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0 Executive Summary

We often see toddlers squealing on iPads playing Angry Birds while their parents sit a few

feet away, dining on steak and potatoes. The sight of young children playing with technology is

becoming more and more common in this digital age. Likewise, the information we consume from

digital devices increases at an outstanding rate, especially with the integration of technology in

schools and workplaces. However, this is all only possible with internet access. Those without

sufficient access may have disadvantages in participating in remote school and work, receiving

adequate healthcare, accessing information, etc. But internet access and mobile broadband can

be costly for high speeds. To further analyze the future of internet, we created three models that

consider internet costs, needs and optimal planning.

The cost for bandwidth has been decreasing since the past decade in both the US and the UK

[1]. Using existing data on broadband subscriptions [29], we created a model that predicts the

per-unit bandwidth cost over the next 10 years for US and UK consumers. Our model utilizes a

differential equation relating per-unit bandwidth cost and time along with factors including supply

and demand of internet access. In order to derive numerical calculations for the demand factor, we

also use a logistic equation to approximate the number of people with internet access over time.

We then integrate our function and compute the per-unit cost of bandwidth in 2031, to get $0.38

and $0.54 in the US and UK, respectively.

In order to create a model for the minimum bandwidth required for 90% and 99% of internet

usage, we first looked to find what bandwidth is primarily used for. We determined that the main

categories of internet usage are entertainment, bandwidth used for enjoyment purposes, work, and

school. We then further specified the categories into activities for more nuance; for example social

media would be an activity of entertainment. By multiplying the bandwidth rate required for a

certain activity by the amount of time that activity takes, we found the total bandwidth required

per person per activity. We then summed the this over all activities, categories, and finally over all

people in a family. However, to create a more robust model and to account for realistic variation

in the time an activity takes, we created a probability density function (PDF) to model the biggest

bandwidth consumer and one of the most varied activities: online TV streaming. Taking all of

this into account, we ran a Python simulation that gave us the standard deviation and the mean

of bandwidth consumption for each of the three households, which gave the 90% and 99% levels.

We found that the 90% and 99% levels are 4150.42 and 4152.5 GB per year for Family 1, 4548.26

and 4554.09 GB per year for Family 2, and 12188.52, and 12191.33 GB per year for Family 3.

We then turned our focus towards 5G mobile broadband infrastructure. Cellular nodes are

placed in various locations around the world, allowing smartphone users to access 4G/5G data.

The location of these cellular nodes are chosen after mathematical calculations to maximize the

number of users that can connect to the towers in a certain geographic area. Using factors such as

population density, percentage of smart phone users, income, wage and cost of living [1], we created

a model that produces an optimal plan for placing cellular nodes in a given region. We applied the

model in three hypothetical regions A, B, and C, ranking the subregions within each region from

most to least important in terms of receiving a cellular node, creating an optimal distribution plan

to the subregions. We find that out of all the subregions, C3, C4, and C5 should be distributed

cellular towers first. Region by region, the first subregions should be A5, B3, and C3.
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1 Part I: The Cost of Connectivity

1.1 Restatement of the Problem

We are tasked to do the following:

• Create a model to find the per-unit price of bandwidth.

• Use our model to predict values over the next 10 years.

Our model uses a differential equation relating per-unit bandwidth cost over time. Factors

considered in this equation include supply and demand of broadband internet access, in which

future supply is found through existing data predictions and future demand is calculated by a

logistic model predicting the number of people with broadband internet access. For the internet

demand logistic model, we use existing data on the increasing number of internet subscriptions

starting from year 2000 to year 2018 to model growing access of internet broadband on a timeline.

After determining supply and demand, we apply the final model that predicts per-unit bandwidth

cost in the US and UK in 2030.

1.2 Assumptions

1. The number of fixed subscriptions for broadband internet is proportional to the number of

people with access to broadband internet.

• Justification: Broadband internet access is primarily geographical, where separated

geographical areas uniquely provide broadband access. Therefore, everyone amongst

those with subscriptions and access resides in similar locations. Hence, service for

broadband internet is determined by the proportion of people in a geographical area—

the number of people with access—and the rate at which they subscribe to service

providers.

2. The change in population of the United States is negligible.

• Justification: This is negligible in the final calculations

3. The growth of broadband access follows a logistic curve.

• Justification: Initially, internet is an unknown technology and the growth of broadband

internet access is slow. However, as the use of internet becomes more widespread, the

growth of broadband access rapidly increases to accommodate increasing popularity.

Eventually, as access to broadband increases to a carrying capacity, lack of access is

sequestered amongst those that are hardest to provide access to. This relative model of

growth is consistent with that of a logistic growth model.

4. An economic model of supply and demand can be used to determine the equilibrium price

as the per-unit bandwidth cost.

• Justification: The equilibrium price is the market price that best profits sellers. The

best price for sellers of internet bandwidth is the cost that they will put in the market,

which is the cost per unit bandwidth for consumers.
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5. The impact of supply and demand in the US and UK will be the same.

• Justification: Consumer habits amongst those in the US and UK are similar [21],

meaning that they will have similar views of the market. Consequently, the forces of

supply and demand will have similar effects.

6. The cost of bandwidth follows a logistic decay.

• Justification: At first, when bandwidth technology first comes out, the decrease in

price is slow as technology is underdeveloped. However, price drops rapidly as new

technological developments occur until, eventually, the decrease in price slows down

again as the commercial prices reaches closer to the raw price of production.

7. The cost of bandwidth in the UK is proportional to the cost in the US.

• Justification: Given that consumer habits are similar, especially for internet services

[21], it is likely that the US and UK maintain a proportional cost difference.

1.3 Model Development

1.3.1 Parameters

1. Year (t).

2. Number of People with Broadband Access (Na(t)). The number of people in the

United States that have access to broadband internet as a function of time.

3. Number of People with Broadband Subscriptions (Ns(t)). The number of people in

the United States that have subscriptions to broadband internet as a function of time.

4. US total population (c). The total US population represents the carrying capacity in our

logistic regression.

