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Hot Button Issue: Staying Cool as the World Heats Up 
1  Executive Summary 
To the Memphis Office of Emergency Management, 

In recent years, the United States experienced rising temperatures and increasingly frequent heatwaves, 
or extended periods of high temperatures, posing a significant risk to the health of residents [2]. Increases in 
power demand caused by record-breaking temperatures put major stress on city power grids, furthermore 
increasing the probability of power outages [31] that then leave even more of the population vulnerable to 
dangerously high temperatures: a cycle that exacerbates the consequences of heatwaves. Thus, it is imperative 
for the city of Memphis to examine the impact of heat waves and mitigate their risk.  

For households without access to air conditioning, heatwaves pose a particularly severe risk. We first 
constructed a sinusoidal model for hourly temperatures over a heatwave day and a quadratic model for solar 
radiation incidence over a heatwave day, then applied both to a model capable of predicting the temperature 
fluctuations of given residences without air conditioning access during a heatwave day in Memphis. Through 
a differential equation that determined changes in temperature per hour from incident solar radiation and heat 
transfer across exterior walls of a dwelling, we determined that homes with less shade coverage were 
significantly more vulnerable to elevated interior temperatures and that solar radiation exposure was a 
significantly more important effect than ambient external temperature on interior temperature. 

On a larger scale, the integrity of the power grid in Memphis is also particularly susceptible to attack by 
elevated energy demand during heatwaves. In the second section of our report, we modeled the dependence of 
both peak hourly load (Pload) and summer peak month total consumption (TC) on the population of Shelby 
County (which contains Memphis) and maximum annual temperature via a multiple linear regression. We 
then utilized projected predictors of maximum annual temperature and population to make projections for the 
peak demand that Memphis’ power grid should prepare to handle in 2025 & 2045 respectively. For 2025, 
Memphis’ power grid must be able to support a peak hourly load of 3,433.70 MW, and a TC of 887,513,753 
kWh. For 2045, Memphis’ power grid must be able to support a peak hourly load between 3527.27 and 3563.07 
MW, and a TC between 758,881,008 and 764,797,475 kWh through five comprehensive Shared Socioeconomic 
Pathways (SSP) greenhouse gas emission scenarios. 

In the third section of our report, we assign vulnerability scores (VS) to various neighborhoods in 
Memphis based on the magnitude of monetarily-quantified impacts they would experience due to heatwaves. 
4 predictors (proportion of households with elderly, proportion of households with children, population, and 
number of residents age 16+ who walk or take public transport to work) were identified through multiple 
linear regression to be important predictors. These predictors were linearly combined using the coefficients 
obtained from regression, then normalized and scaled to generate a vulnerability score from 0 to 100. The 
neighborhoods with zip codes 38028, 38139, 38126, and 38066 had the highest VS (100, 94, 92, and 91, 
respectively), highlighting them as high-priority targets for resource allocation. Notably, these zip codes had 
higher proportions of households with elderly and children, suggesting that protecting these vulnerable 
populations will be essential to minimizing impact of heatwaves in Memphis. 

We hope for these results to inform the Office of Emergency Management in adequately preparing for 
these dire weather crises, as well as deciding best practices for managing them.  
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2 Hot to Go 
2.1 Defining the Problem:  
In the first problem, we are tasked with developing a model to predict the indoor temperature of any 
non-air-conditioned dwelling during a heat wave over a 24-hour period. We have selected Memphis, 
Tennessee as our city.  
 
2.2 Assumptions: 

1. During a heatwave, residents will follow all expert advice, which includes closing all windows, blinds, and 
curtains, and unplugging all electronics. Experts advise residents to close all windows, blinds, and 
curtains during a heatwave when outside temperature is hotter than inside temperature [4].  We can 
assume that all rationally-acting residents will keep their windows closed during the daylight hours of 
a heatwave. Residents are also advised to unplug all electronics due to them generating a small amount 
of heat and causing an additional strain on the power grid [5]. We assume residents follow this advice 
and unplug every device so electrical devices will not contribute to heat gain.  

2. Each story of a home is 10 feet (3.048 meters) tall. Although story height varies, the average story height is 
10 feet tall [6], so we assume every story is 10 feet tall (3.048 meters tall) for simplicity.  

3. Floors and ceilings are fully insulatory, and interior walls are not insulatory. Thick and rigid insulation is 
used for ceilings and floors [7], so we assume floors and ceilings are fully insulatory. However, interior 
walls are frequently left uninsulated in construction [9], so we assume that the house is an open space 
without interior wall insulation.  

4. Shade is uniformly spread across the dwelling surface area. It is impossible to know the specific sources and 
locations of shade sources. For simplicity, the qualitative assessments of shade will comprehensively 
estimate levels of shade distributed uniformly across the walls and/or ceilings of a dwelling. 

5. Insulation used in a house is independent of year built, and insulation does not deteriorate over time. Since all 
the given houses were built in 1953 or later, significantly after the adoption of fiberglass as insulation in 
Memphis [10], we assume the insulation used in the house (fiberglass) [11] is independent of year. 
Additionally, because fiberglass insulation does not deteriorate enough to warrant replacement up to a 
century-long period after initial installation [17], we can assume that insulation quality has remained 
constant regardless of construction date. 

6. Wind speeds provide a negligible impact on the temperature inside a house. Since we assume all windows are 
closed in assumption 2.2.1, wind speeds do not affect the temperature inside a house.  

7. Temperature within a house is uniform at any instant in time, and equal to the temperature on the inside of a 
wall. Convection of air promotes even distribution of temperature changes within a house, and this 
assumption simplifies our model greatly. 

8. A house will be modeled as a rectangular prism with a square base. Each story of a house has equivalent floor 
surface area. We do not have floor plans of the given houses, so a rectangular prism with the base being 
the square footage and height being the number of stories will be used in our model. A square base 
allows for the most “average” value of total wall surface area. 

9. Furniture has a negligible impact on a dwelling’s heat capacity. The difference in temperature change 
between an empty room and a fully furnished room of the same size during heating a scenario is less 
than 0.3 °C [13], so we can assume a dwelling’s furniture has no significant impact on its heat capacity.  
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10. External walls of all homes are constructed with wood frames. Wood is a tried-and-true building material. 

Over 90% of American homes are built with wood frames [22], so we assume that all homes being 
evaluated are built using wood frames.  

11. Cloud cover during a heatwave is negligible. During a daytime heatwave, skies are usually clear. [28] 
12. Global horizontal irradiance is an acceptable estimator for the amount of solar irradiation that walls receive. 

Although global horizontal irradiance is measured for a horizontal surface, walls experience shortwave 
radiation reflected from their surroundings as well as more longwave radiation than a flat roof does. 
Therefore, vertical walls ultimately receive a comparable amount of solar irradiation compared to a 
horizontal surface. [29] 

13. The outer surface of an external wall will always be 50 degrees hotter than the external atmospheric temperature. 
An absorptive roof can be up to 50 degrees hotter than the ambient air temperature due to solar 
radiation absorption [32]. Because of Assumption 2.2.12, solar radiation incident on an external wall 
will cause a comparable temperature increase, and temperature will not fluctuate significantly even at 
night due to the highly insulative properties of exterior walls. 

