model of population growth, we will produce a more stable 
distribution of seats. 

Number of Representatives 

The first point of discussion is the number of Representatives in the House. Since 
1911, the number of representatives in the House has remained constant at 435 due to 
Public Law 62-5. The question remains: Whence did this number come? According to 
Ralph Lozier, a Missouri Representative from 1923 to 1935 and Chair of the Census 
Committee from 1931 to 1935, it would seem as though 435 is completely arbitrary: 
"There is absolutely no reason, philosophy, or common sense in arbitrarily fixing the 
membership of the House at 435 or at any other number." This leads to another question: 

                                                 
9 http://www.census.gove/dmd/www/pdf/Report21.PDF 
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Is 435 truly the best number of Representatives for the House to hold? We shall show that 
there are inherent flaws in the current system. 

The House is violating the one-person-one-vote principle. The number of 
Representatives is too small to accurately account for every person in the United States, 
with district sizes ranging from about 500,000 (Wyoming) to 900,000 (Montana). The 
average size, 650,000 is almost 22 times the population per district recommended by our 
founding fathers (about 30,000). Albeit the Constitution's elastic clause allows for larger 
district sizes if necessary, but having only 435 Representatives is a hassle for other 
reasons as well. The average years of service for members of the 108th congress was 
10.2. Representatives who ran for re-election won 97% of the time. With such high 
incumbency rates, even mediocre Representatives can keep their jobs. Additionally, the 
small number of Representatives in the House can lead to unethical collusion between 
Representatives, a tactic that can often be seen in the economics of oligopolies and is 
illegal among firms in the United States. Although it is not illegal for representatives to 
collude, it can be very dangerous and lead to an imbalance of power. Finally, a small 
number of Representatives lead to large district populations. Currently the average 
population of a district is 647,000, whereas the Constitution clearly states that the 
population of a district should never exceed 30,000. Of course, the Constitution's elastic 
clause allows for larger district sizes if necessary, but it is important to note the growing 
number of people that Representatives are expected to represent. 

We have argued that the number of House Representatives must increase from its 
current 435. We will call our method of apportionment of the House of Representatives 
the “Growth Factor Method.” This method requires determining an original constant, 
setting a fluctuation value, and incorporating the demographic of population growth. A 
logical approach would be to make the set number of House Representatives fluctuate 
near a multiple of 50, the number of states in the nation. 

The major reason for using a multiple of 50 is that of numerical stability. Briefly, 
consider a United States with 50 states of almost equal population. If the number of 
Representatives were 500, each state would have 10 Representatives. However, if the 
number of Representatives were, for example, 525, a number far from a multiple of 50, 
half of the states would have more Representatives than the other half, despite having no 
significant difference in population. Furthermore, minor changes in population may 
rearrange some of the 25 “extra” Representatives, changing representation without 
significant change in population. To avoid both of these issues, the number of 
Representatives should stay close to a multiple of 50. This way, changes in representation 
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will, as much as possible, represent actual changes in population and will, as much as  
possible, be evenly distributed among similarly large states. 

Thus, we see that the number of Representatives should be close to some multiple 
of 50. Which multiple? Practical matters dictate this choice. Due simply to logistics, it 
would be difficult to accommodate 600 or more Representatives in the House; 
meanwhile, a small number (such as 400) of Representatives would allow for dangerous 
collusion. Thus, it seems best that the expected number of Representatives be set at 500 
or 550 to allow a comfortable range of variation without putting undue stress on the 
Capitol building or allowing unlawful practices. For convenience's sake, we shall choose 
500. 

Apportioning Techniques 

Once we have this set the total number of Representatives, we must create bounds 
within which the number is allowed to fluctuate. Historically, the standard deviation of 
percent changes in the number of Representatives from year to year is 9.2. 9.2% of 500 is 
46 (when rounded to the nearest integer). Therefore, we allow the number of 
Representatives to fluctuate between 454 members and 546 members. The fluctuation 
limits allow the transition between changes in the number of House Representatives to 
run smoothly. The limits prevent the number from changing too drastically. This brings 
us to a question: How is the final number chosen every ten years? We will do so by using 
the Census and incorporating demographic statistics calculated during each Census. 