5. Bandwidth cost (C(t)). A model of the per-unit bandwidth cost as a function of time.

6. Demand (d). The demand for broadband internet access.

7. Supply (s). The supply of broadband internet access.

1.3.2 Model Derivation

We begin by looking to quantify the rate of change of per-unit bandwidth cost over time as a

differential equation. In a free market, the equilibrium price of a market is determined by the

supply and demand for a good [14]. With consideration to Assumption 4, we will use the supply

and demand as factors in determining the cost per unit bandwidth. Other factors such as cost

of energy or cost of long distance services are not considered because these are all expenses. Due

to the nature of the supply-demand model, the equilibrium point already takes into account any

changes in expenses because it reflects highest profit, not revenue. Therefore, a possible increase

in energy expenditures in the future is not considered in our model, as it is already accounted for

when we consider profit.
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We use historic data on internet access in the US to mirror general internet access in the UK,

as the technological infrastructure for internet is comparable between the two countries [27]. In

this case, over time, both supply and demand of internet access increase because, as the US and

UK become even more digital, producers increase their supply as more consumers connect to the

internet for long periods of time, especially with the impact of COVID-19 on increasing reliance on

the internet. In terms of a simple economic supply-demand model, an increase in supply decreases

the equilibrium price whereas an increase in demand increases the equilibrium price. Following

Assumption 6, there is a minimum price for the cost of bandwidth. Intuitively, this would occur

when the cost of bandwidth is equal to the cost of production. Given that there is a roughly

12.82% margin for bandwidth [24], with a cost of 43 cents in the US [5], the raw cost of production

is around 38 cents. Thus, we can write that
dC

dt
= −k1 ·

1

s
· d · C · (0.38− C) (1)

with constant k1 and rates of change s, d. On the supply side, the expansion of the submarine

cable market increases by a cumulative annual growth rate of 7.1% from 2020 to 2027 [15]. As

submarine cables account for nearly 90% of all internet traffic [15] [26], this growth approximately

accounts for the entire growth of the supply. For sake of brevity, we assume this to continue to

2030. Thus, for our purposes, we know the value of s to be 1.071.

Determining demand growth of broadband internet access is a more rigorous process. However,

we can use internet access as a mirrored function for demand, as consumption by consumers, in

this case an increased access to the internet, is the primary component of aggregate demand [20].

Since the growth of internet services in general cannot increase exponentially, instead, as per

Assumption 3, we use a logistic model to regressively quantify a function for demand. Using data

for broadband internet access, we can determine the rate of increase in internet access in general,

which represents an increase in demand of internet.

We begin by looking for a way to quantify the growth of access to broadband internet services.

Unfortunately, there is no existing data regarding historical access to broadband internet in the

US. Therefore, we must make use of Assumption 1 to create approximate historical data for access

to broadband internet.

Our estimate takes the form of the following equation:

Ns(t) = λ1 ·Na(t) (2)

Problematically, the only known value for Na(t) is for 2020, a year where no historical data is

available for Ns(t), which only spans from 2000 to 2018. However, using Assumption 3 and the

data from Table 1.1, we are able to estimate the value of Ns(2020) with a logistic regression to

determine a numeric value for λ1. Our logistic takes the general form

Ns(t) =
c

1 +Ae−b(t−2000) + d
where A, b, d are constants and c is the population of the United States, a logical maximum number

of people with subscriptions to broadband internet. Fitting this equation to the historical values

of Ns(t) from t = 2000 to t = 2018, we can numerically determine the values of our constants.

Plugging in our constant values, we determine a quantitative equation to approximate Ns(t):

Ns(t) =
330.01

1 + 0.581562e−0.147446(t−2000)
− 207.183, r2 = 0.9926 (3)
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Number of broadband subscriptions Ns(y) over time

Year Ns(y)

2000 7.07

2001 12.79

2002 19.88

2003 27.74

2004 37.35

2005 51.16

2006 60.24

2007 71.70

2008 77.13

2009 79.99

2010 84.52

2011 88.32

2012 92.51

2013 96.03

2014 97.81

2015 102.21

2016 105.71

2017 108.19

2018 110.57

Table 1.1: Number of broadband subscriptions, in millions, from 2000-2018 [29]

Number of people with internet access Na(y) over time

Year Na(y)

2000 19.44

2001 35.17

2002 54.66

2003 76.27

2004 102.69

2005 140.66

2006 166.07

2007 197.14

2008 212.06

2009 219.93

2010 232.38

2011 242.83

2012 254.35

2013 264.03

2014 268.92

2015 281.02

2016 290.64

2017 297.46

2018 304.01

Table 1.2: Number of people with internet access, in millions, from 2000-2018

Computing Ns(2020), we determine that approximately 113.15 million people have subscriptions

to broadband internet in 2020. Additionally, we know the number of people without broadband

access [39] and the population of the United States in 2020 [7], allowing us to compute the value
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of Na(2020), approximately 311.10 million people. Plugging in Na(2020) and Ns(2020 to (1), we

determine λ1 to be approximately 2.74945. Using (1) and our value of λ1, we can calculate the

value of Na(y) annually from 2000 to 2018 as seen in Table 1.2.

Once again, per Assumption 3, we can fit our data to a logistic curve, taking the form Na(t) =
330.01

1+Ae−b(t−2000) with A = 6.08569 and b = 0.265082. This gives us our numeric equation that relates

Na(t) and t.

Na(t) =
330.01

1 + 6.08569e−0.265082(t−2000)
, r2 = 0.9697 (4)

Fig 1.1

In a standard logistic equation following the form dN
dt = rN(K − N), the intrinsic rate of

growth, r is expressed in the solution as rK = b. In our equation, we can thus solve for r by

dividing b by c, the “carrying capacity” for internet demand in the US. This yields d = 1.000803.

We can now solve for C. Integrating our differential equation for C, we find that

C(t) =
0.38

1−Ae−0.38·k1· ds ·(t−2021)
(5)

We can now delineate our function C(t) into CUS(t) and CUK(t) for the cost of bandwidth in the

US and UK respectively. We know that C0US, the current price per Megabit per second in the US,

is 43 cents. Further, in the UK, it costs 60 cents per Mb/s, giving us the value of C0UK [5].

We can then plug in t = 2021 and set the equation equal to C0 to compute A, finding that

AUS = 0.1163.

This gives us the following equation:

CUS(t) =
0.38

1− 0.1164e−0.38·k1· ds ·(t−2021)
(6)

We also must compute k1. To compute a value for k1, we use the provided data for 2012 [1]. Using

median values, we can compute the median value of the cost per Mb/s of bandwidth for each city.

