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Executive Summary
To the Director of the Memphis and Shelby County Division of Planning and Development,

The Earth has been steadily warming. In fact, 2024 was named the Earth’s warmest year on record. The last
time Earth had a colder than average year was 1976: 48 years ago. With increasing global temperatures, heat waves
and extreme weather events have been occurring at greater frequencies, disrupting communities around the globe.
Power grids, which are vital to a city’s ability to provide services for the public, are placed under particular strain
during heat waves. This excess strain during heat waves can lead to heat-induced power outages. Certain citizens
are disproportionally affected by these heat-induced power outages. Therefore, government resources must be justly
allocated to neighborhoods to ensure that help can effectively reach populations in need.

In this paper, we first predicted the interior temperatures of different housing structures in Memphis over a 24-hour
period based on the ambient temperature of the surrounding environment with a physical analysis approach. We
started by fitting a sinusoidal curve to the ambient temperature data since it is known to oscillate over time, and then
used the differential form of Newton’s Law of Cooling to calculate the temperature inside of the building with no air
conditioning. We analytically solved the differential equation and applied it twice to represent the transfer of heat
energy from the surrounding environment into the walls of the building, and the transfer from the walls to the interior of
the building. We found that the maximum temperatures for the 4 homes over the 24 hour period were 38.458, 38.441,
38.379, and 38.440◦C, respectively.

Next, we built a model to determine the peak demand in Memphis’s power grid during the summer months due to
extensive energy consumption. We compiled a list of variables with possible correlations to energy consumption and
determined peak temperature to have a statistically significant correlation. We created linear regression models for the
increase in temperature in Memphis per year due to global warming as well as the anomalies in temperature over time.
In the year 2025, we predicted that the temperature will be 33.1°C and will correlate to a monthly peak demand of
1.004× 109 kWh. We predicted that in the year 2045, the predicted temperature will be 33.58°C which correlates to a
monthly peak demand of 1.018× 109 kWh.

Lastly, we created criteria for the vulnerability of certain neighborhoods in Memphis, TN and determined what
proportion of total heat wave relief resources should be allocated to each neighborhood. We identified five main factors
that affected the vulnerability of the population: the proportion of seniors and children under 18 with respect to the
total population, the weighted age of the houses, the amount of open space and forestry in an area, the amount of
people that commute to work via public transit as opposed to driving or working from home, and the median income.
After defining ”scores” for each of these variables, we used an Entropy Weight Model to weight the criteria based on
their variability (i.e. parameters with higher variability are considered more important to the final ranking). Then, we
multiplied the weights for each neighborhood with the scores for each individual category to get the final scores for each
neighborhood, then ranked the neighborhoods by score, with a higher score indicating a higher vulnerability. Finally,
we multiplied these final scores with the populations of each neighborhood to determine which neighborhoods require
the most resources. We found that Uptown/Pinch District required the most resources out of all the neighborhoods with
13% of all resources, while East Memphis/Colonial Yorkshire required the least with 2% of all resources in the city.

We believe that these results give key insight into the gravity of this issue of heat waves in the city, their effect on
non-air-conditioned homes in Memphis, the total possible strain on Memphis power grids during heat waves, and the
vulnerabilities of different districts to heat waves. We hope that these results will assist lawmakers to enact policy to
support different communities in the city during crises caused by global warming, and to ensure that the city is best
prepared to protect its citizens and businesses for similar crises to come.
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Hot Button Issue: Staying Cool as the World Heats Up
1 Q1: Hot to Go

1.1 Defining the Problem
The first problem asks us to model the temperature inside of a building of a given size that does not have air conditioning
as a function of the ambient temperature during a heat wave. We will be utilizing data on heat waves and building
sizes from Memphis, TN to create our model.

1.2 Assumptions
1. Initial building temperature starts at the same temperature as the initial ambient temperature (29.4°C).

Justification: With no separate air conditioning, the initial building temperature will initially start at room
temperature.

2. The building temperature does not vary significantly from ambient temperature during a heat wave.
Justification: This assumption is necessary to use Newton’s Law of Cooling in this model. From the data, the
difference between the ambient temperature and room temperature is strictly less than 40°F, which is sufficient
for the model to apply as all temperature calculations are done in Kelvin.

3. Ambient temperature is constant at every point around the building.
Justification: This allows us to simplify the model so as to not account for fluctuations in temperature at different
points due to wind turbulence, data which is not given for this problem.

4. Rooms are square in floor plan and of equal size.
Justification: This simplifies the surface area calculations, as the dimensions of the houses are otherwise not
given and thus the change in temperature could not be calculated.

5. Ceiling height can be modeled as 2.4 m.
Justification: This is the average height for a house in Memphis, TN (Ceiling Heights in Homes and Offices —
Zell/Lurie Real Estate Center). This can be used to model the height of a single-story house, which can scale to
an n-story building.

6. Houses modeled are made of wood.
Justification: The vast majority of houses in the US are made from wood, and thus such a simplification would
be accurate (Semuels, 2021). This simplification allows for the emissivity and specific heat capacity of wood to
be used for heat emission.

7. Heat enters houses through the walls and ceiling only.
Justification: We are neglecting the effect of geothermal fluctuations in our model as they are not in the spirit of
the problem.