 

2.3 Variables 
Symbol Definition Unit Value 

 
𝑑𝑇

𝑖𝑛

𝑑𝑡
Change of internal temperature °C/h  

 𝐶 Dwelling heat capacity J/°C  

 𝑄
𝑟𝑎𝑑

Rate of radiation heat transfer W  

 𝑄
𝑓𝑙𝑜𝑤

Barrier heat flow W  

 𝑟
𝑠

Shade radiation reduction factor - Found below 

 𝑟
𝑤

Wall radiation reduction factor - 0.2 

(t) 𝐼 Global Horizontal Irradiance W/m2  

 𝐴
𝑤

Total surface area of dwelling exterior walls m2  

(t) 𝑇
𝑒𝑥𝑡

Ambient external temperature °C  

(t) 𝑇
𝑖𝑛𝑡

Dwelling internal temperature °C  

 𝑅 Dwelling exterior wall R-value °C · m2/W 13 [23] 

 𝑉 Volume of dwelling m3  

 𝑐 Specific heat capacity of air J/g · °C 1.005 [15] 

 ℎ Height of one dwelling story m 3.048 [6] 

 𝐴
𝑏

Surface area of dwelling floor m2  
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D Density of air kg/m3 1293 [14] 

 𝑛 Number of stories in the single dwelling #  

Table 2.3.1: Variable symbols, definitions, and units used in the model 
 

2.4 The Model 
2.4.1 Model Development 
To predict the indoor temperature of a dwelling during a heat wave, we develop a model based on the 
principles of heat transfer. We model the temperature change as a function of time, given by the differential 
equation: 

 
𝑑𝑇

𝑖𝑛

𝑑𝑡 = 1
𝐶 (𝑄

𝑟𝑎𝑑
+ 𝑄

𝑓𝑙𝑢𝑥
)

A differential equation was used due to the several highly time-dependent factors contributing to interior 
temperature as well as dependence on the instantaneous interior temperature itself due to the physical laws 
used.  
 
We consider three factors when calculating the heat gained by the unit over time due to solar radiation: the net 
solar radiation on the dwelling, the shade on the dwelling (which we quantify using a shade radiation 
reduction factor), and the physical barrier provided by walls around the dwelling (which we quantify using a 
wall radiation reduction factor). It can be calculated as: 

 𝑄
𝑟𝑎𝑑

= 𝑟
𝑠
𝑟

𝑤
𝐼(𝑡)𝐴

𝑤

The barrier heat flow term accounts for the transfer of heat into or from a dwelling’s interior due to a 
temperature difference between the exterior and interior of the dwelling. Traditionally, heat flux (rate of heat 
flow per square meter area per unit time) is represented by Fourier’s law [30]. As all heat transfer between the 
interior and exterior of a dwelling must occur at exterior walls, heat flow due to the temperature difference 
may be expressed in terms of R-value [24] of an exterior wall. R-value is a construction-industry standard 
measure for thermal resistance of an interface per unit area, and accounts for both the wall’s thickness and 
thermal conductivity. Adjusted to be in terms of the ambient external temperature function by Assumption 
2.2.13, the equation for barrier heat flow is as follows:  

 𝑄
𝑓𝑙𝑜𝑤

=
(𝑇

𝑒𝑥𝑡
(𝑡)+50−𝑇

𝑖𝑛𝑡
(𝑡))𝐴

𝑤

𝑅

Since, by Assumption 2.2.8, we model the base of the dwelling as a square, we can calculate the total surface 
area of the exterior walls with the equation below: 

 𝐴
𝑤

= 4
𝐴

𝑏

𝑛 𝑛ℎ

The rate of change in thermal energy of the dwelling is obtained by adding the rate of solar radiation heat gain 
and the external-internal heat flux terms. In order to find the change in temperature of the dwelling over time, 
the rate of thermal energy change is divided by the overall heat capacity of the given dwelling.  
 

Heat capacity of the given dwelling is calculated by multiplying the volume of the dwelling with the specific 
heat capacity of air and the density of air: 
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 𝑉 = 𝐴

𝑏
ℎ

 𝐶 = 𝑉𝑐𝐷
 𝐶 = 𝐴

𝑏
ℎ𝑐𝐷

Combining the heat gained from solar radiation and the heat flux through the walls, the rate of change of 
indoor temperature is given by: 

 
𝑑𝑇

𝑖𝑛

𝑑𝑡 = 1
𝐴

𝑏
ℎ𝑐𝐷 (𝑟

𝑠
𝑟

𝑤
𝐼(𝑡)4

𝐴
𝑏

𝑛 𝑛ℎ +
(𝑇

𝑒𝑥𝑡
(𝑡)+50−𝑇

𝑖𝑛𝑡
(𝑡))4

𝐴
𝑏

𝑛 𝑛ℎ

𝑅 )

 
2.4.1 Model Execution 
To model the ambient external temperature as a function of time during a heatwave, we collected hourly 
temperature data for heatwave days and plotted them. The resultant graph is a sinusoidal curve, a model 
frequently used for daily temperature data [21], that represents the average outdoors temperature as a function 
of hours elapsed after midnight during a heatwave. The Python package SciPy was used to optimize the 
parameters for this function. Additionally, to determine the solar radiation hitting the homes during heatwaves 
in Memphis, we collected data and modeled it using a piecewise quadratic model. For times before 7:00 AM 
and after 6:00 PM, there is 0 horizontal irradiance (due to the Sun being below the horizon). The parameters for 
this quadratic model were optimized using Python. 

 
Figures 2.4.1 and 2.4.2: Heat wave temperatures and Solar Radiance by hour 

 
We recognized two different forms of heat protection provided by homes: shade from outside sources (i.e a 
tree) and the wall radiation reduction factor. As shown in Figure 2.4.3, not all the heat prevented by the shade 
will enter the home, with reductions being shown on both fronts. 
 

The initial temperature (taken at 12:00AM) of the dwelling used in our model was determined from the 
provided M3 data. Heat transfer occurs due to a tendency towards thermal equilibrium, in which interior and 
exterior temperatures are equal; it is thus reasonable to adopt the temperature provided as a starting condition 
for the model. 
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Figure 2.4.3: Visualization of the impact of shade and wall radiation reduction factors 

 
In the Q1 Dwellings tab of the data provided [18], there is categorical data for the shadiness around the 
dwelling. Based on the approximate amount of solar radiation blocked by varying amounts of shade cover, we 
assigned each class of shadiness with the corresponding solar radiation reduction rate [25]. By Assumption 
2.2.11, cloud cover was ignored in the assignment of shading amount. 

Shade Level  𝑟
𝑠

Not at all shady 1 

Not very shady 0.7 

Somewhat shady 0.4 

Very shady 0.1 

Table 2.4.1: Values of shade radiation reduction factor corresponding to shade level 
 

The wall radiation reduction factor was determined through taking into account the amount of surface area 
taken up by windows (approximately 26% of total wall surface area [26]). A standard, room-darkening 
window curtain blocks approximately 75% of sunlight [27]. By Assumption 2.2.1, all residents will use 
curtains. Thus, through windows, approximately 20% of incoming solar energy is transmitted into the room, 
reflected in a multiplier of 0.2 to the solar radiation affecting the dwelling. 
 

The R-value used in the model was determined through the Tennessee International Energy Conservation 
Code compliance guide. Memphis, located in a Climate Zone 3 region, has a recommended minimum 
wood-frame wall (by Assumption 2.2.10, all exterior walls are wood-frame) R-value of 13 °C · m2/W [23]. 
 
Python was used to find an analytical solution to our differential equation through solving it as an Initial Value 
problem and the SciPy.integrate functions. Our initial value is provided above as the average temperature of a 
dwelling during the summer months without air conditioning (before the heatwave). 
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2.5 Results 
We applied the model to the four homes detailed in the provided data: 

 Home 1 Home 2 Home 3 Home 4 

 𝐴
𝑏

88 m2 63 m2 74 m2 278 m2 

 𝑟
𝑠

0.1 0.6 0.95 0.95 

 𝑛 1 1 1 2 

  𝑇
𝑜𝑢𝑡

(𝑡)  4. 979𝑠𝑖𝑛(0. 320𝑡 − 2. 775) + 32. 236

  𝐼(𝑡)  − 24. 1𝑡2 + 623. 69𝑡 − 3166. 688
 Table 2.5.1: Input values and model results for given Memphis dwellings 

 

 
Figure 2.5.2: Heat wave temperatures over 24 hours for the sample data 

2.6 Discussion 
In summary, our model predicts that homes that are larger and experience more shade coverage will be 
affected less by the heatwave than smaller homes without shade. For the case of Home 1, our model shows that 
the heavy shade on the property is significantly reducing the effects of the increased temperature, whereas 
Home 3 (with a similar area but no shade) is significantly affected by the temperatures. This surprisingly 
suggests that managing incident solar radiation in a dwelling is significantly more influential in managing 
interior temperatures–and even for households dependent on the power grid for air conditioning, energy 
consumption required to maintain comfortable temperatures within the dwelling may be reduced through 
effective blocking of solar radiation. 
 