Simply taking the average of these values gives a representative cost of $2.37 per Mb/s. Plugging

this into (6) gives k1 = 0.6959

Per Assumption 7, we also know that we can write the cost of bandwidth in the UK as a

proportion of that of the US with constant of proportionality k2 = 60
43 . Plugging in times t from

2022 to 2031, we can then compute the following costs per megabit of bandwidth in the US and

UK.

8
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Price of bandwidth, C(t), over time in the US and UK over time in USD

Year CUS(t) CUK(t)

2022 0.42 0.58

2023 0.41 0.57

2024 0.40 0.56

2025 0.40 0.55

2026 0.39 0.55

2027 0.39 0.54

2028 0.39 0.54

2029 0.39 0.54

2030 0.38 0.54

2031 0.38 0.54

Table 1.3: Price of bandwidth over time in the US and UK

1.4 Results and Discussion

We predicted that the cost of bandwidth per Mb/s in 2031 for the US and UK to be $0.38 and

$0.54 respectively (note: UK values were also calculated in USD). These values are reasonable,

especially given that internet service providers are offering 5G internet services without additional

costs compounded from more established 4G services [31]. Additional competition would decrease

costs while increasing technological advancements increase speeds, generally decreasing the per-unit

cost of bandwidth.

1.5 Sensitivity Analysis

We seek to test our model’s reliability by performing sensitivity analysis based on possible discrep-

ancies due to the assumptions above. For example, despite Assumption 1, although unlikely, it’s

possible for someone to have broadband internet access without a fixed broadband subscription.

The person who got broadband internet access without a fixed broadband subscription wouldn’t

be accounted for in the variable d, the demand of internet access, because d was derived based on

fixed subscriptions only. As a result, ds would also be slightly decreased since d is in the numerator.

We simulate d
s as a changing variable since this value contains the most uncertainty due to dis-

crepancies of real world supply and demand of internet access.

Sensitivity for d
s

% change in variable % change in CUS(t) for

year 2031

% change in CUK(t) for

year 2031

-10 % + 0.242 % + 0.242 %

- 5% + 0.113 % + 0.113 %

+5 % - 0.098 % - 0.098 %

+10 % - 0.194 % - 0.194 %

Table 1.4: Sensitivity Analysis for d
s

9
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To calculate the percentage change for CUS(t) in the above table, we plugged in 2031 to equation

(6) with 0.95 d
s first while keeping all other parts of the equation the same. Then we adjusted

to 1.05 d
s . In the same manner, we adjusted d

s for +/- 10%. Finally, we repeated this process

by calculating percentage change for CUK(t) with +/- 5% and + 10% d
s in the UK. We noticed

that the effect of changing d
s on percentage change of bandwidth cost is very small, with each all

changes being less than 0.25%. As a result, such small effects means that the actual cost would not

change when rounding to the hundredths place, remaining at $0.38 and $0.54. Hence, the validity

of our model is confirmed.

1.6 Strengths and Weaknesses

1.6.1 Strengths

Our model incorporates historical data to draw relevant conclusions about the future, giving sta-

tistical credence to our observations. We use economic implications to highlight the influence of

various factors on the cost of bandwidth. Our use of cost data eliminates the need to consider

various factors that also influence cost such as increasing efficiency or power as calculated through

the Shannon-Hartley theorem [30][32], as those costs are already assumed.

1.6.2 Weaknesses

Our model overextrapolates trends from the US for the UK. We rely on trends to support our

observations towards demand and supply. Our calculation for demand is also indirect, potentially

resulting in errors due to intermediate simplification. Per the Shannon-Hartley theorem [30] [32],

we fail to recognize the impact of additional Gaussian white noises from further development of

cables, which could impact the speed of internet services. We overgeneralize our data as a uniform

distribution across the geographical stratification of the country. Our model may be predictive

in regions with higher infrastructure development but fails to consider the different environmental

factors in rural and technologically underdeveloped regions [33]. Lastly, our model does not consider

economic inflation or deflation. Economic impacts could change future CPI for internet services,

and the value of the US dollar or UK pound changes over time. We also fail to recognize that

the lower bound for bandwidth cost changes as new technologies allow for the cheaper and more

efficient production of internet services by providers. This causes our model to likely overestimate

the per-unit cost of bandwidth in 10 years time.

10
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2 Part 2: Bit by Bit

2.1 Restatement of the Problem

We are tasked to do the following:

• Create a flexible mathematical model to predict a household’s internet needs over a year

• Apply the model to the three provided example households

• Analyze the three households with our model to determine the required bandwidth for 90%

and 99% annual bandwidth usage

Our model for Part II categorizes internet usage in an household into three primary categories. We

consider the time spent per day on each of these categories through various activities that make

up the majority of the internet usage in that category. Assume that any time we refer to a Family,

we are referring to one of the three households given to us in the prompt.

2.2 Assumptions

1. We can use the normal model to predict the 90 and 99 percent confidence intervals for the

true proportion of bandwidth required for each of the three listed “families” in each internet

usage category.

• Justification: Because of the random variability of factors, such as the amount of

television and homework assigned per day, we can utilize the normal model and standard

deviation calculations to calculate our confidence intervals. Also, because of the way

that our modern world revolves around the internet, the large sample size of internet

usage events occur in multitudes, thereby making the normal model more effective.

Although we acknowledge that certain factors may not be independent, ultimately the

percentage difference between differing values of the standard deviation as a result of

smaller changes in the way we consider independence are negligible to the overall result

of the model. Lastly, the bandwidth usage is randomized between different users. Hence,

the assumption conditions for a normal model in this case are met.

2. We can approximate each person within the three listed families to be an average represen-

tative of each of the respective age groups that they are a part of.

• Justification: Because this is something that is not specifically part of the prompt,

and we believe it is the most reasonable assumption of the internet usage of each family,

we assume it to be true. However, we ultimately acknowledge the shortcomings of

presuming that M3 undergrads are not more productive than the average person in

their age group.

3. Entertainment, schoolwork, and work encompass all categories of internet usage.

• Justification: Students and kids primarily use the internet for school. Adults and

college students use the internet primarily for their work. Outside of this, people use

the internet primarily for entertainment purposes, including but not limited to gaming,

11
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social media, and streaming services. Any other usages for the internet beyond the

scope of these three categories we assume to be negligible based on data for the biggest

broadband consumption activities [36].