8. The thickness of the walls and ceiling is 12 in.
Justification: This is a standard value for exterior wall thickness in the US (Understanding Wall Thickness: Why
It Matters for Effective Insulation, 2024).

1.3 Variables
The below variables are factors we take into account in our model.
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Table 1: Variable Definitions of Variable Heating Model
Variable Definition
T (t) Temperature at a Given Time t (K)
T0 Initial Temperature of House (K)

Ts(t) Surrounding Temperature (K)
ε Emissivity Coefficient (W m−2)
k Cooling Constant (s−1)
σ Stefan-Boltzmann Constant (W m−2 K−4)
m Mass of Building (kg)
c Specific Heat Capacity of Building (J kg−1 K−1)
t Time (h)
A Surface Area of Building (m2)
h Height of Building (m)
F Floor Area (m2)
Q Thermal Energy of the Building (J)

This table shows the variable definitions for Variable Heating Model.

1.4 Model and Solution
1.4.1 Regressing Outside Temperature with Time

One of the things we wanted to model was how the ambient temperature during a heat wave varies with time. Modeling
the ambient temperature as non-constant allows us to account for fluctuations in temperature due to heat waves.

We decided to model the ambient temperature as a sinusoidal wave as a function of time because temperature tends
to oscillate with time. That is, the ambient temperature Ts can be modeled according to

Ts(t) = α sin(ωt+Φ) + C,

where t represents time (in hours), and ω, Φ, C are constants.
To fit this model to data, we performed sinusoidal regression in Python using the scipy library’s curve fit

function. We found that Equation 1 best fit the data with an R2 value of 0.9722.

Ts(t) = 5.060 sin (0.268t− 2.333) + 33.427 (1)

Figure 1 shows Equation 1 plotted on top of the original data.
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Figure 1: Original Data vs Regressed Model

This figure shows Equation 1 plotted on top of the original data. As can be seen, the regressed model closely matches
the original data.

An R2 of 0.9722 indicates a good fit to the data, showing that the heat fluctuations over time can be modeled
sinusoidally.

1.4.2 Variable Heating Model

This model is based on Newton’s Law of Cooling (Michael, 2012, 5397), which sets up a differential equation for
the rate of change of the temperature for an object based on the surrounding temperature, initial conditions, and other
factors. We begin with dQ

dt , the rate of change of thermal energy of the building with respect of time, which is an
equation based on the Stefan-Boltzmann Law (Jianjun, 2023, 131).

dQ

dt
= εσA

(
T 4 − T 4

s

)
(2)

We also know the equation for specific heat capacity (Specific Heat Calculations, 2022), shown in Equation 3.

q = mc∆T (3)

=⇒ dQ

dt
= mc

dT

dt
(4)

=⇒ dT

dt
=

−εσA

mc
(T 4 − T 4

s ) (5)

We then derive Equation 8 for the rate of change of the interior temperature of a building. Using Equation 2, we find
that

dT

dt
= −εσA

mc
(T − Ts)(T

3 + T 2Ts + TT 2
s + T 3

s ) (6)

≈ −4εσAT 3
s

mc
(T − Ts) (7)

= −k(T − Ts) (8)

where k, the thermal cooling constant, is equal to 4εσAT 3
s

mc . We chose to simplify Ts as being constant in this case
as its variation in in Kelvins, which is what Newton’s Law of Differential Cooling uses, is not significant compared
to the actual temperature (i.e., a variation of ∼10 K over an average of ∼300 K, or an ∼3% variation). In addition, it



Page 7 Team #18015

also simplified the integration required to solve for an analytical solution. We then expanded Equation 8 to the form of
Equation 9.

dT
dt

= −kT + kα sin(ωt+Φ) + kC (9)

Since Equation 9 is a linear differential equation, it can be solved as shown below.

T (t) =
k1

∫
e
∫
k dt(kα sin(ωt+Φ) + kC) dt+ C1

e
∫
k dt (10)

=
1

k1ekt

(
α

(
kekt sin(ωt+Φ)

ω2 + k2
− ωekt cos(ωt+Φ)

ω2 + k2

)
+

C

k
ekt + C1

)
k1k (11)

= kα

(
k sin(ωt+Φ)

ω2 + k2
− ω cos(ωt+Φ)

ω2 + k2

)
+ C + C2e

−kt (12)

Since T (t) = T0 when t = 0, we solved for C2 in terms of T0.

T0 = kα

(
k sin(Φ)

ω2 + k2
− ω cos(Φ)

ω2 + k2

)
+ C2 (13)

C2 =
kα

ω2 + k2
(ω cos(Φ)− k sin(Φ)) + T0 − C (14)

As such, we end up with Equation 15 as the final equation for the temperature as a function of time.

T (t) =
kα

ω2 + k2
(k sin(ωt+Φ)− ω cos(ωt+Φ)) +

(
kα

ω2 + k2
(ω cos(Φ)− k sin(Φ)) + T0 − C

)
e−kt +C (15)

Applying Equation 15 twice on itself accounts for the heat transfer from the surroundings to the building, and then
from the building to the air inside of it. Figure 2 shows the final version of the graph we achieved.