Based on this model, a peak dwelling interior temperature occurs at around 18 hours after 12:00 AM, or 6:00 
PM, aligning with the intuitive expected location of a temperature peak due to heat-buildup on the interior of 
the house throughout the day, lending credence to the model. 
 
Additionally, the return of interior temperatures to levels approximately equivalent to the initial temperature 
at 0 hours demonstrates the cyclical nature of interior temperature levels corresponding to changes in exterior 
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temperatures. This suggests that the initial condition of equal interior and exterior temperatures is valid, 
because in a day, the temperature ultimately returns to around the outdoor ambient temperature. 

 
2.7 Sensitivity Analysis 
To perform a sensitivity analysis on our model, we chose to analyze the impact of variations in the parameters 
used to determine the Solar Irradiance as a function of time during the heatwave as well as the R parameter 
representing the wall insulation. The parameters were varied up to 10% and a Monte Carlo simulation for 1000 
trials was run:  

 
Figure 2.7.1: Model Sensitivity Analysis 

 
By varying the solar irradiance, we found that our model exhibits a slight variation in temperature with either 
slightly lower or higher irradiations, directly correlating to this variable and maintaining trends regarding the 
time of day for the peak temperature and general shape of the graph. Varying , or the thermal resistance of 𝑅
the exterior walls, however, showed very little effect on the temperature change over time, suggesting that 
solar irradiance is a significantly more impactful contribution to temperature over time. 

 
2.8 Strengths and Weaknesses 
The primary strength of our model is its adaptability to different types of dwellings, as it allows for the input 
of specific parameters such as floor area and shade factor. For individual dwellings, floor area and shade factor 
are easily obtainable information. Additionally, the model is fairly resistant to changes to both the solar 
irradiance factor and the thermal resistance of exterior walls, with a maximum difference in temperature of the 
dwellings 24 hours from the model initiation of about one degree Celsius.  
 

However, the model’s strength of adaptability derives from fairly generalized assumptions about the 
information available about each dwelling. We have limited information about floor plans, construction, and 
heat absorbed by objects within the house which alter factors like the heat flow through exterior walls. If we 
wanted to scale this to multiple dwellings or neighborhoods, we would have to have a large amount of 
information about included residences. We also assumed that heat loss through ventilation is negligible due to 
closed windows. While this is reasonable during a heat wave, if people choose to open windows or if there are 
air leaks, this will not hold true. In general, people are not necessarily rational actors in a real-world scenario; 
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the assumption that residents follow all recommended advice for heat wave mitigation such as closing 
windows may result in an undershoot of the temperatures that interiors may reach. 
 
2.8.1 Model Refinement 
Our model may be improved through more comprehensive consideration of the thermodynamic factors 
behind heat transfer into the interior of the home. Due to our limited physical sciences knowledge, we were 
only able to take a basic application of heat flux into account. Our simplifying assumptions, such as the 
complete insularity of ceilings and floors as well as a fixed exterior wall surface-ambient temperature 
difference, are intended to reduce the number of thermodynamic relationships we would have to take into 
account; consequently, they will most likely cause a deviation from actual interior temperatures.  
 

3 Power Hungry 
3.1 Defining the Problem:  
In this problem, we are asked to develop a model that predicts the peak demand that Memphis should be 
prepared to handle during the summer months and how it changes 20 years from now.  
 
3.2 Assumptions: 

1. Projected peak global temperature growth is approximately linear over the 78-year period from 2022 to 2100. 
Global temperature change is dependent on many unpredictable physical, industry, and political 
factors. For simplicity, we assume that the temperature in Memphis, Tennessee increases linearly from 
the historical average according to the Shared Socioeconomic Pathways (SSP) greenhouse gas emission 
scenarios. 

2. There are no major technological advancements that improve air conditioning technology in the next 20 years. It 
is extremely difficult to predict the onset and impact of innovation. Additionally, assuming no 
advancements would result in a more conservative (and thus safer) estimate for the power demand. 
Therefore, our model will not account for advancements in air conditioning technology. 

 

3.3 Variables 
Symbol Definition Unit Value 

(2025) 
Value 
(2045) 

pop Annual population of Shelby County People 897,412 [36] 869,395 [44] 

mtemp Annual maximum recorded temperatures 
in Memphis 

F° 103 Varies 

Pload Peak hourly demand MW 3,433.70 Varies 

TC Total consumption of peak summer 
month in Shelby County 

kWh 887,513,753 Varies 

  Table 3.3.1: Variable symbols, definitions, and units used in the model 
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3.4 The Model 
3.4.1 Model Development 
Peak demand can be broken into two definitions: 1) the peak hourly demand or 2) the total consumption in the 
peak summer month. We calculated the total consumption in the peak summer month by multiplying the 
provided Shelby County (Memphis) annual electricity consumption with the ratio of the provided maximum 
2024 monthly electricity consumption for east south central USA (Kentucky, Tennessee, Mississippi, Alabama) 
in the month of August to the total 2024 electricity consumption for east south central USA. 
 
We first examined various factors to determine correlations with the peak hourly demand and total 
consumption in the peak summer month, using the provided data for annual maximum recorded 
temperatures and the annually recorded population of Shelby County from 2012-2022 (which includes the 
population of Memphis city and explains the total consumption). In our preliminary data analysis, we plot 
each variable over each year side-by-side.  
 

 

Figure 3.4.2.1: Annual Max Temperature, Population, & Peak Hourly Load for Memphis 

 

 
Figure 3.4.3.1: Annual Max Temperature, Population, & Consumption of Peak Summer Months 

 

From our preliminary data analysis, we noticed the population variable is closely correlated with both 
definitions of peak demand, and thus decided to conduct a multiple linear regression to predict Memphis’ 
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peak hourly load and total consumption in the peak summer month. The general form for a multiple linear 
regression is as given, where  is the dependent variable,  is the pth independent variable,  is the coefficient 𝑦 𝑥

𝑝
β

𝑝

of the pth independent variable, and  is an error term: ε
. 𝑦 = β

0
+ β

1
𝑥

1
+ β

2
𝑥

2
+... + β

𝑝
𝑥

𝑝
+ ε

Using the provided data for annual maximum recorded temperatures and the annually recorded population of 
Shelby County, we created multiple linear regressions with either Pload or TC as the dependent variable and 
mtemp and pop as the independent variables. 
 

Peak Hourly Load (MW) 

 Coefficient p-value 

Intercept 6220.61 0.0596 

mtemp 18.60 0.1052 

pop -524.02 0.1004 

R2 0.501 

Adjusted R2  0.358 

Table 3.4.1.1: Multiple linear regression coefficients for Peak Hourly Load 

 

Total Consumption of Peak Summer Month (kWh) 

 Coefficient p-value 

Intercept -3.34 0.00966** 

mtemp 0.004 0.27616 

pop 0.42 0.00307** 

R2 0.7093 

Adjusted R2 0.6366 

Table 3.4.1.2: Multiple linear regression coefficients for Consumption of Peak Summer Month 
 
We also fitted various models, including , , . Despite the 𝑦 ~ 𝑚𝑡𝑒𝑚𝑝 𝑦 ~ 𝑝𝑜𝑝 𝑦 ~ 𝑚𝑡𝑒𝑚𝑝 + 𝑝𝑜𝑝 + 𝑙𝑎𝑔(𝑦)
resulting p-values being around 0.1, the proposed multiple linear regression model has the best performance in 
terms of R2 and adjusted R2 over the other linear regression models. We chose not to utilize nonlinear models 
or machine learning models, as the amount of data is limited. 
 