4. Zoom is the primary video conferencing platform for all school- and job-related work.

• Justification: Zoom and other platforms such as Google Meets, Skype, Hangouts, and

Whatsapp have similar bandwidth usages [8]. Furthermore, Zoom is the most used

conferencing platform, making it most representative of the service in general.

5. Bandwidth usage remains constant throughout the year.

• Justification: Seasonal and weather effects on internet are negligible for the purpose

of this model.

2.3 Model Development

We are tasked with creating an effective model to predict any given family’s internet needs over

the course of the year. Let F denote the set of families given to us in the prompt, where each

family F ∈ F is itself a set consisting of each person described as part of the household.

Our model is designed to predict any family’s internet needs based on a number of the major

categories of activities that may take up their time during the day. Per assumption 3, let C =

{Entertainment,School,Work} be the set of the major categories of activities that we consider

with our model, where each C ∈ C is itself a set consisting of the activities we consider as part of

each category.

Furthermore, to better approximate usage within these three categories, we looked to split

them into smaller activities. Per Assumption 2, we assume that the activities that we did not con-

sider as part of our model to contribute negligibly to overall broadband connectivity, and thus we

assume that they are all encompassing with respect to internet usage. These actives are as follows:

Entertainment = {streaming tv, surfing internet, streaming video, social media, gaming, music};
School = {homework, school-related Zoom}; and Work = {work-related Zoom}. These activi-

ties account for a large majority of the broadband usage of each category and thus can be used to

calculate broadband usage.

2.3.1 Parameters

1. Total bandwidth per family F over one year (B(F )). This is the function taking in

any family F ∈ F and returning the total bandwidth usage by F over the course of a year.

2. Time per activity (T (A,P )). This is the function taking in any activity A and returning

the amount of time that it is engaged in, per day.

3. Average rate of bandwidth consumption (µ(A)). The average rate of bandwidth con-

sumption required for any activity A, in megabits per hour.

4. Total bandwidth per person per category (f(C,P )). This is the total bandwidth used

by a specific person, from a certain category of usage per day.
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2.3.2 Model Derivation

When looking to find a model for the total bandwidth in megabits used by a family over the course

of a year, we must first split up the calculation into time and bandwidth used by every person

in the household. Since each person in every family has different digital habits, it is important

to account for such variation in bandwidth usage. However, it is also important to account for

the differences in bandwidth usage not only between different categories but also between separate

activities within those categories. Therefore, for family F ∈ F , the amount of bandwidth used by

each person P ∈ F , for each category C ∈ C, the following equation can be written:

f(C,P ) =
∑
A∈C

T (A,P ) · µ(A) (7)

Therefore, in order to calculate the total bandwidth usage in megabits for F , we sum over all

people and categories in the family:

B(F ) =
∑
P∈F

∑
C∈C

f(C,P ). (8)

Per Assumption 5, we assume that µ(A) stays constant, and therefore we can directly plug known

values into our equation. However, we cannot make this same assumption for T (A,P ), as the

amount of time that accomplishing the same activity over many times in the same year may differ

substantially. Therefore, we instead model the function for certain activities A as a normal model,

owing to the random and unpredictable nature of the time that many of the most bandwidth-

consuming activities may take. More specifically, because the activity “Streaming TV” takes up the

most amount of bandwidth out of all of our activities (See Table 2.2), we model T (Streaming TV, P )

using a normal distribution, in order to account for the wild variability that results in B(F ) that

results from smaller shifts in the value of the function. In our model, we also utilized known values

for the standard deviation in the amount of homework students (undergrad and in high school)

receive each day, to account for the relatively strong impact that the amount of homework has on

the daily bandwidth usage for students.

In order to manually calculate a reliable normal distribution for the amount of television that

different age demographics streamed per day, we opted to create a discrete probability density

function (PDF) for T (Streaming TV, P ), based on data which gives the probability of an individual

to use online video for a certain amount of time [28]. This allowed us to model the random chance

that a randomly selected individual would watch a certain hours of streamed television per week,

by dividing the percent of individuals in the survey who reported they watched those hours of

streamed television into the categories they fell into. This is summarized in the table below:

PDF for time spent per week streaming TV (in hours)

1-2 hours 3-4 hours 5-7 hours 8-10 hours 11-19 hours 20-24 hours

0.1395 0.098 0.05867 0.04567 0.01278 0.0194

Table 2.1: Probability Density Function for time spent per week streaming television (in hours)1

[28]

This was simulated for an entire year using a Python script (which can be found in Code

1Values under the columns represent the same value for each hour (e.g., the value under 1-2 hours represents the
equal probability of 1 hour and 2 hours of streamed television)
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Appendix II). This simulation was run over 3000 episodes (meaning 3000 different times), and the

results were plotted with matplotlib in a histogram, which is shown below

Fig 2.1: Histogram of Hours of Streamed TV Watched per Year

The script also outputted the exact numbers for the mean hours of streamed television per

user over a year (378.26) and the standard deviation (17.99), which were used later in the model

to calculate the data for the time spent per day on streaming television for the entire family. We

then proportionally extrapolated this data to all age groups, as the study was centered around the

35-49 age group, using the provided data[1].

2.4 Results and Discussion

The following table details known values for µ(A) over all of our activities A:

Bandwidth Usage Rates by Activity (µ0), in Megabits per hour

Value Streaming

TV

Surfing Streaming

Videos

Social

Media

Gaming Music Work-

related

Zoom

School-

related

Zoom

Homework

Bandwidth

Usage

24012

[34]

119.88 [3] 18000

[16]

972 [38] 2160 [10] 576 [17] 13680 [9] 13680 [9] 119.88 [3]

Table 2.2: Data for Bandwidth Usage of Considered Internet Activities

For each person P , we collected known data values for f(P,A). In order to sum these values
in families, we either combined values into one or summed them separately, depending on whether
or not they were independent (detailed below). For each independent addition, we added standard

deviations in quadrature. Table 2.3 below details known values for
∑
P∈F

T (A,P ) over all of our

activities A, where F is Family 1, the couple in their 30s and their 3-year-old child.