Figure 2: Indoor Temperatures over Time

This figure shows the indoor temperatures for the different housing structures given in the Q1 Dwellings data.

We believed these results to be physically consistent with the actual world, as the temperature of an indoors
environment will fluctuate in accordance with the temperature of the surrounding environment with a small delay in
time, especially when there is no air conditioning.
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The maximum temperature over a 24-hour period for each of the 4 housing structures are shown in Table 2, and
the full prediction data is shown in Table 3.

Table 2: Maximum Temperatures by Structure
Home 1 Home 2 Home 3 Home 4

Temp. (◦C) 38.458 38.441 38.379 38.440

This table shows the maximum temperatures of each housing structure over a 24-hour period.

Table 3: Temperature Prediction Data
Time Home 1 Home 2 Home 3 Home 4

12:00 AM 29.400000 29.400000 29.400000 29.400000
1:00 AM 29.210545 29.244742 29.292694 29.247300
2:00 AM 28.663325 28.713347 28.812856 28.717677
3:00 AM 28.404388 28.429091 28.495996 28.431508
4:00 AM 28.499325 28.489135 28.488773 28.488561
5:00 AM 28.945089 28.899459 28.822861 28.895749
6:00 AM 29.710208 29.632201 29.482348 29.625586
7:00 AM 30.740178 30.635327 30.422245 30.626272
8:00 AM 31.961599 31.837372 31.576080 31.826522
9:00 AM 33.287425 33.152674 32.861752 33.140802
10:00 AM 34.623168 34.487498 34.187667 34.475449
11:00 AM 35.873635 35.746714 35.459340 35.735348
12:00 PM 36.949709 36.840582 36.586146 36.830709
1:00 PM 37.774703 37.691147 37.487780 37.683470
2:00 PM 38.289822 38.237792 38.099988 38.232859
3:00 PM 38.458356 38.441560 38.379139 38.439721
4:00 PM 38.268292 38.287927 38.305338 38.289314
5:00 PM 37.733178 37.787845 37.883847 37.792359
6:00 PM 36.891148 36.976950 37.144702 36.984270
7:00 PM 35.802211 35.913034 36.140580 35.922637
8:00 PM 34.543971 34.671918 34.943041 34.683120
9:00 PM 33.206100 33.342051 33.637430 33.354054

10:00 PM 31.883942 32.018208 32.316793 32.030157
11:00 PM 30.671722 30.794736 31.075248 30.805779

This table shows the full temperature prediction data for all four housing structures for each hour of the day.

1.5 Sensitivity Analysis
To analyze the accuracy of our predictions, we performed a Monte Carlo Error Analysis on our model by running
10,000 trials where we randomly offset each data point by a 5% standard deviation and calculated the percentage
uncertainty through the mean and standard deviation of the result. Table 4 displays the uncertainties in the interior
temperature calculations for each building.

Table 4: Percent Uncertainty of Each Housing Structure
Home 1 Home 2 Home 3 Home 4

Percent Uncertainty (%) 5.55 5.53 5.49 5.57

This table shows the uncertainty of each housing structure as calculated through Monte Carlo Error Analysis.
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The percent uncertanties for each of the housing structures are all relatively low, so we are relatively confident in
our model’s accuracy and resistance to random error.

1.6 Discussion
This model was able to take a physics-based approach to model the temperature of the building as a function of time,
which we believe is an innovative approach to the mathematical modeling problem. The discovery and use of an
analytical solution to the temperature differential equation derived from the physical theory also contributed to the
significance of our findings, as while numerical methods can also be accurate, they do not show the full picture of
how the temperature inside varies with time. Additionally, the incorporation of an accurate model of the fluctuating
ambient temperature helped to increase its validity to match the data provided.

However, since this model primarily relied on Newton’s Law of Differential Cooling, it could not take into account
the orientation of buildings, the total surface area or orientation of windows on those buildings, or the effects of wind
speed on internal heating. For the former two, such information was not given for the houses, though the existence of
windows would have a major effect on the heating of the home during a heat wave (due to the absorption of light energy
inside the building). In order to simplify our model, we neglected the effect of wind speed on the change in house
temperature, which we determined to not have an effect. In the future, we would want to determine the true effect of
wind speed on internal heating, and incorporate this into our model. Additionally, the buildings were simplified to be
rectangular prisms with square bases, which may not be the case in certain homes. If given data on the dimensions and
shape of individual houses, our model would have to be modified slightly to find the surface area of the house for that
particular shape.

2 Q2: Power Hungry

2.1 Defining the Problem
This question asks us to develop a model to find the peak demand in Memphis’s power grid during the summer months
as well as in summer months 20 years from now. We define demand as the average demand for the electrical power in
a given month. We then define the peak demand as the highest demand in a given year.

2.2 Assumptions
1. There will be no drastic changes in the rate of climate change. Justification: We are using the climate

information at our disposal to make the temperature estimations on the hottest days to the best of our ability.

2. The population of Memphis, TN will follow the population trend from the previous 10 years. Justification:
We are assuming there are no catastrophic events and that population trends in Memphis will continue as
documented by the United States Census.