3.4.2 Forecasting 2025 Peak Hourly Demand & Total Consumption of Peak Summer Month 
We then project Memphis’ 2025 peak hourly load and peak summer month total consumption with our fitted 
multiple linear regression, using the maximum annual recorded maximum temperature in Memphis from 
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2012-2022 and the forecasted 2025 population of Shelby County according to World Population Review [36]. 
Our rationale for using the maximum annual recorded maximum temperature available to us was so that a 
more conservative estimate for the load could be generated, mitigating the potential effect of year-to-year 
maximum fluctuations.  
 
3.4.3 Forecasting 2045 Peak Hourly Demand & Total Consumption of Peak Summer Month 
To project Memphis’ peak hourly load and peak summer month total consumption in 2045, we use the 
forecasted 2045 population of Shelby County according to the Boyd Center for Business and Economic 
Research and under varying global temperature projections using Scenario Analysis in Excel. Global 
temperature projections over the next 20 years vary based on different greenhouse gas emission scenarios. 
According to the Intergovernmental Panel on Climate Change's (IPCC) Sixth Assessment Report (AR6), global 
warming is anticipated to reach or exceed 1.5°C above pre-industrial levels by 2040 across all considered 
scenarios [43].  
 
We computed the 2045 maximum annual temperature as linearly increasing from the average of the 2012-2022 
historical maximum annual temperatures by the expected annual change in global temperatures as according 
to the SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 greenhouse gas emission scenarios [46]. Each SSP 
scenario estimates different levels of global greenhouse gas emissions, ranging from optimistic to pessimistic. 
As seen in Table 3.4.3.1, these directly impact their respective projected global temperature changes. 
 

Shared Socioeconomic 
Pathways (SSP) Scenario 

Optimism Ranking (i) Projected 2100 Global 
Change in Temperature 
(°F)  

Projected 2045 Global 
Change in Temperature 
(°F) 

SSP1-1.9 (Optimistic) 1 2.88 2.88 

SSP1-2.6 2 3.24 0.96 

SSP2-4.5 3 4.86 1.43 

SSP3-7.0 4 6.48 1.91 

SSP5-8.5 (Pessimistic) 5 7.92 2.34 

Table 3.4.3.1: Shared Socioeconomic Pathways temperature projections 
 
Using the values from Table 3.4.3.1, the 2045 maximum annual temperature values were calculated as follows: 

, 𝑚𝑡𝑒𝑚𝑝 = 𝑚
𝑖
𝑡 + µ

where mi is the projected 2045 global change in temperature according for the ith optimism ranking, t is the 
years since 2022, and  is the average of the provided annual maximum temperature in Memphis from µ
2012-2022, 99.18 °F. Our rationale for using the average annual maximum temperature available to us was so 
that a more robust estimate for the dependent variables could be generated for 20 years into the future. 
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3.5 Results 
We project the coming 2025 summer’s peak hourly load and peak month total consumption using a multiple 
linear regression based on the maximum annual recorded maximum temperature in Memphis and the 
forecasted 2025 population of Shelby County. 
 

Year Peak Hourly Load (MW) Total Consumption in Peak 
Summer Month (kWh) 

2025 3,433.70 887,513,753 

Table 3.5.1: Energy demand projections for Memphis in 2025 
 

Similarly, we also project Memphis’ 2045 peak hourly load and peak summer month total consumption under 
varying SSP emission scenarios using the Scenario Analysis in Excel. 
 

Scenario Summary Projected 2045 Emission Scenarios 

 SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

Projected Change in Temp (°F) 2.88 0.96 1.43 1.91 2.34 

Peak Hourly Load (MW) 3,563.07 3,527.27 3,536.15 3,545.04 3,552.94 

Summer Peak Month Total 
Consumption (kWh) 

764,797,475 756,927,721 758,881,008 760,834,287 762,570,543 

Table 3.5.2: Energy demand projections for Memphis in 2045 
 

3.6 Discussion, Strengths, and Weaknesses 
Our model shows a promising fit based on the given data, and our projected peak load and summer peak 
month total consumption would provide insightful guidelines for future planning. However, our results are 
reliant on inputted projections for temperature change and population level, and those projections could 
change significantly over time. In this case, we would have to adjust our model accordingly to follow new 
projected predictions. Given the annual data available, we were limited to linear models, but if we had access 
to high frequency, hourly data across several years, then we may be able to use more complex models such as 
SARIMA. 

 

 3.7 Sensitivity Analysis 
We conducted sensitivity analysis on the 2045 projections using the different temperature changes projected by 
the SSP’s varying greenhouse gas emissions standards. The percent difference between the maximum and 
minimum peak hourly loads was 1.009%, and the percent difference between the maximum and minimum 
summer peak month total consumption was 0.78%. These low percent differences, in spite of a fairly significant 
difference in projected temperature changes, indicate the resilience of our model against slightly altered 
predictor variables. 
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4 Beat the Heat 
4.1 Defining the Problem:  
In the third problem, we are tasked with developing a vulnerability score for various neighborhoods to help 
them allocate resources to minimize the effects of a heat wave or power grid failure. Additionally, we are 
asked to propose a single approach for how Memphis can incorporate these scores into their management of 
heat waves.  
 

4.2 Assumptions: 
1. The effects of a heatwave on a population can be quantified using Expected Annual Loss. Expected Annual Loss 

is the average economic loss calculated using a multiplicative equation that includes exposure, 
annualized frequency, and historic loss ratio risk factors for natural hazards (heatwaves in our case) 
[34].  

2. Fatalities and other health complications can be monetarily quantified. Using a value of statistical life (VSL) 
approach, one fatality or 10 injuries can be treated as $11.6 million lost [34]. By quantifying the 
population Expected Annual Loss in terms of dollars, we can ensure a common unit of measurement 
across each type of loss. 

 

4.3 Variables 
Symbol Definition Unit Value 

 𝐿
𝐻

Monetary loss from population health dollars  

 𝐿
𝐴

Monetary loss from agriculture dollars  

 𝐿
𝐵

Monetary loss from buildings dollars  

 𝐿
𝑡𝑜𝑡𝑎𝑙

Total monetary loss from a heat wave dollars Appendix 
7.3.1 

 𝑥
𝑒

Proportion of households with one or more 
people 65 years and over 

 Appendix 
7.3.1 

 𝑥
𝑐

Proportion of households with one or more 
people 18 years and under 

 Appendix 
7.3.1 

 𝑥
𝑝

Population of neighborhood 10,000 
people 

Appendix 
7.3.1 

 𝑥
𝑡

Number of persons aged 16+ whose 
primary mode of transportation to work is 
walking or public transit 

people Appendix 
7.3.1 

 𝑉𝑆 Vulnerability score  Table 4.5.1 

  Table 4.3.1: Variable symbols, definitions, and units used in the model 
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4.4 The Model 
We define our vulnerability score as a measure of a population’s susceptibility to harmful effects from a 
heatwave.  
 
In order to evaluate the extent of these harmful effects within a neighborhood, we examined 3 main impacts of 
heatwaves: health decline, agriculture strain, and property damage. Our data regarding these effects comes 
from the National Risk Index (NRI) Census Tracts, where each census tract has their expected annual loss due 
to heat waves for our three consequence types: population health (LH), agriculture (LA), and building value 
(LB). For all the loss values, we use annualized numbers using National Risk Index data from 2005 to 2021 [34]. 
We define total loss: 
 

 𝐿
𝑡𝑜𝑡𝑎𝑙

= 𝐿
𝐻

+ 𝐿
𝐴

+ 𝐿
𝐵

 
Since our data only had census tract data, we used zip codes to draw a sum of loss within the census tracts 
within each neighborhood [35].  
 