The major demographics calculated during the Census are age, population density, 
population growth, migration, birth rates, death rates, life expectancy, and 
unemployment. The only demographic that is actually usable in choosing the number of 
Representatives is population growth. While birth and death rates are representative of 
state population, they are too subject to fluctuations---fluctuations large enough to change 
apportioning. Migration and unemployment will depend too much on economic 
conditions, which would lead to undue fluctuation in apportionment precisely during 
economic disasters, when it would be most urgent that government be stable and willing 
to act quickly and efficiently. Life expectancy, age, and race would simply be unethical 
to discriminate by, not to mention illegal per the Voting Rights Act and Amendment 14. 
Finally, using population density would be similar to using population growth, except 
that we would incorporate state size; why incorporate such irrelevant data? 

Thus, our method will be based on population growth. Every ten years, the Census 
Bureau would calculate the state population growth rate and national population growth 
rate between the previous Census to the current Census. The unsigned difference between 
the state population growth rate and national population growth rate would then be 



Team 25 

11 out of 19 

calculated. The state for which the unsigned difference is smallest would be the first state 
we use to analyze. The hope is that by using data from the state in which the unsigned 
difference is closest to zero, the final number of Representatives will remain fairly 
constant each time the population is recalculated. 

The next step is to calculate the previous population of that specific state divided 
by the number of Representatives it had during the previous decade's Census, a ratio we 
call the “Q ratio.” We further define the “P factor” to be the current national population 
divided by the Q ratio. If there is an integer that, when multiplied by the P factor, equals 
a number that falls within our range of 454 and 546, the Q ratio for this state is used for 
the entire nation. The P factor for the first state analyzed is called the “first degree P 
factor.”  If the first degree P factor does not satisfy this condition, the first state's data is 
dismissed and we begin analysis on the state with the next lowest unsigned difference. 
(The P factor of the state with the second lowest unsigned difference is known as the 
“second degree P factor,” and so on.) The previous steps are repeated until a state is 
found in which the P factor multiplied by some integer falls within the desired range. The 
hope is to achieve a working result for the P factor with the lowest possible degree. Once 
the working P factor is discovered and the Q ratio is set, the ratio is divided by the 
current population of each state and rounded to the nearest whole number to find the 
number of Representatives for each state. Finally, the number of Representatives for each 
state is added to give the total number of House Representatives. 

Testing the Method 

The following paragraph shows how the Growth Factor Method can be applied to 
calculate apportionment for the year 2000. The national population in the year 2000 was 
281,424,177. The national growth rate for 1990 to 2000 was approximately 11.5%. The 
state with the smallest unsigned difference was Montana, with an unsigned difference of 
approximately 0.284. The P factor for this state is calculated by dividing the national 
population in 2000 by Montana's Q ratio, which is itself calculated by dividing the 
population of Montana in 1990 by its number of Representatives. The Q ratio for 
Montana is 803,655, and the first degree P factor is 350. Because there is no integer that 
can be multiplied by 350 to equal a number between 454 and 546, we move on to the 
state that has the next lowest unsigned difference, Arkansas. The Q ratio for Arkansas is 
590,560, and the second degree P factor is 477. When 477 is multiplied by 1, it equals 
477, which is in our desired range. Because this number falls in the desired range, the 
2000 population of each state population is divided by the Q ratio of Arkansas and then 
rounded to the nearest whole number to find the number of Representatives for each 
state. The number of Representatives from each state is then added to find the total 
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number of House Representatives for the year 2000, which turns out to be 477.  This 
model can be seen in Table 1. 



Team 25 

13 out of 19 

 



Team 25 

14 out of 19 

To test the Growth Factor Method further, we apply it to calculate apportionment 
for the years 1970, 1980, and 1990. Using historically apportioned state delegation sizes 
and real population data from the 1960 and 1970 Censuses, we calculate that the total 
number of House Representatives for the year 1970 is 491. This calculation uses a first 
degree P factor. Similarly, the number of House Representatives for 1980 and 1990 are 
516 and 483, using first and second degree P factors, respectively. 