3. The monthly electricity consumption of for East South Central USA (Kentucky, Tennessee, Mississippi,
Alabama) mimics that of Memphis. Justification: The geographic location of Memphis is reflective of the
East South Central USA United States’ community make-up and climate, so Memphis will mirror the monthly
electricity consumption of Kentucky, Tennessee, Mississippi, and Alabama.

4. There will be no power disconnects during any given heat crisis. Justification: Although Tennessee is one
of the few states that allow heat crisis disconnects, the most common electrical utility companies in Memphis
(Tennessee Valley Authority and Memphis Light, Gas, and Water) do not permit disconnects during heat crises,
as stated in their policies (Tennessee 2-1-1, n.d.; Weather-Related Moratorium Policy - Mlgw.com, 2010).

2.3 Model and Solution
We first examined various factors to determine correlations to the peak demand by using the Pearson correlation
coefficient, using Python code to analyze a CSV with the necessary data.
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Figure 3: Correlation Heatmap

This heatmap shows the Pearson correlation between noted variables. Focusing on the correlations with Max ESC
MEM Consumption, only Temp of MEM has a strong correlation.

Upon analyzing the information outputted through the Pearson heat map and the p-values of the regression, we
found the only information strongly correlated to the peak demand (titled ’Max ESC MEM Consumption (billions of
kWh/mo)’) is the peak temperature in Memphis (titled ’Temp of MEM (°C).’)

Based on data from the U.S. Energy Information Administration (Total Energy Monthly Data - U.S. Energy
Information Administration, n.d.), we found that there was a very consistent and clear peak in electricity sales across
the years during July and August. Thus, we took data from the past 20 years and calculated the average of the electricity
sales during these two months as the measure of annual peak demand on the power grid. To match this, we also took
the average temperature of these two months combined.

Next, we normalized these two time series by dividing each element by the average

x′
i =

xi

x̄
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Plotting the two normalized time series on the same graph, we obtain two nearly overlapping scatter plots, signifying
a strong correlation. We attribute the anomalies on 2020 and 2022 to unexpected effects of COVID-19.

Figure 4: Peak Demands and Temperatures over Time

This figure shows the overlapping scatter plots of the annual peak demands and the temperatures in the corresponding
months.

We calculate the pearson correlation R value of the two series using scipy.stats.pearsonr, and obtainR = 0.83
and p = 0.0005, proving its statistical significance. We also calculate the root mean squared of the residues = 0.015,
which is less than 2% of the overall value.

We can justify this correlation because the higher the temperature, the greater the energy needed by the AC to cool
the house down to a comfortable room temperature would be.

Therefore, our task becomes to model and predict the maximum (July/August) temperatures across the years.
Even though there are random fluctuations, we are looking for the overall, underlying trend of the temperatures, so

we use linear regression to find the base relationship.
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Figure 5: Predicted Temperature

This figure shows the predicted temperature in 20 years based on linear regression.

We note that the slope is 0.0241°C/yr. We verify this value by comparing it to the rate of warming since 1982 on
Climate.gov, which is 0.02°C/yr (Lindsey, n.d.). This information could be corroborated by the data from Met Office
Hadley Centre of the same time period, which is plotted below (Morice, 2022). This is also our justification for using
a linear regression model to forecast global temperature trends in the relatively short term (20 years). The slope on
this graph is 0.0216°C/yr. The slight difference between 0.0216 and 0,0241 could be explained by the slight upwards
concavity and the fact that this warming rate itself is increasing over time – our slope is extrapolated from the data
since 2012 (Rate and Impact of Climate Change Surges Dramatically in 2011-2020, 2023).
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Figure 6: Global Temperatures

This figure shows global temperature trends since 1984 modeled with a linear regression.

Following the linear regression model in Figure 6, we find that the predicted temperature in 2045 is 33.58°C.
Using the same normalization function, it becomes 1.02, and thus correlates back to a peak monthly demand of
30.977 billions of kWh in the East South Central region.

Finally, based on our assumptions, we can find the proportionality between the East South Central region and the
Memphis region to convert this value to the peak demand in Memphis specifically. We do so by finding the average
proportionality constant between these two areas’ use of energy which is = 30.4.

This proportionality could be cross-verified by calculating the population ratio of the two regions. The East South
Central region population is 19759744 (Resident Population in the East South Central Census Division, n.d.). The
Memphis region population is 618639. (U.S. Census Bureau QuickFacts: Memphis City, Tennessee, n.d.). The
proportionality = 31.9. The difference between these two ratios implies that people in Memphis use more energy
than an average person living in the East South Central region. This is caused by the fact that people living in cities
(Memphis) usually use more electricity than people living in more rural areas.

Ultimately, we predict that the peak monthly demand would be 1.018× 109 kWh in Memphis in 2045.

2.4 Discussion
In the construction of this model, we thoroughly analyzed the different factors that could impact the peak monthly
demand using a heat map. Thus, we were able to systematically rule out unrelated variables and identify correlated ones
that serve as accurate reflections of our target time series based on quantitative evidence. Moreover, we cross-verified
all of the important constants and proportions that we calculated to ensure and check that they accurately correspond
to and reflect related real-world trends and phenomena as we would expect.