We then identified predictors that may potentially increase the susceptibility of a population to the heatwave 
consequences, such as age, income, and proportion of open space (a full list of evaluated predictors can be 
found below). In order to determine the most important predictors, we ran a multiple linear regression model 
between the selected predictors and the heatwave expected total annual loss per capita. Independent predictor 
variable data values used were also scaled to be comparable for ease of interpretation. A level of significance of 

 indicated that a given predictor had a significant impact on the neighborhood’s heatwave α < 0. 05
susceptibility. The general form for a multiple linear regression is as given, where  is the dependent variable, 𝑦

 is the pth independent variable,  is the coefficient of the pth independent variable, and  is an error term: 𝑥
𝑝

β
𝑝

ε

 
. 𝑦 = β

0
+ β

1
𝑥

1
+ β

2
𝑥

2
+... + β

𝑝
𝑥

𝑝
+ ε

 
Python was used to create a multiple linear regressions model and determine our p-values and coefficients for 
use as our vulnerability score weights. Data was first imported from the xlsx file as a Dataframe and SkLearn 
was used to develop our model. The code for this model can be found in our appendix.  
 
After running the multiple linear regression model, we determined that there were 4 variables that could be 
determined as significant. The fitted coefficients of two models we used are given below. 
 

 Coefficient p-value 

Proportion of households with 
elderly 

78.9062 0.083 

Proportion of households with 
children 

96.2070 0.044 
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Population (10,000 people) -7.1583 0.018 

Primary mode of transportation to 
work (persons aged 16 years+): 
walking or public transit 

0.0707 0.039 

Proportion of developed, open 
space in neighborhood 

-44.1021 0.212 

Median household income (in 
100,000s of US dollars) 

12.1282 0.307 

Mean number of homes built 1950 
or earlier (in 1000s) 

-3.6117 0.406 

Table 4.4.1: Regression coefficients and p-value between loss per capita and various predictors 
 
Based on these values, we determined that the proportion of developed open space in a neighborhood, the 
median household income, and the mean number of homes built before 1950 were not significant when 
considering the vulnerability ratings of the neighborhoods around Memphis, allowing us to remove them and 
create a simpler model as our final model with coefficients below. 
 

 Coefficient (w) p-value 

Proportion of households with 
elderly 

84.9225 0.026 

Proportion of households with 
children 

105.4934 0.023 

Population (10,000 people) -7.3073 0.014 

Number of residents aged 16+ 
who walk or take public transport 
to work. 

0.0336 0.025 

Table 4.4.2: Final regression coefficients and p-value between loss per capita and final set of predictors 
 
We propose to calculate our vulnerability scores ( ) for each given neighborhood using a weighted sum 𝑉𝑆
(linear combination of predictors), where the above coefficients are the “weights” (w) for each predictor being 
considered, modeled below: 

   𝑉𝑆 = 𝑤
𝑒
𝑥

𝑒
+ 𝑤

𝑐
𝑥

𝑐
+ 𝑤

𝑝
𝑥

𝑝
+ 𝑤

𝑡
𝑥

𝑡

Vulnerability scores were then normalized using min-max normalization, multiplied by 100, and rounded to 
the nearest integer for simplicity. 
 

 𝑉𝑆
𝑓𝑖𝑛𝑎𝑙

= 𝑉𝑆−𝑚𝑖𝑛(𝑉𝑆)
𝑚𝑎𝑥(𝑉𝑆) −𝑚𝑖𝑛(𝑉𝑆) × 100
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4.5 Results 

 
Figure 4.5.1: Heat map of vulnerability scores (0-100) for Memphis neighborhoods by ZIP code  

 
Figure 4.5.1, generated from Tableau [45], geographically depicts the vulnerability scores with a red to green 
gradient with darker red shades indicating higher vulnerability and darker green shades indicating lower 
vulnerability. The final numerical vulnerability scores are also shown on the map. The map identifies high-risk 
areas, such as the east and west corners of Memphis, guiding resource allocation.  

 
Neighborhood ZIP Code Vulnerability Score 38109 46 

38103 0 38111 70 

38002 42 38112 88 

38017 17 38117 41 

38016 2 38125 6 

38018 20 38126 92 

38028 100 38127 58 

38060 75 38128 31 

38066 91 38133 48 

38104 48 38134 22 

38105 50 38135 43 

38106 59 38138 79 

38107 61 38139 94 

38108 79 38141 51 

Table 4.5.1: Vulnerability scores (0-100) for Memphis neighborhoods by ZIP code  
 
Table 4.5.1 gives the final vulnerability scores scaled from 0 to 100 with provided ZIP codes. The top third of 
VS is shown in red, the middle third of VS is shown in yellow, and the lower third of VS is shown in green.  
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4.6 Discussion 
From our calculated VS, we recommend that Memphis should first target areas with higher vulnerability 
scores such as ZIP codes 38028 (100), 38139 (94), 38126 (92), and 38066 (91). For example, the highest risk was 
associated with ZIP code 38028, Hickory Withe, with a loss per capita of $98.672 million. Hickory Withe has a 
proportion of households with at least one person 65 or over of 39.4%, a proportion of households with at least 
one child of 36%, a total population of 76,990, and 9 residents aged 16+ who walk or use public transit as their 
primary mode of transportation. 
 
The primary contributors to these areas’ high vulnerability scores are a higher proportion of households with 
elderly people and children, a lower population, and more people that walk to work. Intuitively, this result 
makes sense: for example, elderly and child populations are significantly more susceptible to heat-related 
illnesses [42]. In order to mitigate this effect, Memphis should focus on creating more cooling centers and 
increasing emergency supplies, specific for the elderly and children, in these areas. Additionally, in the long 
term, Memphis should invest in long term infrastructure improvements such as improving the accessibility 
and integrity of public transportation to reduce exposure to extreme heat for those who walk or use public 
transit as their primary mode of transportation to work.  
 
We can also see a trend in areas with high vulnerability scores in the generated map. Neighborhoods in the 
southeast area and west of Memphis tend to have higher vulnerability scores. Thus, since city funds are limited 
and we can assume the government cannot establish cooling centers in every Memphis neighborhood, we 
recommend Memphis institutes cooling centers in the east and west corners of the city for maximum 
accessibility.  
 

4.7 Sensitivity Analysis 
To determine the accuracy of our prediction, we randomly offset each coefficient by up to 5% and then ran the 
model again to get new vulnerability scores. Then we calculated the percent difference between the original 
prediction and new prediction. We repeated this process five times and averaged the percent differences across 
all the neighborhood vulnerability scores. The average jittered variation of vulnerability score was found to be 
3.47%. Since this jittered variation is relatively low, we are relatively confident in our model’s resilience to 
random error. 
 

4.8 Strengths and Weaknesses 
The primary strength of our model is that by using Expected Annual Loss values, we can account for multiple 
impacts of heatwaves in our vulnerability score. Instead of only using impacts on health, we also consider 
impacts on agriculture and buildings, making our vulnerability scores more reflective of a population’s 
susceptibility to harmful effects from a heat wave. We were able to do so by monetarily quantifying losses due 
to fatalities or other health complications, and measuring all losses in terms of expected dollars lost per year. 
 
In addition, we generated a heat map of Memphis neighborhood vulnerability scores by ZIP code. This 
visualization is easier for the city planners to digest and provides clearer insights to help them decide where 
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resources should be allocated. For instance, a neighborhood may seem in dire need of resources based on a 
high vulnerability score, but in reality make up a tiny amount of Memphis’ total population. In this case, it 
would likely be better to allocate resources to a less-vulnerable, but larger neighborhood.  

 
A major limitation of our model was our inability to incorporate additional predictors into the vulnerability 
score, such as the heat island effect (dependent on vegetation cover of a neighborhood) due to insufficient 
available data even after exhaustive searching online. If, for example, the heat island effect were a significant 
variable, our recommendations would likely have included investing in green spaces. 
 
4.8.1 Model Refinement 
Finding more data on relevant predictors could greatly expand the number of predictors found to be 
significant contributors to heatwave impact, improving the accuracy of the vulnerability score as a measure of 
overall impact on a neighborhood. In order to more definitively allocate resources, the budget of the city of 
Memphis could also be taken into consideration; to further inform policy decisions that aim to mitigate heat 
wave impacts, spatial correlation could be applied to identify optimal locations for our recommended cooling 
centers as an extra measure to accompany vulnerability scores. 
 