We now apply a different way of testing the Growth Factor Method. We must be 
sure that our method can be applied consecutively. From our previous test, based on 
actual data from 1960 and 1970, we have already calculated the apportionment for each 
state in 1970. We now use this data, along with real Census data from 1970 and 1980, to 
calculate apportionment for 1980. From this calculation, we find that the total number of 
House Representatives for 1980 is 516, using a first degree P factor. Applying the 
method twice more, using our new apportionment data each time, we calculate values for 
1990 and 2000. These values are 483 (using a second degree P factor) and 507 (using a 
fifth degree P factor), respectively. This last application may seem a bit inaccurate at 
first; however, the fifth degree P factor occurred with an unsigned difference that still 
remained below the value of 1. Thus, we see that our method remains accurate even after 
multiple consecutive applications.  

We justify the use of historical data simply by noting that the geographical 
population dynamics currently in place in the US are similar to countless changes in 
history. For example, the current movement to the West is similar to migrations to the 
South and North over previous decades10; thus, historical data gives us an opportunity to 
test precisely that which our model aims to solve. 

Conclusion 

From the tests previously presented, it is clear that using the Growth Factor 
Method on historical records produces results that are nearly synonymous with those 
generated by using the method on previous Growth Factor Method results. This illustrates 
how the Growth Factor Method is sustainable. The number of Representatives fluctuates 
slightly with each new Census, that is, enough to accommodate changes in the relative 
populations of the states but not so much as to significantly disrupt the overall structure 
of the House of Representatives. 

This method is far superior to the apportionment method currently used today, the 
Method of Equal Proportions, which proceeds as follows: The population of each state is 

                                                 
10 For example, the 2000 Census noted decreases in Rust Belt city populations from 1990; 
or consider the Great Migration from the South to the Northeast between 1920 and 1970. 
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divided by a normalizing factor, and the state with the highest resulting value receives the 
51st Representative. The normalizing factor for a state is the geometric mean of the 
state's current and next seats. In other words, if we call the current number of seats that a 
state has “n,” then the normalizing factor is the square root of the product of n and n+1.  
(Clearly, once a state is assigned a Representative seat, its normalizing factor increases, 
so the state moves down on the list.) This process then continues, with the state with the 
current highest resulting value receiving the next Representative seat, until all 435 
Representatives have been assigned. 

This suggested method is more accurate than the current method because it takes 
state population and population growth rate into account, whereas the geometric mean 
method simply takes state population into account and disregards growth rate. By 
accounting for growth rate, the new apportionment method should prove to be more 
accurate in the decades between Censuses. Since we take into account decennial growth 
rate and attempt to model the state Representative count after it, we in effect use an 
exponential approximation to population size, whereas current Representative 
apportioning methods use constant approximations. This should prove to be far more 
accurate, at least over the ten-year periods for which it will be used. 

Furthermore, since the approximation to state populations should be more accurate 
over periods of ten years, changes to Representative apportionment should be more 
gradual. In the past, there have been instances of states losing and then gaining 
Representatives year after year. Due to a combination of a numerically more stable size 
for the House and a better apportionment method, these states should instead stay at a 
relatively constant number of Representatives. Similarly, states should change in 
smoother steps; for example, theoretically instead of gaining no Representatives one year 
and three the next, a state would earn one during the first and two during the second. This 
would lead to more stable government and a more efficient Congress due to fewer 
transfers of and changes in direction. 

Part  III:  How  should  states  ensure  that  Congressional  districts  are 
fairly drawn? 

At present, in 38 states, redistricting is controlled by some combination of the state 
legislature and the governor. As a result, they are often divided opportunistically to 
benefit the parties and/or persons in charge in a process known as gerrymandering.11 

                                                 
11 http://www.search.com/reference/Redistricting#United_States 
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In his dissertation, Micah Altman set out five criteria, now widely cited in the 
literature as the five points to address when deciding congressional districts.12 If a certain 
algorithm for determining congressional districts could be shown to address these 
concerns more adequately than another, we will consider the former algorithm superior to 
the latter (for our purposes, we will consider gerrymandering an "algorithm"). The five 
criteria are as follows: 

1. Equal Population. Congressional districts are to be nearly equal in their population 
counts. 

2. Contiguous. All parts of the district are connected to all others. 
3. Compact. The average distance per person to a district's center of population is 

minimal. 
4. Fair contest. No district's elections should be needlessly one-sided. 
5. Representation.  Communities of common interest are grouped into the same 

district and minorities are not diluted (i.e., split among several districts). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
12 http://maltman.hmdc.harvard.edu/dispdf/dis_5.pdf 
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With these criteria in mind, we will consider the relative merits of three 
algorithms: 

1. The current practice of gerrymandering, where redistricting is done entirely by 
humans. 

2. A computer algorithm developed by Ivan Ryan known as “split-line districting.” 
3. The same computer algorithm but with a modification of our own intended to address 

some criticisms of the original. 