On the other hand, in the future, we would like to consider potential policy changes in the future due to climate
change and global warming. Another area for improvement is to analyze the random fluctuations in temperature above
and below the average trend more closely. We hope to determine and mathematically prove whether these changes are
actually random or if we could mathematically predict them and incorporate this aspect into our prediction.
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3 Q3: Beat the Heat

3.1 Definition
This question asks us to create a set of criteria to quantify the vulnerability of neighborhoods in Memphis, TN to heat
waves and power grid failure to properly allocate resources to different communities.

3.2 Assumptions
• Building shape and size have an effect on heat vulnerability Justification: The shape and size of the building

affect its surface area, which affects the amount of heat that can enter or leave the building.

• Building material has an effect on heat vulnerability Justification: The cooling factor k is inversely propor-
tional to the mass and the specific heat capacity of the building, which depend on the building material.

• Separation between buildings has an effect on heat vulnerability Justification: Closely packed houses lead
to one house’s heat loss being another house’s heat gain. This sustains high temperatures in homes long after the
heatwaves stop.

• Forestry/parks in a community has an effect on heat vulnerability Justification: Foliage provides shade in
an area, lessening the burden of heatwaves.

• Socioeconomic conditions have an effect on heat vulnerability Justification: Many socioeconomically vul-
nerable populations have less sophisticated cooling systems and rely more on public transportation, increasing
their vulnerability to heatwaves.

• Elderly people (65+) and minors (0-18) are more vulnerable than working-age adults Justification: Elderly
people and minors are more susceptible to disease and are less able to take care of themselves, rendering them
more vulnerable than adults ages 18-65 (Schröder-Butterfill, 2006, 10).

• People who take public transportation/walk to work are more vulnerable than those who commute by
car. Justification: People who walk to work are more expose to the heatwaves, leaving them more vulnerable.
People who take public transportation are outside more often as they often have to walk to get picked up by their
transportation and walk to their destination after being dropped off.

3.3 Model and Solution
To rank a particular neighborhood in its vulnerability to heat waves, we must first understand the specifics of that house.
The main criteria we will be ranking are as follows:

• Is the neighborhood in an urban, suburban, or exurban area? What is the density of houses in that area per square
kilometer?

• How old are the houses in this this neighborhood?

• What is the socioeconomic level of the area?

• Is the neighborhood in a well-forested area?

• Are there trends in the population of the neighborhood for higher populations of elderly people or children?

• Do many people commute via public transportation or walking to their workplace in this neighborhood?

These factors can be summarized in five key variables: Age, Housing, Open Space, Income, and Transportation.
We created individual rankings for each of these categories using a variety of different methods, and used an Entropy
Weighted Model (EWM) to apply weights to the scores of each of these categories. An EWM weights individual
criteria by analyzing the variability in the sample distribution of each criterion (Zhu et al., 2020). The weights for an
EWM are calculated by first normalizing the data:
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pij =
xij∑n
j=1 xij

Where n represents the total number of ”samples” measured (the number of neighborhoods), j represents an individual
neighborhood, i represents an individual criterion, and x represents the value for an individual criterion for a certain
neighborhood. The ”entropy”, or differentiation in the sample values for a certain criterion, is defined as:

Ei =

∑n
j=1 pij · ln(pij)

lnn

From this entropy value (which ranges from 0 to 1, where a higher value represents more variability and thus a
higher weight), we can derive the final weights:

wi =
1− Ei∑m
i=1 1− Ei

First, we find the scores for the age category. We want to model the proportion of seniors and minors in a given
neighborhood; the greater this proportion, the more vulnerable this community is. Thus, the score for this category is:

Aj =
Pold + Pyoung

P

where P represents the population of the neighborhood, Pold represents the population of elderly people in that
community, and Pyoung represents the population of children under 18 in that community.

In general, older houses are more susceptible to overheating during heat waves than newer ones (Bean Falls, n.d.).
Using this, we can rank the houses in a given neighborhood by age and weight them accordingly (1 for houses built
after 2010, 2 for houses built from 1990-2010, etc.), then dividing this number by the number of houses. In other
words, the category is scored as follows:

Hj =

∑5
i=1 iNi

N

where N represents the total number of houses in the neighborhood and Ni is the number of houses built in the ith
housing age block (2010+, 1990-2009, 1970-1989, 1950-1969, and before 1950).

The scoring for open space can be represented as follows:

Oj = O

where O represents the amount of open space (in m2) for a given neighborhood, and Oavg is the average amount of
open space over all neighborhoods in Memphis.

The scoring for income is:

Ij = I

where I represents the median income in neighborhood j and Iavg represents the average median income over all
neighborhoods in Memphis.

People who take public transportation are more vulnerable to heat waves due to an increased time being outside.
In particular, those who walk are affected the most, with those taking other forms of public transport following, and
car-commuters being affected the least. We ”zero” this model around work-at-home individuals, i.e. people who do
not commute for work are not affected by heat waves. Thus, using the AHP discussed earlier, we can weight the model
as follows:
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Tj =
Tcar + 2Tpublic

Wtot

where Tcar represents the number of car commuters in neighborhood j, Tpublic is the number of commuters on
public transit, and Wtot represents the size of the workforce in that community.