5 Conclusion 
5.1 Further Studies 

To enhance the applicability of our models, there are many ideas that warrant further studies. For our 
indoor temperature prediction model, future investigation could incorporate dynamic weather patterns to 
better capture localized temperature variations. Additionally, exploring the impact of building spaces, colors 
(white vs. black building) and ventilation strategies could provide more accurate predictions for different 
types of dwellings. For our power grid demand forecasting model, we could attempt to integrate variables 
such as heating or cooling degree days to improve long-term prediction. Furthermore, understanding the SSP 
scenarios used and accounting for global trends that come with climate change could help mitigate peak 
energy loads. Finally, for our vulnerability scoring model, incorporating real-time data on population 
movement, behavioral responses during heat waves, finding data on the current Memphis data and getting 
clearer data about the health risks (deaths directly caused by heat vs. deaths caused by conditions exacerbated 
by heat) for each neighborhood would allow us to create a more comprehensive resource allocation plan. We 
could also consider adding spatial correlation to understand the optimal locations for cooling centers. 
 

5.2 Summary 
In this paper, we address the growing threat of heat waves in Memphis, Tennessee, by developing models to 
predict indoor temperatures in non-air-conditioned homes, forecast future energy demands on the power grid, 
and assign vulnerability scores to neighborhoods based on heat wave impacts.  
 
Our indoor temperature model revealed that homes with less shade coverage are significantly more vulnerable 
to elevated interior temperatures, emphasizing the importance of shading and insulation in mitigating heat 
wave risks. For our second model, we projected that Memphis must prepare for a peak hourly load of 3,433.70 
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MW in 2025 and between 3,527.27 and 3,563.07 MW in 2045, alongside significant increases in summer peak 
month total consumption. These findings demonstrate the need for investments in grid resilience and energy 
efficiency to handle rising energy demands during extreme heat events. The reduction in efficiency over the 
years also brings to attention the importance of increasing efficiency of AC.  
 
Finally, our vulnerability scoring model identified neighborhoods with the highest risk, particularly those with 
large proportions of elderly and children, such as ZIP codes 38028, 38139, 38126, and 38066. These areas should 
be prioritized for resource allocation, including cooling centers and emergency supplies. Together, these 
models provide actionable insights for the Memphis Office of Emergency Management to better prepare for 
and manage the impacts of heat waves, ensuring the safety and resilience of the city’s residents in the face of a 
warming climate. 
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7 Code Appendix 
7.1 Hot To Go 
# Code for Figure 2.4.1 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

import pandas as pd 

 

# Data import goes here, we are linking to a spreadsheet that contains data we found for 5 

different Heatwave days 

df = 

pd.read_excel('https://docs.google.com/spreadsheets/d/1gQrosZuqWKW6CsYGKLHJ49BeoSHT1T_l/exp

ort?format=xlsx', sheet_name='LOTS OF HEATWAVE TEMPS', engine='openpyxl') 

 

#Removes the null rows at the top and renames the first row to be the titles 

df = df.drop(0) 

df.columns = df.iloc[0] 

df = df[1:] 

df.head() 

 

# Convert the datetime.time objects to numerical representations (the hours elapsed since 

12:00 AM) so that we can graph the various days on top of each other 

x = (pd.to_datetime(df.iloc[:,1].astype(str)).dt.hour * 3600 + pd.to_datetime(df.iloc[:, 

1].astype(str)).dt.minute * 60 + pd.to_datetime(df.iloc[:, 1].astype(str)).dt.second)/3600 

y = df.iloc[:,3] 

 

# Definition of the curve that we are going to use scipy.optimize to find the parameters 

for. 

def sine_function(x, A, B, C, D): 

    return A * np.sin(B * x + C) + D 

 

# Perform the curve fitting using time normalized x-values and provided y-value 

temperatures. Additionally, we provide a "guess" for the parameters. 

params, covariance = curve_fit(sine_function, x, y, p0=[1, 2*np.pi/(24*3600), 0, 

np.mean(y)]) 

 

# Extract the fitted parameters using the curve fit optimization built into SciPy 

A_fit, B_fit, C_fit, D_fit = params 

 

# Displaying said parameters 
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print(f"Fitted parameters: A={A_fit}, B={B_fit}, C={C_fit}, D={D_fit}") 

 

# Sort normalized x-values for plotting so similar time data points are located next to 

each other (original data is sorted by day) 

x_sorted = np.sort(x) 

y_fit_sorted = sine_function(x_sorted, A_fit, B_fit, C_fit, D_fit) 

 

# Using MatPlotLib to plot the scatter plot of the data combined with the optimized curve 

plt.scatter(x, y, label='Sample Data') 

plt.plot(x_sorted, y_fit_sorted, label='Fitted Curve', color='red') 

plt.xlabel('Hours elapsed after 12:00 AM') 

plt.ylabel('Temperature (Celsius)') 

plt.title('Heat wave temperatures throughout the day') 

plt.legend() 

plt.show() 

 

# Code for Figure 2.4.2 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

import pandas as pd 

 

# Data import goes here, we are linking to a spreadsheet that contains data we found for 5 

different Heatwave days 

df = 

pd.read_excel('https://docs.google.com/spreadsheets/d/1RaHFbtKV04xqiwwVMWwfupebBhJqOre5cCYb

UhLKPu0/export?format=xlsx', sheet_name='SOLAR IRRADIANCE', engine='openpyxl') 

 

# Convert the datetime.time objects to numerical representations (the hours elapsed since 

12:00 AM) so that we can graph the various days on top of each other 

x = (pd.to_datetime(df.iloc[:,2].astype(str)).dt.hour * 3600 + pd.to_datetime(df.iloc[:, 

2].astype(str)).dt.minute * 60 + pd.to_datetime(df.iloc[:, 2].astype(str)).dt.second)/3600   

y = df.iloc[:,3] 

 

# Definition of the curve that we are going to use scipy.optimize to find the parameters 

for. 

def quadratic(x, A, B, C): 

    return A * x**2 + B * x + C 

 

# Perform the curve fitting using time normalized x-values and provided y-value 

temperatures. Additionally, we provide a "guess" for the parameters. 
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params, covariance = curve_fit(quadratic, x, y, p0=[1, 2*np.pi/(24*3600), 0])   

 

# Extract the fitted parameters using the curve fit optimization built into SciPy 

A_fit, B_fit, C_fit = params 

 

# Displaying said parameters 

print(f"Fitted parameters: A={A_fit}, B={B_fit}, C={C_fit}") 

 

# Sort normalized x-values for plotting so similar time data points are located next to 

each other (original data is sorted by day) 

x_sorted = np.sort(x)   

y_fit_sorted = quadratic(x_sorted, A_fit, B_fit, C_fit) 

 

# Using MatPlotLib to plot the scatter plot of the data combined with the optimized curve 

plt.scatter(x, y, label='Sample Data') 

plt.plot(x_sorted, y_fit_sorted, label='Fitted Curve', color='red') 

plt.xlabel('Hours elapsed after 12:00 AM') 

plt.ylabel('Global Horizontal Irradiance (W/m^2)') 

plt.title('Global Horizontal Irradiance throughout the day') 

plt.legend() 

plt.show() 

 

# Code for visualizing and solving the Model discussed in 2.5 and for Figure 2.5.2. 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import solve_ivp 

import math 

 

# This function defines the temperature model we discussed in Section 2.4 and has inputs 

with all the predefined variables. 

def temperature_model(A_b,h,c,D,r_s,r_w,R,n): 

  # Equation based on the rectangular prism assumption we made before 

  A_w = 4 * math.sqrt(A_b/n) * n * h 

 

  # Temperature as a function of time as modeled in Figure 2.4.1 

  def T_out(t): 

      return 4.9796776692867555 * np.sin(0.31958467920431916 * t + -2.7753696625091497) + 

32.23606417137194 

 

  # Global Horizontal Irradiance as a function of time as modeled in Figure 2.4.2 

  def I(t): 
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      return np.piecewise(t, [t < 7, (t >= 7)], [0,-24.099845890995997 * t**2 + 

623.6904007623635 * t + -3166.6881716727808]) 