Family 1 Data, in Hours per Day
Value Streaming

TV
Surfing Streaming

Videos
Social
Media

Gaming Music Work-
related
Zoom

School-
related
Zoom

Homework

Mean
Time Per
Day

.9976 ±
0.03378

6.724 1.633 2.586 2.346 0.4619 2.113 0 0

Table 2.3: Data for Bandwidth Usage of Family 1 [1][13][2][6][35]
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For this table, we assumed that the couple in the family shared the same streaming television
times, and that this television streaming rate was independent from that of their 3-year-old. We
further assumed that, for every other activity, their data usage was independent. The next table

details known values for
∑
P∈F

T (A,P ) over all of our activities A, where F is Family 2, the retired

woman in her 70s and her two school-aged grandchildren.

Family 2 Data, in Hours per Day

Value Streaming

TV

Surfing Streaming

Videos

Social

Media

Gaming Music Work-

related

Zoom

School-

related

Zoom

Homework

Mean

Time Per

Day

2.211 ±
0.0995

0.7378 0.9308 1.730 1.435 0.2635 0 1.755 5.570 ±
1.815

Table 2.4: Data for Bandwidth Usage of Family 2 [1][13][2][6][35]

For this table, similar to that of Table 2.3, we assumed that the woman’s two grandchildren

shared the same streaming television times, and that this television streaming rate was independent

from that of their grandmother. We further assumed that, for every other activity, their data usage

was independent. The next table details known values for
∑
P∈F

T (A,P ) over all of our activities A,

where F is Family 3, the three former M3 undergraduate students.

Family 3 Data (all numbers are in hours per day)

Value Streaming

TV

Surfing Streaming

Videos

Social

Media

Gaming Music Work-

related

Zoom

School-

related

Zoom

Homework

Mean

Time Per

Day

1.671 ±
0.0459

1.514 2.45 3.879 3.519 0.6929 5.143 7.286 7.286 ±
2.374

Table 2.5: Data for Bandwidth Usage of Family 3 [1][13][2][6][35]

For this table, as in the last two tables, we assumed that the three students shared television

screen times. We further assumed that, for every other activity, their data usage was independent.

Using the results from these three tables, we then ran a Python simulation (which can be found

in Code Appendix II) which simulated the internet activities conducted by the entire family. For

each iteration of the simulation, we picked random values based on normal distributions for each of

the activities in which we had standard deviations (streaming TV and homework), and, using (8),

generated a single possibility for the total bandwidth usage for each family. By running our script

over 1000 iterations, we were able to generate enough data points to create a rough mean and

standard deviation for the total bandwidth requirements for each of the three families, depicted in

Table 2.6:
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Total Bandwidth Consumption By Family Over One Year (in megabits)

Family (F) Mean Usage (B(F)) Standard Deviation of Us-

age (σB(F ))

Family 1 33182955.822 15929.872

Family 2 36328818.447 44660.894

Family 3 97480617.470 21507.867

Table 2.6: Total Bandwidth Consumption By Family Over One Year of Internet Usage (in

Megabits)

To see what covers their internet needs 90 and 99 percent of the time in the worst case scenarios,

we can look at each Family’s normal distribution and find the largest value of bandwidth usage. 90

percent of the time refers to the point which covers 90 percent of the distribution before it, which

covers 40 percent of the data right above the mean in the normal distribution, and 50 percent of

the data below the mean. This can be found with the z-score for an 80 percent confidence interval,

which we know is 1.282 [12]. We also can apply this to the largest bandwidth usage 99 percent

of the time, which again contains the bottom 50 percent of the normal distribution and the 49

percent of the values that are right above the mean, meaning that we can use the z-score for a 98

percent confidence interval, which we know is 2.326. From here, we can plug in our z-scores to get

final values, which are summarized in a table

Total Bandwidth Required For a Family over a year (in Megabits)

Family (F) 90 Percent Coverage

(1.282σB(F ))

99 Percent Coverage

(2.326σB(F ))

Family 1 4150.42 4152.50

Family 2 4548.26 4554.09

Family 3 12188.52 12191.33

Table 2.7: Total Bandwidth Required By Family for One Year of Internet Usage in Megabits for

90 and 99 % Coverage

These final numbers conclude the model and answer the question at heart, which is to determine

the minimum amount of bandwidth required to ensure that the internet needs of all 3 Families are

fulfilled.

2.5 Strengths and Weaknesses

2.5.1 Strengths

In our model, we made sure to account for the largest factors in determining the amount of

bandwidth used. We also were able to split the model into categories and activities, which allowed

for an in-depth calculation of the figures. Our final results are also very in-line with the current

average amount of GBs of data used for a household (869.9 GB)[11]. Our model was also very

cognizant of the current situation in which we live by factoring in both school-related Zoom and

work-related Zoom, allowing for a more accurate results when calculating broadband usage during

the COVID-19 pandemic.
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2.5.2 Weaknesses

We did not consider the relationship of time between activities—for instance, if the undergraduate

students got a lot of homework on one day, then the time they spend gaming or streaming television

may decrease, and vice versa. We acknowledge our failure to consider the potential dependencies

between each of our activities and that potential to negatively impact the robustness of our standard

deviations. Another weakness to this model is that it does not account for seasonal variation, such

as how students do not go to school (which is on Zoom) in the summer or during winter break.
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3 Part 3: Mobilizing Mobile

3.1 Restatement of the Problem

We are tasked to do the following:

• Develop a model to predict the optimal distribution strategy of 5G cellular nodes.

• Apply our model to the three provided regions to demonstrate its flexibility.

We devise a system of scoring subregions within a given region to determine an optimal plan of

cell tower distribution. We then use the data provided in the problem data set to consider the

distribution of cellular nodes amongst the hypothetical subregions and regions.

3.2 Assumptions

1. The proportion of a region at each age is constant through its subregions

• Justification: We don’t have data on the age stratification of each subregion. However,

in a defined geographical region, it is reasonable to presume this to be true.

2. Cell towers all have the same power and elevation

• Justification: Helps to standardize the range of each cell tower, as elevation and power

can impact the range [19] [40].

3. Other objects that disturb the transmission of cell towers are negligible

• Justification: Assumed for the sake of brevity [40].

4. The cost of living is uniform in all the subregions of a region

• Justification: The information for cost of living in each subregion is not provided.

This is a reasonable estimate based on the mean cost of living index of the actual region

in order to rank subregions.

5. The smart phone distribution is uniform amongst households in each subregion of a region.

• Justification: The information for households with smart phone access in each sub-

region is not provided. This is a reasonable estimate based on the smart phone access

proportion of the actual region in order to rank subregions.