Next, we normalize the individual values by dividing them by the average across all cities. Generally, the more
open space there is in an area, the lower the vulnerability to heat waves because of increased foliage. Furthermore,
the higher the income/socioeconomic status of a neighborhood, the greater resistance they will have to heat waves due
to build quality of the house. Thus, there are negative relationships between income and heat vulnerability and open
space with heat vulnerability. Therefore, in normalizing these two scores, we multiply them by −1.

Using the previously described weighting method (EWM), we can derive the weights for each of these parameters:

Table 5: Weighting Processes by Variable
Variable Entropy Weights

Ages 0.996 0.0325
Transport 0.999 0.0063
Income 0.961 0.334
Housing 0.986 0.116

Open Spacing 0.940 0.511

This table shows how each variable progresses through the Entropy Weighted Method.

Table 6: Final Rankings
Rank Neighborhood Score Percent Allocated

1 Uptown / Pinch District -1075 13.16
2 Rossville -1488 10.04
3 South Forum / Washington Heights -1552 9.7
4 Downtown / South Main Arts District / South Bluffs -3923 5.0
5 South Memphis -4265 4.75
6 Oakland -5102 4.29
7 Hickory Withe -5304 4.2
8 North Memphis / Snowden / New Chicago -7516 3.53
9 Hollywood / Hyde Park / Nutbush -7799 3.47

10 Midtown / Evergreen / Overton Square -11925 2.93
11 Frayser -12807 2.86
12 Coro Lake / White Haven -13075 2.84
13 East Midtown / Central Gardens / Cooper Young -13329 2.82
14 Bartlett, Zipcode 1 -16676 2.64
15 Egypt / Raleigh -23470 2.43
16 Lakeland / Arlington / Brunswick -24104 2.42
17 Germantown, Zipcode 2 -25034 2.4
18 Cordova, Zipcode 1 -28899 2.34
19 Bartlett, Zipcode 2 -28964 2.34
20 Cordova, Zipcode 2 -31085 2.31
21 Bartlett, Zipcode 3 -31424 2.3
22 Windyke / Southwind -33796 2.28
23 Germantown, Zipcode 1 -35037 2.26
24 Collierville / Piperton -40449 2.22
25 East Memphis -41016 2.21
26 East Memphis – Colonial Yorkshire -54754 2.14

This table shows the final results and rankings of the Entropy Weighted Method.
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3.4 Discussion
This model was able to quantitatively rank different communities in the Memphis area by their vulnerability to heat
waves using data on socioeconomic status. The use of the Entropy Weighted Model to determine the weights for the
model allowed for a data-driven approach to weighting rather than a subjective one, which increased the validity of
our predictions. In addition, our score ranking of each community was able to directly correlate to the proportion
of resource allocation the City of Memphis should follow for each community in the case of a heat wave, which we
believe provides extra support for policy makers in the city to properly plan in the case of a similar crisis in the future.

However, our model does not account for house density in a given area, which might increase the heat retention of
the homes even after the heat wave recedes. We found that other factors correlated more directly to the heat vulnerability
of individual communities during a heat wave, but this model could be expanded to include house density to model the
aftereffects of a heat wave in these communities. Since data was not given on building materials and house shape in
different neighborhoods in the city, we were unable to incorporate the heat retention of specific materials and specific
house dimensions on the necessity of aid (e.g. large houses made out of brick might need more resources than small
houses made of wood). With the aforementioned data, we would hope to create a more all-encompassing model that
takes the true needs of each community best into account.
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4 Conclusion
We created a model to predict the indoor temperature in four different dwellings over a 24-hour period in Memphis,
TN. We modeled the ambient temperature of the environment over time and then created a differential equation to
predict the change in temperature of a room based on the surrounding temperature and initial conditions. We applied
the equation twice to account for the heat transfer from the surroundings into the building and found the maximum
temperature each of the four homes reached throughout the course of the day. The model predicted that Home 1, Home
2, Home 3, and Home 4, would have a maximum temperature of 38.458, 38.441, 38.379, and 38.440°C respectively.

We then created a model to determine the peak demand in Memphis’s power grid during the summer months and
the predicted peak demand in 20 years from now. We compiled a list of possible variables which could have an effect
on the peak electricity consumption and performed a heat map. After an analysis of our heat map, we found that the
peak temperature in Memphis had a strong correlation to the maximum electricity consumption. After normalizing
the peak demand and corresponding temperature, we found that the correlation was statistically significant. Using
a linear regression, we predicted the increase in temperature in Memphis per year due to global warming and the
temperature anomaly over time. Following our linear regression models, we estimate that the predicted temperature
in 2045 will be 33.58°C and the ultimately correlates to a monthly peak demand of 1.018 × 109 kWh. In the year
2025, we predicted that the temperature will be 33.1°C and will correlate to a monthly peak demand of 1.004×109 kWh.

Finally, we ranked the vulnerability of different communities in Memphis, TN based on five main factors which
include Age, Housing, Open Space, Income, and Transportation. We created an entropy weighted model to calculate
the weight of each of these categories. We found that Ages, Transport, Income, Housing, and Open Spacing had an
entropy of 0.996, 0.996, 0.961, 0.986, and 0.940 with a weight of 0.0325, 0.0063, 0.334, 0.116, and 0.511 respectively.
We found that Uptown and Pinch District were the most vulnerable neighborhoods in Memphis, and we created a way
to allocate a percentage of Memphis’s resources equitably.