 

  # Define the differential equation incorporating T_out(t) and R(t) 

  def dT_dt(t, T_in): 

      return (1 / (A_b * h * c * D)) * (r_s * r_w * I(t) * A_w + 

(((T_out(t)+50-T_in)*A_w)/R)) 

 

  # Time span and initial conditions, t_span is the 24 hour period for modeling and t_in_0 

is the initial temperature. 

  t_span = (0, 24) 

  T_in_0 = 29.444 

 

  # Solving the Initial Value Problem using SciPy.integrate libraries 

  solution = solve_ivp(dT_dt, t_span, [T_in_0], t_eval=np.linspace(0, 24, 500)) 

  return solution.t, solution.y[0] 

 

# Calling the function described above with the parameters discussed and listed in Section 

2.5 

home1_x, home1_y = temperature_model(88,3.048,1.005,1293,0.1,0.2,13,1) 

home2_x, home2_y = temperature_model(63,3.048,1.005,1293,0.6,0.2,13,1) 

home3_x, home3_y = temperature_model(74,3.048,1.005,1293,0.95,0.2,13,1) 

home4_x, home4_y = temperature_model(278,3.048,1.005,1293,0.95,0.2,13,1) 

 

# Graphing all the plots together, as well as the data for the outside temperatures. The 

data for outside temperatures can be found above in the Appendix. 

plt.plot(home1_x, home1_y, label="Home 1 Temp") 

plt.plot(home2_x, home2_y, label="Home 2 Temp") 

plt.plot(home3_x, home3_y, label="Home 3 Temp") 

plt.plot(home4_x, home4_y, label="Home 4 Temp", color='black') 

plt.xlabel("Time (hours)") 

plt.ylabel("Temperature (K)") 

plt.ylim(27,38) 

plt.title("Temperature Evolution Over Time") 

plt.legend() 

plt.grid() 

plt.plot(x_sorted, y_fit_sorted, label='Outside Temp', color='red') 

plt.xlabel('Hours elapsed after 12:00 AM') 

plt.ylabel('Temperature (Celsius)') 

plt.title('Heat wave temperatures throughout the day') 

plt.legend() 
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plt.show() 

 

# Code for the Sensitivity Analysis 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import solve_ivp 

import math 

 

# Using the parameters for Home 1 to perform this sensitivity analysis 

A_b = 88 

h = 3.048 

c = .1005 

D = 1293 

r_s = 0.15 

r_w = 0.9 

R = 13 

n = 1 

 

# This function defines the temperature model we discussed in Section 2.4 and has inputs 

with all the predefined variables. 

def temperature_model(A_b,h,c,D,r_s,r_w,R,n): 

  # Equation based on the rectangular prism assumption we made before 

  A_w = 4 * math.sqrt(A_b/n) * n * h 

 

  # Temperature as a function of time as modeled in Figure 2.4.1 

  def T_out(t): 

      return 4.9796776692867555 * np.sin(0.31958467920431916 * t + -2.7753696625091497) + 

32.23606417137194 

 

  # Global Horizontal Irradiance as a function of time as modeled in Figure 2.4.2 with 

jittered parameters, up to 10% different. 

  def I_jittered(t, jitter_amount=0.1): 

    coeff1 = -24.099845890995997 + np.random.normal(scale=jitter_amount) 

    coeff2 = 623.6904007623635 + np.random.normal(scale=jitter_amount) 

    coeff3 = -3166.6881716727808 + np.random.normal(scale=jitter_amount) 

    return np.piecewise(t, [t < 7, (t >= 7)], [0, coeff1 * t**2 + coeff2 * t + coeff3]) 

 

  # Define the differential equation incorporating T_out(t) and R(t) 

  def dT_dt(t, T_in): 

      return (1 / (A_b * h * c * D)) * (r_s * r_w * I_jittered(t) * A_w + 

(((T_out(t)+50-T_in)*A_w)/R)) 
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  # Time span and initial conditions, t_span is the 24 hour period for modeling and t_in_0 

is the initial temperature. 

  t_span = (0, 24) 

  T_in_0 = 29.444 

  # Solving the Initial Value Problem using SciPy.integrate libraries 

  solution = solve_ivp(dT_dt, t_span, [T_in_0], t_eval=np.linspace(0, 24, 500)) 

  return solution.t, solution.y[0] 

 

# Running a   simulation using 1000 iterations of the jittered I(t) parameters modeling the 

Solar Irradiance. 

num_runs = 1000 

for _ in range(num_runs): 

    home_x, home_y = temperature_model(A_b, h, c, D, r_s, r_w, R, n) 

    plt.plot(home_x, home_y) 

# Graphing all the plots together, as well as the data for the outside temperatures. The 

data for outside temperatures can be found above in the Appendix. 

plt.xlabel("Time (hours)") 

plt.ylabel("Temperature (K)") 

plt.ylim(27,38) 

plt.title("Temperature Evolution Over Time") 

plt.legend() 

plt.grid() 

plt.plot(x_sorted, y_fit_sorted, label='Outside Temp', color='red') 

plt.xlabel('Hours elapsed after 12:00 AM') 

plt.ylabel('Temperature (Celsius)') 

plt.title('Model Sensitivity Analysis') 

plt.legend() 

plt.show() 

7.2 Power Hungry 
## The following code is written in R for Model Two## 

 

#### M3 Challenge, 03/03/2025, Team ####### 

#### Q2, Memphis, TN, #### 

#### TC (KW): Annual Consumption #### 

#### Pload (MW): maximum hourly electricity demand in megawatts (MW) in Memphis,Tennessee, 

Siemens' reports augmented by Fact sheets ### 

#### mtemp: Maximum Temperature #### 

#### pop: Population of Shelby County (including Memphis) #### 

 

Mdata <- read.csv(file = "Mdata.csv", header=T) 
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attach(Mdata) 

Mdata$Year <- as.integer(Mdata$Year) 

## multiply TC by the factor of percentage of peak-month load converted from the monthly 

country data 

Mdata$TC <- Mdata$TC*0.099672319 /10^9 

Mdata$pop <- Mdata$pop/10^5 

Mtrain <- Mdata[1:11,] 

attach(Mtrain) 

data <- Mtrain 

 

### Uncomment whichever Y to forecast 

 

#Y <- Pload #peak hour load (summer)   

Y <- TC #total consumption of peak summer month 

 

## plot the data ## 

# Load the ggplot2, tidyverse packages 

library(ggplot2) 

library(tidyverse) 

library(mgcv) 

 

data <- data.frame( 

  Year = Year, 

  Y = Y, 

  mtemp = mtemp, 

  pop = pop 

) 

 

# Fit linear regression model for mtemp over time 

mtemp_model <- lm(mtemp ~ Year, data = Mtrain) 

 

# Predict mtemp for 2025 with confidence interval 

new_data <- data.frame(Year = 2025) 

prediction <- predict(mtemp_model, newdata = new_data, interval = "confidence", level = 

0.95) 

 

# Print prediction and confidence interval 

print(prediction) 

 

# Reshape the data into long format 

data_long <- data %>% 
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  pivot_longer(cols = c(Y, mtemp, pop), names_to = "Variable", values_to = "Value") 

 

# Create a trellis plot 

ggplot(data_long, aes(x = Year, y = Value)) + 

  geom_line() +        # Add lines for each variable 

  geom_point() +       # Add points for each year 

  facet_wrap(~ Variable, scales = "free_y") +  # Create separate panels for each variable 

  

#  labs(title = "Max Temperature, Population, Peak Hour Load (MW) over Year for Memphsis, 

TN", 

  labs(title = "Max Temperature, Population, Peak Summer Month Consumption (in billions of 

kWh) over Year for Memphsis, TN", 

       y = "Value") + 

  scale_x_continuous(breaks = c(2012, 2014, 2016, 2018, 2020, 2022)) + 

  theme_minimal() 

 