6. All factors are equally weighted in ranking the subregions

• Justification: There is no information about what factors are most important in the im-

plementation of cell phone towers. Hence, we assume all factors to be equally weighted.
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3.3 Model Development

We consider various factors that influence a region’s usage of mobile broadband. For each subregion,

each factor is assigned an equal weight and scaled from 1–100. These scales are in reference to the

highest score in a category. The subregion with the highest score is the one prioritized for placing

a cellular tower. Hence, with this method, we can rank each subregion from the three hypothetical

regions in order from most to least prioritized for a cellular tower.

3.3.1 Parameters

1. Cost of Living (CL). The index of the cost of living in a region.

2. Median Wage (WM). The median wage of a region.

3. Area (A). The area of each subregion.

4. Population (P ). The population of each subregion.

5. Smart Phone Percentage (S). The proportion of each population that has access to a

smart phone.

6. Importance (Ir). The score assigned to each subregion for cell tower distribution.

7. Adjusted Income (Wa).

8. Population Density (σ).

9. Number of Towers (N).

10. Proportion of Population between 15 and 64 (R)

3.3.2 Model Derivation

We consider five primary factors in the ranking of the distribution of cell phone towers: adjusted

income, population density, number of towers needed, proportion of population between 15 and

64, and smart phone percentage. Per Assumption 7, we weight these factors equally, creating a

generalized score for distribution.

First, we need to quantify our factors. To find adjusted income, we simply need to divide the

median wage by the cost of living to find the effective wage in that region:

Wa =
WM

CL
(9)

The adjusted wage is important because 5G technology is not cheap [25]. Those with more money

are more likely to be financially capable and willing to back the establishment of 5G infrastructure.

Next, we look at population density. We compute this by

σ =
P

A
(10)

This is an important factor, as the more dense the population, the more people each individual

tower can cover and, thus, the more effective each individual cell tower is. Indeed, cell towers are
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optimally configured in regions with high population density [23]. Likewise, the number of towers

that are needed to cover a subregion is important in deciding the distribution of towers [25][4]. We

find that

N =
A

At
(11)

where At represents the area covered by each tower, which is constant per Assumption 2 and 3.

Hence, in relative scaling, we don’t actually need to consider the value of At as we compare the

number of towers amongst the subregions. For this factor, however, the lower the number of towers

needed, the better. Hence, we take 1
N as the factor to be considered in our model.

We also consider S and R, the proportion of people with smart phones and between the ages

of 15 and 64 in a region, respectively, as only these people can use 5G infrastructure. 5G is

cellular [37], meaning that only those with smart phones can actually benefit from cellular tower

infrastructure. We only look at those between 15 and 64 because this age range represents the

proportion of people that benefit most from cellular tower distribution; teenagers on average get

their phones from 12-13 years old, making those older than 15 likely to own phones so that they

are be able to use 5G networks [18]. Likewise, the average age of retirement is around 64 years,

after which most people are less reliant on cellular data networks, instead being able to stay home

throughout the day [22].

We normalize each factor such that the maximum value amongst the subregions is set to 100,

allowing us to assign an importance score to each subregion between 0 and 500.

3.4 Results and Discussion

We determine the following values for each factor for each subregion in Table 3.1:
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Rankings by subregion

Subregion Wa σ N S R Total

A1 18 4 8 79 84 193

A2 20 14 13 79 84 210

A3 30 15 15 79 84 223

A4 22 1 6 79 84 192

A5 20 27 28 79 84 238

A6 30 5 5 79 84 203

B1 58 9 3 99 77 246

B2 78 4 2 99 77 260

B3 100 2 2 99 77 280

B4 65 4 4 99 77 249

B5 62 3 1 99 77 242

B6 85 5 3 99 77 269

B7 76 2 1 99 77 255

C1 89 7 26 100 100 322

C2 40 33 71 100 100 344

C3 79 56 100 100 100 435

C4 58 100 42 100 100 400

C5 63 42 77 100 100 382

C6 86 60 32 100 100 378

C7 63 45 29 100 100 337

Table 3.1: Rankings of subregions within hypothetical regions A, B, and C [1]

Hence, for region A, subregions 5, 3, 2, 6, 1, and 4 should receive a cellular node in that order.

For region B, subregions 3, 6, 2, 7, 4, 1, and 5 should receive a cellular node in that order. For

region C, subregions 3, 4, 5, 6, 2, 7, and 1 should receive a cellular node in that order.

3.5 Strengths and Weaknesses

3.5.1 Strengths

Our model is well-rounded in considering various factors that influence usage of mobile broadband.

This increases accuracy of the rankings and reflects real behaviors of populations despite being

hypothetical regions. We are able to recognize both bandwidth usage and economic sustainability

in our model to best determine where to implement cell towers. We are able to avoid the complexity

in determining the optimal distribution pattern geographically by comparing relative area covered,

whereupon the area covered by each cellular node is no longer important.

3.5.2 Weaknesses

Our model is limited to only ranking subregion importance in relevancy to one another. Since in

these hypothetical regions we don’t know how the population is spread out within each subregion,

21



Team Number: 14485 Page 22

we can not determine where to place cellular towers within a subregion. We also assume that

people younger than age 15 and older than age 64 don’t use 5G, when there could be some people

in these age groups who do use mobile broadband. Thus, actual usage of mobile broadband in

some places may increase, so the rankings of some subregions could also increase. Further, in the

actual creation of cell tower hexagonal plots [4][41], various other factors contribute, including the

geographic topography as well as tall buildings [40] [23], limiting the effectiveness of 5G networks

in urban areas, something that our model fails to consider. We were limited in our data for smart

phone access and age stratification in subregions, leading to less robustness in the ranking of

subregions within the same region with regards to those two factors.
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4 Code Appendix I: MATLAB

1 x = 2000:2030

2 y = 330.01./(1+6.08569* exp ( -0.265072 * (x -2000)))

3 x1 = 2000:2018

4 y1 = [19.44 35.17 54.66 76.27 102.69 140.66 166.07 197.14 212.06 219.93 232.38

242.83 254.35 264.03 268.92 281.02 290.64 297.46 304.01]

5 plot(x, y)

6 hold on

7 plot (x1, y1, ’r’)

8 xlabel ’Year’