Our findings in predicting the temperature of unconditioned homes, electricity consumption over time, and deter-
mining the most vulnerable neighborhoods in Memphis will be helpful to local authorities when compiling aid and
emergency protocol for their citizens.
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A Code Appendix

A.1 Part 1: Hot to Go
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.optimize import curve_fit

plt.rcParams["font.family"] = "serif"

plt.rcParams["font.serif"] = "Computer Modern"

plt.rcParams["text.usetex"] = True
plt.rcParams["text.latex.preamble"] = r"\usepackage{amsmath}"

plt.rcParams["font.size"] = 14

plt.rcParams["figure.dpi"] = 300

df = pd.read_csv("./Q1tempdata.csv")

df["Hours"] = df["Time"].apply(lambda x: int(x.split(":")[0]) \
+ (12 if "PM" in x and x != "12:00 PM" else 0) \
- (12 if x == "12:00 AM" else 0))

df.head()

plt.plot(df['Hours'], df['Temperature (C)'])
plt.show()

def sinusoidal_model(t: int, A: float, B: float, C: float, D: float) -> float:
return A * np.sin(B * t + C) + D

time = np.array(df['Hours'])
temperature = np.array(df['Temperature (C)'])

params, _ = curve_fit(sinusoidal_model, time, temperature, p0=[10, 0.1, 0, 85])

print(params)

temperature_pred = sinusoidal_model(time, *params)

ss_total = np.sum((temperature - np.mean(temperature))**2)

ss_residual = np.sum((temperature - temperature_pred)**2)

r_squared = 1 - (ss_residual / ss_total)

print(f"Rˆ2: {r_squared:.4f}")

plt.scatter(time, temperature, label="Data")

plt.plot(time, temperature_pred, color='red', label=f"Sinusoidal Fit")
plt.xlabel("Time (h)")

plt.ylabel("Temperature ($ˆ\circ$C)")

plt.legend()

plt.show()

def surface_area(sqm: int, num_units: int, floors: int) -> float:
units_per_floor = num_units / floors

total_base_area = units_per_floor * sqm

perimeter = 2 * (np.sqrt(total_base_area) + np.sqrt(total_base_area))
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wall_area = perimeter * (2.4 * floors)

roof_area = total_base_area if floors > 1 else 0
return total_base_area + wall_area + roof_area

def k1(sqm: int, num_units: int, floors: int) -> float:
return (4 * 0.80 * (5.67 * 10 ** -8) * ((30 + 273) ** 3) \

/ (454.5 * surface_area(sqm, num_units, floors) * 2300)) \

* surface_area(sqm, num_units, floors)

def k2(sqm: int, num_units: int, floors: int) -> float:
return (4 * 0.16 * (5.67 * 10 ** -8) * ((30 + 273) ** 3)) \

/ (1.2 * sqm * num_units / floors * 2.4 * floors * 1000) \

* surface_area(sqm, num_units, floors)

def interior_temperature(t: int, A: float, omega: float, phi: float, \
T0: float, C: float, k: float) -> float:

return ((k * A) / (omega ** 2 + k ** 2)) * (k * np.sin(omega * t + phi) \
- omega * np.cos(omega * t + phi)) \

+ np.exp(-k * t) \

* ((k * A / (omega ** 2 + k ** 2)) * (omega * np.cos(phi) - k * np.sin(phi)) + T0 - C) \

+ C

# Parameters found from curve_fit regression

A = 5.0595291

omega = 0.26775697

phi = -2.33298053

C = 33.42658701

# Housing unit details; formatted as (size of unit in mˆ2, # units, # floors)

units = [

(88, 1, 1), # Home 1

(63, 8, 2), # Home 2

(74, 30, 25), # Home 3

(278, 1, 1) # Home 4

]

# Graph the results for each of the 4 homes

fig, axes = plt.subplots(2, 2, figsize=(12, 10))

axes = axes.flatten()

interior_temp_preds = []

for i, (sqm, num_units, floors) in enumerate(units):
SA = surface_area(sqm, num_units, floors)

k_2 = k2(sqm, num_units, floors) * 3600

k_1 = k1(sqm, num_units, floors) * 3600

print(k_1, k_2)

T0 = temperature[0]

interior_temp_pred = interior_temperature(time, A, omega, phi, \

interior_temperature(time, A, omega, phi, T0, C, k_1), \

C, k_2)

interior_temp_preds.append(interior_temp_pred)

print(max(interior_temp_pred))
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axes[i].scatter(time, temperature, label="Data")

axes[i].plot(time, temperature_pred, color='red', label=f"Sinusoidal Fit")
axes[i].plot(time, interior_temp_pred, label=f"Interior Temperature", color='green')
axes[i].set_title(f"Building {i+1}: {sqm} m$ˆ2$, {num_units} units, {floors} floors")

axes[i].set_xlabel("Time (h)")

axes[i].set_ylabel("Temperature (°C)")
axes[i].legend()

axes[i].grid()

plt.tight_layout()

plt.show()