First, consider gerrymandering. It is documented that the current process of 
gerrymandering creates contiguous districts that are population-balanced but not at all 
compact (see Figure 1), addressing concerns 1 and 2, but not 3. On the other hand, 
gerrymandering, by definition, is the antithesis of concern 4: Rather than balancing 
contests, gerrymandering makes them more one-sided.13 As a byproduct, gerrymandering 
tends to address concern 5, since a politician will ensure that his supporters fall into his 
district. In fact, so-called affirmative gerrymandering, which followed the 1965 Voting 
Rights Act, was viewed in a positive light since it deliberately grouped minorities 
together.14 

 
Figure 1: Arizona's second congressional district, demonstrating the 
highly noncompact regions gerrymandering can produce. 

Second, consider the split-line algorithm. The split-line algorithm works as 
follows: First, the algorithm determines the shortest line that will divide a state into 2 
parts of equal population and draws this line. Then, this process is repeated on the two 

                                                 
13 http://en.wikipedia.org/wiki/Gerrymandering; http://www.allaboutvoting.com 
14 http://www.allaboutvoting.com 
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subdivided sections. While there are more subtleties to deal with in special cases, the 
demonstrated net result is a series of convex districts in which the population is equal and 
whose total perimeter is nearly minimal (see Figure 2). Again, concerns 1 and 2 are 
addressed. Thanks to the convexity of the regions in question, concern 3 is clearly 
addressed more effectively than in plan 1, though a provably optimal algorithm for 
compactness is far more difficult to implement.15 Concern 4 is not explicitly addressed, 
but one should expect that, in either case, the average political climates of the districts 
will reflect the political climate of the state as a whole. In case 1, the districts are 
polarized in their political leanings, while in case 2 the districts' political leanings will be 
pseudo-randomly distributed around the mean. Statistically speaking, this means that one 
would expect the political leanings per state to have a smaller standard deviation in case 
2. This analysis suggests that there will be more close contests when plan 2 is 
implemented. The only exception to this rule would be states that are exceptionally 
polarized on average, which is exceedingly rare. Finally, concern 5 is not addressed at 
all. 

 

 

 

 

 

 

 

 

 

Figure 2: An example map produced by split-line districting. 

Before presenting our own solution, it would be worthwhile to analyze the pros 
and cons of either existing solution. According to Altman, 37 states require concern 2 
and 24 “require” concern 3, though only two of them have a rigorous definition of it. 
Furthermore, plan 1 is dubious for its neglect of concerns 3 and 4, while plan 2 is dubious 
for its neglect of concern 5. Our proposal is to modify plan 2 as follows. 

Before the split-line algorithm is implemented, state legislatures are allowed to 
partition the blocks into pairwise-disjoint sets of at most N elements. The split-line 
algorithm is implemented with the added criterion that no line may divide a set of blocks. 
                                                 
15 http://bolson.org/dist/ 
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The intent is that this will allow a state legislature to group together blocks that define 
some community of interest, or preserve together the blocks containing a minority so as 
not to dilute it. If N remains small, the algorithm continues to address concerns 3 and 4 
effectively. On the other hand, as N grows large, concern 5 is addressed more effectively. 
Thus, the real difficulty is determining an optimal value of N to balance these opposing 
tendencies. Unfortunately, implementing the split-line algorithm accurately is beyond the 
scope of this paper. Even so, it is the authors' belief that an appropriate amount of 
simulations on a state-by-state basis could lead to discovering a value of N that would 
work; in any case, the modifications to the algorithm presented in plan 2 are slight. 

All in all, we believe our algorithm is potentially an improvement over previous 
algorithms, but more testing would be required to ensure that it works. 
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