9 ylabel ’Number of People ’

10 title ’Number of People with Internet Access From 2000 -2030’

Listing 1: MATLAB code used to create Figure 1.1 in Part I: The Cost of Connectivity
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5 Code Appendix II: Python

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from tqdm import tqdm

4

5 # Each activity has a certain amount of megabit/hour bandwidth it uses , which is a

constant listed below

6 streamingTVBandwidth = 24012

7 streamingVidBandwidth = 18000

8 workZoomBandwidth = 13680

9 schoolZoomBandwidth = workZoomBandwidth # the bandwidth used for school and work

zoom can reasonably be assumed

10 # to be the same as per TODO insert

assumption

11 surfingBandwidth = 119.88

12 homeworkBandwidth = surfingBandwidth # the bandwidth used for surfing can

reasonably be assumed to be the same

13 # as the bandwidth used for homework as per

TODO insert assumption

14 socialMediaBandwidth = 972

15 gamingBandwidth = 2160

16 musicBandwidth = 576

17

18 # we now proceed to define a class , Family , to assist in our code’s execution

19

20

21 class Family:

22 def __init__(self , name):

23 self.identity = name

24 # Name of the family is kept as a variable for cleanliness and

identification.

25

26 self.streamingTVTA = 0

27 self.homeworkTA = 0

28 # Streaming TV and homework are variable T(A) values , so they are set as

separate variables which are to

29 # be computed by numpy later. They are initialized to 0 in the class

construction method.

30 self.streamingTVTAMean = 0

31 self.streamingTVTASigma = 0

32 self.homeworkTAMean = 0

33 self.homeworkTASigma = 0

34

35

36 self.surfingTA = 0

37 self.streamingVidTA = 0

38 self.socialMediaTA = 0

39 self.gamingTA = 0

40 self.musicTA = 0

41 self.workZoomTA = 0

42 self.schoolZoomTA = 0

43 # Surfing the Internet , Streaming Video , Social Media , Gaming , Music , Work
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-related Zoom , and School -related

44 # Zoom are all activities that are constant numbers for a person , yet they

are defined as variables for the

45 # simplicity and cleanliness of the code.

46

47 self.entertainmentActivitiesTA = [self.streamingTVTA , self.surfingTA , self

.streamingVidTA ,

48 self.socialMediaTA , self.gamingTA , self.

musicTA]

49 # Streaming TV , Surfing the Internet , Streaming Video , Social Media ,

Gaming , and Music are all activities

50 # that fall in the entertainment category.

51

52 self.workActivitiesTA = [self.workZoomTA]

53 # Work -related Zoom is the only activity that falls into the work category

.

54

55 self.schoolActivitiesTA = [self.schoolZoomTA , self.homeworkTA]

56 # School -related Zoom and homework are the only activities that fall into

the school category.

57

58 def generateChangingVariables(self):

59 # Streaming TV and homework are the only activities that need to be

periodically regenerated due to their

60 # high variability , as mentioned earlier in the code.

61

62 self.streamingTVTA = np.random.normal(loc=self.streamingTVTAMean , scale=

self.streamingTVTASigma)

63 # generate the T(A) value for streaming TV with np.random.normal to get a

random value from the

64 # normal distribution representing the T(A) values the "loc" argument

represents the mean and the

65 # "scale" argument represents the standard deviation.

66

67 self.homeworkTA = np.random.normal(loc=self.homeworkTAMean , scale=self.

homeworkTASigma)

68 # generate the T(A) value for homework with np.random.normal to get a

random value from the

69 # normal distribution representing the T(A) values the "loc" argument

represents the mean and the

70 # "scale" argument represents the standard deviation.

71

72 def generateChangingParameters(self , streamingTVTAMean , streamingTVTASigma ,

homeworkTAMean , homeworkTASigma):

73 self.streamingTVTAMean = streamingTVTAMean

74 self.streamingTVTASigma = streamingTVTASigma

75 self.homeworkTAMean = homeworkTAMean

76 self.homeworkTASigma = homeworkTASigma

77

78 def generateConstantVariables(self , surfingTA , streamingVidTA , socialMediaTA ,

gamingTA , musicTA , workZoomTA ,

79 schoolZoomTA):

80 self.surfingTA = surfingTA
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81 self.streamingVidTA = streamingVidTA

82 self.socialMediaTA = socialMediaTA

83 self.gamingTA = gamingTA

84 self.musicTA = musicTA

85 self.workZoomTA = workZoomTA

86 self.schoolZoomTA = schoolZoomTA

87

88 def generateFamilyOutput(self):

89 totalBandwidthUsage = []

90 # totalHomeworkBandwidth = []

91 for day in range(0, 365): # iterating over all the days as the T(A)

values are for each day

92 thisDayBandwidthUsage = 0

93 self.generateChangingVariables ()

94 # we first generate the variables that need to be regenerated on each

day

95

96 # now we can proceed to add to the bandwidth usage of each day the

constant variables (T(A) does not

97 # vary day by day)

98 thisDayBandwidthUsage += self.surfingTA * surfingBandwidth

99 thisDayBandwidthUsage += self.streamingVidTA * streamingVidBandwidth

100 thisDayBandwidthUsage += self.socialMediaTA * socialMediaBandwidth

101 thisDayBandwidthUsage += self.gamingTA * gamingBandwidth

102 thisDayBandwidthUsage += self.musicTA * musicBandwidth

103 thisDayBandwidthUsage += self.workZoomTA * workZoomBandwidth

104 thisDayBandwidthUsage += self.schoolZoomTA * schoolZoomBandwidth

105

106 # now we can proceed to add to the bandwidth usage of each day the

changing variables

107 thisDayBandwidthUsage += self.streamingTVTA * streamingTVBandwidth

108 thisDayBandwidthUsage += self.homeworkTA * homeworkBandwidth

109

110 # finally , we can add today’s bandwidth usage to a list that maintains

this value over the entire year

111 totalBandwidthUsage.append(thisDayBandwidthUsage)

112

113 return totalBandwidthUsage

114

115

116 # Scenario 1

117 # Couple in their 30s

118 familyTeacher = Family("familyTeacher")

119 familyTeacher.generateChangingParameters (.9976437104 , 0.0337808 , 0, 0) # this is

the data for the streaming TV and homework

120 # activities

for the first family

121 familyTeacher.generateConstantVariables (6.723804714 , 1.633342857 , 2.585714286 ,