## Build linear regression models with PeakCh/TC as dependent variable# 

 

model1 <- lm(Y ~ mtemp + pop, data = Mtrain) 

summary(model1) # best adj-R2 

model2 <- lm(Y ~ mtemp, data = Mtrain) 

summary(model2) 

model3 <- lm(Y ~ mtemp + pop + lag(Y), data = Mtrain) 

summary(model3) 
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7.3 Beat the Heat 
import pandas as pd 

import numpy as np 

from sklearn.linear_model import LinearRegression 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import OneHotEncoder 

from sklearn.compose import ColumnTransformer 

import statsmodels.api as sm 

 

# Loading the data from our sheet into a Pandas Dataframe 

data = 

pd.read_excel("https://docs.google.com/spreadsheets/d/1RaHFbtKV04xqiwwVMWwfupebBhJqOre5cCYb

UhLKPu0/export?format=xlsx", sheet_name="Sheet21", engine='openpyxl') 

df = pd.DataFrame(data) 

#df.head() 

 

# Seperating the Independant and Dependant Variables, our Dependant variable is the loss. 

X = df.iloc[:,1:8] 

y = df.iloc[:,0] 

 

# Handle missing values in both X and y, ensuring they have the same index to avoid errors 

X = X.replace([np.inf, -np.inf], np.nan) 

# Aligning indices of X and y before dropping NaN values to avoid errors 

X, y = X.align(y, axis=0, join='inner') 

X = X.dropna() 

y = y[X.index] # Ensuring y corresponds to X after dropping NaNs 

 

 

# Training the multiple linear regression model using statsmodels 

model = sm.OLS(y, X).fit() 

 

# Print the model summary to analyze 

print(model.summary()) 

 

# Print p-values for each x variable 

print("\nP-values for x variables:") 

print(model.pvalues[1:]) # Exclude the intercept (constant) 

 

# Print coefficients and intercept 

print('Coefficients:', model.coef_) 

print('Intercept:', model.intercept_) 
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# Code for the sensitivity analysis for Model 3 

 

data = 

pd.read_excel("https://docs.google.com/spreadsheets/d/1RaHFbtKV04xqiwwVMWwfupebBhJqOre5cCYb

UhLKPu0/export?format=xlsx", sheet_name="vscoredata", engine='openpyxl') 

df = pd.DataFrame(data) 

data.head() 

# A, B, C, and D are parameters that were found by our Multiple Regressions line. We are 

using the coefficients determined by that model. 

A = 84.9225 

B = 105.4934 

C = -7.3073 

D = 0.0336 

 

# Jittering the parameters by a random value of up to 5% to test the sensitivity of the 

model. 

A_jit = A + np.random.normal(scale=0.05) 

B_jit = B + np.random.normal(scale=0.05) 

C_jit = C + np.random.normal(scale=0.05) 

D_jit = D + np.random.normal(scale=0.05) 

 

# Convert the relevant columns to numeric type to avoid any Type errors while calculating 

the vulnerability scores. 

for col in ["Proportion of households with elderly", "Proportion of households with 

children", "Population (10,000 people)", "Primary Transportation"]: 

    df[col] = pd.to_numeric(df[col], errors='coerce') # 'coerce' will replace non-numeric 

values with NaN 

 

# Our Vulnerability scores as determined by our base model 

df["Vulnerability Normal"] = df["Proportion of households with elderly"]*A+df["Proportion 

of households with children"]*B+df["Population (10,000 people)"]*C + df["Primary 

Transportation"]*D 

min_normal = df["Vulnerability Normal"].min() 

max_normal = df["Vulnerability Normal"].max() 

df["Min-max normalized Normal"] = ((df["Vulnerability 

Normal"]-min_normal)/(max_normal-min_normal))*100 

 

# New vulnerability scores as determined by the jittered model 

df["Vulnerability"] = df["Proportion of households with elderly"]*A_jit+df["Proportion of 

households with children"]*B_jit+df["Population (10,000 people)"]*C_jit + df["Primary 

Transportation"]*D_jit 
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min = df["Vulnerability"].min() 

max = df["Vulnerability"].max() 

df["Min-max normalized"] = ((df["Vulnerability"]-min)/(max-min))*100 

 

# Comparing the percent differences between the data 

print(df["Min-max normalized"]) 

print(df["Min-max normalized Normal"]) 

df["Percent Differece"] = abs(df["Min-max normalized"]-df["Min-max normalized 

Normal"])/df["Min-max normalized Normal"]*100 

# Dropping the infinite values that may be caused when one of the values being divided by 

for the percent difference is 0, otherwise we will not be able to get an accurate mean 

value. 

df = df.replace([np.inf, -np.inf], np.nan) 

df.dropna() 

average = df["Percent Differece"].mean() 

print(average) 

 

7.2.1 Power Hungry Data 

Year pop 
pop (10,000s of 
people) mtemp Pload (MW) 

TC (billion 
kWh) 

2012 939421 9.39421 103 3256 1.07187532 

2013 938069 9.38069 98 3195 1.067037226 

2014 937441 9.37441 100 3062 1.050957091 

2015 937020 9.3702 99 3226 1.048039781 

2016 936961 9.36961 100 3155 1.040242715 

2017 936961 9.36961 99 3086 1.012139307 

2018 936961 9.36961 97 3097 1.05699823 

2019 937070 9.3707 100 3182 1.01752221 

2020 929744 9.29744 97  0.964066949 

2021 923382 9.23382 96 3177 0.976826102 

2022 916357 9.16357 102 3316 0.973628714 
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7.3.1 Beat the Heat Data 

ZIP code Loss per capita 

Proportion of 
households with 
elderly 

Proportion of 
households with 
children 

Population 
(10,000 people) 

Primary 
Transportation Open Space 

Median Income 
(in 100k) 

Built before 1950 
(1000s) 

38103 45.195 0.115 0.079 1.182 307 0.0451 0.758 1.463 

38002 49.041 0.302 0.412 4.369 65 0.0596 1.155 0.33 

38017 36.149 0.298 0.391 5.623 65 0.0888 1.359 0.365 

38016 37.526 0.249 0.261 4.427 131 0.1602 0.757 0.047 

38018 36.638 0.243 0.313 3.8 99 0.1981 0.896 0.076 

38028 98.672 0.394 0.36 0.77 9 0.0566 1.508 0.095 

38060 30.205 0.347 0.308 1.236 42 0.0578 0.843 0.121 

38066 73.416 0.475 0.228 0.371 3 0.0238 1.053 0.044 

38104 42.971 0.215 0.139 2.212 755 0.1998 0.565 7.367 

38105 72.03 0.223 0.131 0.496 411 0.1004 0.293 0.893 

38106 43.619 0.364 0.195 2.17 347 0.1047 0.298 4.181 

38107 58.322 0.245 0.219 1.4 427 0.2102 0.364 3.643 

38108 39.46 0.336 0.33 1.843 186 0.1728 0.354 2.483 

38109 29.092 0.407 0.28 4.364 268 0.1171 0.369 2.406 

38111 35.098 0.27 0.217 4.206 1102 0.4575 0.528 5.787 

38112 65.318 0.301 0.249 1.511 585 0.2764 0.526 3.688 

38117 53.601 0.326 0.266 2.626 67 0.4829 0.937 0.64 

38125 32.916 0.189 0.329 4.273 89 0.1969 0.832 0.288 

38126 70.382 0.256 0.368 0.546 173 0.1165 0.308 0.514 

38127 31.029 0.281 0.379 3.94 350 0.1277 0.378 1.55 

38128 31.006 0.233 0.376 4.37 191 0.1855 0.432 0.939 

38133 40.547 0.221 0.36 2.09 16 0.2037 0.825 0.196 

38134 41.587 0.242 0.331 3.885 90 0.2278 0.612 0.351 

38135 10.132 0.309 0.31 3.028 90 0.2763 0.925 0.324 

38138 52.834 0.462 0.311 2.517 78 0.3539 1.301 0.129 

38139 26.961 0.396 0.396 1.63 0 0.3305 1.741 0.061 

38141 46.37 0.186 0.411 2.377 48 0.1302 0.641 0.074 
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