2.345714286 , 0.4619142857 ,

122 2.11285 , 0)

123 familyTeacherAverages = []

124 familyTeacherSums = []

125 for episode in tqdm(range(0, 1000)): # we run 1000 episodes (years) for each
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family to get a reasonable mean and

126 # standard deviation. tqdm is used to track

progress in the episodes

127 familyDailyOutputList = familyTeacher.generateFamilyOutput () # generate the

output of the family

128 familyTeacherAverages.append(np.average(familyDailyOutputList)) # add this to

an array maintaining the averages

129 familyTeacherSums.append(np.sum(familyDailyOutputList)) # add this to an

array maintaining the yearly sums

130

131 print(np.mean(familyTeacherAverages)) # np.mean gets the mean of the average

daily bandwidth usage in a year

132 print(np.std(familyTeacherAverages)) # np.std gets the standard deviation

133 print ()

134 print(np.mean(familyTeacherSums)) # np.mean gets the mean of the total yearly

bandwidth usage

135 print(np.std(familyTeacherSums)) # np.std gets the standard deviation

136

137

138 # Scenario 2

139 # Old grandma with two grandchildren

140 familyGrandma = Family("familyGrandma")

141 familyGrandma.generateChangingParameters (2.211 , 0.0995 , 5.57, 1.815) # this is

the data for the streaming TV and homework

142 # activities

for the second family

143 familyGrandma.generateConstantVariables (0.7377530612 , 0.9308435843 , 1.729932352 ,

144 1.435102041 , 0.2635065122 , 0, 1.755102041)

145 familyGrandmaAverages = []

146 familyGrandmaSums = []

147 for episode in tqdm(range(0, 1000)): # we run 1000 episodes (years) for each

family to get a reasonable mean and

148 # standard deviation. tqdm is used to track

progress in the episodes

149 familyDailyOutputList = familyGrandma.generateFamilyOutput () # generate the

output of the family

150 familyGrandmaAverages.append(np.average(familyDailyOutputList)) # add this to

an array maintaining the averages

151 familyGrandmaSums.append(np.sum(familyDailyOutputList)) # add this to an

array maintaining the yearly sums

152

153 print(np.mean(familyGrandmaAverages)) # np.mean gets the mean of the average

daily bandwidth usage in a year

154 print(np.std(familyGrandmaAverages)) # np.std gets the standard deviation

155 print ()

156 print(np.mean(familyGrandmaSums)) # np.mean gets the mean of the total yearly

bandwidth usage

157 print(np.std(familyGrandmaSums)) # np.std gets the standard deviation

158

159 # Scenario 3

160 # Undergrads with part time job

161 familyUndergrads = Family("familyUndergrads")

162 familyUndergrads.generateChangingParameters (1.671 , 0.04588748 , 7.285714286 ,

30



Team Number: 14485 Page 31

2.374070275) # this is the data for the streaming TV and homework

163 # activities

for the third family

164 familyUndergrads.generateConstantVariables (1.514271429 , 2.450014286 , 3.8788571429 ,

165 3.518571429 , 0.6928714286 , 5.142857143 ,

7.285714286)

166 familyUndergradsAverages = []

167 familyUndergradsSums = []

168 for episode in tqdm(range(0, 1000)): # we run 1000 episodes (years) for each

family to get a reasonable mean and

169 # standard deviation. tqdm is used to track

progress in the episodes

170 familyDailyOutputList = familyUndergrads.generateFamilyOutput () # generate

the output of the family

171 familyUndergradsAverages.append(np.average(familyDailyOutputList)) # add this

to an array maintaining the averages

172 familyUndergradsSums.append(np.sum(familyDailyOutputList)) # add this to an

array maintaining the yearly sums

173

174 print(np.mean(familyUndergradsAverages)) # np.mean gets the mean of the average

daily bandwidth usage in a year

175 print(np.std(familyUndergradsAverages)) # np.std gets the standard deviation

176 print ()

177 print(np.mean(familyUndergradsSums)) # np.mean gets the mean of the total yearly

bandwidth usage

178 print(np.std(familyUndergradsSums)) # np.std gets the standard deviation

Listing 2: Python 3 code used to determine mean and standard deviation of yearly bandwidth

usage by family for Part II: Bit by Bit
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1 import numpy as np

2 import matplotlib.pyplot as plt

3 import time

4

5 streamingTVPDFValues = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24]

6 # values for the probability density function of TV streaming

7

8 for val in range(0, len(streamingTVPDFValues)):

9 streamingTVPDFValues[val] = streamingTVPDFValues[val ]/7

10

11

12 streamingTVPDFProbs = [0.1395 , 0.1395 , 0.098, 0.098, 0.176/3 , 0.176/3 , 0.176/3 ,

0.137/3 , 0.137/3 , 0.137/3 , 0.115/9 ,

13 0.115/9 , 0.115/9 , 0.115/9 , 0.115/9 , 0.115/9 , 0.115/9 ,

0.115/9 , 0.115/9 , 0.0194 , 0.0194 ,

14 0.0194 , 0.0194 , 0.0194]

15 # probabilities of each value in the pdf of TV streaming

16

17 print(np.sum(streamingTVPDFProbs))

18 streamTimeEpisodeData = []

19

20 for episode in range(0, 3000):

21 totalStreamTime = 0

22 for day in range(0, 365):

23 streamTime = np.random.choice(a=streamingTVPDFValues , size=None , replace=

True , p=streamingTVPDFProbs)

24 # print(f"Day {day +1}:\ nStreamed: {streamTime }\ nSchool: {schoolWorkTime }\

nWork: {workTime }\n")

25 totalStreamTime += streamTime

26 streamTimeEpisodeData.append(totalStreamTime)

27

28 print(np.mean(streamTimeEpisodeData))

29 print(np.std(streamTimeEpisodeData))

30

31 plt.hist(streamTimeEpisodeData , bins =80)

32 plt.title(’Histogram of hours of streamed TV watched per year in simulation of

3000 years ’)

33 plt.xlabel(’Hours of streamed TV watched per year’)

34 plt.ylabel(’Frequency (years)’)

35

36 plt.show()

Listing 3: Python 3 code used to calculate standard deviations of time spent per day streaming

TV through the internet in Part II: Bit by Bit
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