# Number of Monte Carlo Simulations

N = 10000

# Define standard deviations for parameter uncertainty as 5% offset

sigma_A = 0.05 * A

sigma_omega = 0.05 * omega

sigma_phi = 0.05 * abs(phi)

sigma_C = 0.05 * C

sigma_T0 = 0.05 * abs(T0)

monte_carlo_results = []

overall_relative_uncertainties = []

overall_relative_uncertainties = []

for i, (sqm, num_units, floors) in enumerate(units):
monte_carlo_results = np.zeros((N, len(time)))

for sim in range(N):
# Randomly vary input parameters

A_mc = np.random.normal(A, 0.05 * A)

omega_mc = np.random.normal(omega, 0.05 * omega)

phi_mc = np.random.normal(phi, abs(0.05 * phi))

C_mc = np.random.normal(C, 0.05 * C)

k_1_mc = k1(sqm, num_units, floors) * 3600

k_2_mc = k2(sqm, num_units, floors) * 3600

T0_mc = np.random.normal(33, 2)

temp_pred = interior_temperature(time, A_mc, omega_mc, phi_mc,

interior_temperature(time, A_mc, omega_mc, phi_mc, T0_mc, C_mc, k_1_mc), \

C_mc, k_2_mc)

monte_carlo_results[sim] = temp_pred # Store results for this simulation

mean_temp = np.mean(monte_carlo_results, axis=0)

std_temp = np.std(monte_carlo_results, axis=0)

relative_uncertainty = np.mean((std_temp / mean_temp) * 100)

overall_relative_uncertainties.append(relative_uncertainty)

print(f"Building {i+1} ({sqm}m², {num_units} units, {floors} floors) - \
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Overall Relative Uncertainty: {relative_uncertainty:.2f}%")

A.2 Part 2: Power Hungry
import scipy
import pandas as pd

df = pd.read_csv("./Q2data.csv")

scipy.stats.pearsonr(df['NormTemp'], df['NormConsumption'])

A.3 Part 3: Beat the heat
from matplotlib import pyplot as plt
import scipy
import numpy as np
import pandas as pd
from google.colab import files

uploaded = files.upload()

def p_weights(arr): #normalizes data
p_arr = np.zeros((len(arr), len(arr[0]))) #create dummy array

for i in range(len(arr)): #iterate over criteria
sumAvg = sum(arr[i, :]) #sum sample values

for j in range(len(arr[0])): #iterate over samples
p_arr[i][j] = arr[i][j]/sumAvg

print(p_arr)

return p_arr

def entropy(p_arr): #Entropy of given p array
E = np.zeros(len(p_arr)) #dummy array

for i in range(len(p_arr)): #iterate over criteria
sumPlnP = 0

for j in range(len(p_arr[0])): #iterate over samples
sumPlnP += p_arr[i][j] * np.log(p_arr[i][j])

E[i] = -1*sumPlnP / np.log(len(p_arr[0]))

return E

def weights(E_arr): #weights based on entropy
sumAvg = len(E_arr) - sum(E_arr)

weights = np.zeros(len(E_arr))

for i in range(len(weights)):
weights[i] = (1-E_arr[i])/sumAvg

return weights

df = pd.read_csv("for_all - Memphis.csv") #read from csv

data = df.values

ages = []

transport = []

income = []
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housing = []

open_space = []

for i in range(3,29): #get data on given criteria
ages.append((float(data[i][5])+float(data[i][4]))/float(data[i][3]))

income.append(float(data[i][7]))

open_space.append(float(data[i][10]))

transport.append((float(data[i+30][3])+2*float(data[i+30][4]))/float(data[i+30][2]))

housing.append((float(data[i+60][2]) + 2*float(data[i+60][3]) + 3*float(data[i+60][4]) +

4*float(data[i+60][5]) + 5*float(data[i+60][6]))/(float(data[i][2])))

#Normalize data

ages = np.array(ages)/(sum(ages)/(len(ages)))

transport = np.array(transport)/(sum(transport)/(len(transport)))

income = -1 * np.array(income)/(sum(income)/(len(income)))

housing = np.array(housing)/(sum(housing)/(len(housing)))

open_space = -1 * np.array(open_space)/(sum(open_space)/(len(open_space)))

print("INITIAL VALUES")

criteria_matrix = np.array([ages, transport, income, housing, open_space])

print(criteria_matrix)

p_arr = p_weights(criteria_matrix)

print("P-Values")

print(p_arr)

ent = entropy(p_arr)

print("ENTROPY")

print(ent)

weights_matrix = weights(ent)

print("WEIGHTS")

print(weights_matrix)

def value_of(weights, x, criteria_matrix): #Applies weights to scores for all neighborhoods
val = 0

for i in range(len(weights)):
val += (weights[i]*criteria_matrix[i][x])

return val

def all_values(weights, criteria_matrix, data):
vals = []

neighborhoods = []

for i in range(3,29):
vals.append(value_of(weights, i-3, criteria_matrix) *

float(data[i][3]))

neighborhoods.append(data[i][0])

return neighborhoods, vals

n, v = all_values(weights_matrix, criteria_matrix, data)

ordered_array = [elem[0] for elem in sorted(zip(n, v), key=lambda x: x[1])]



Page 26 Team #18015

val_ord = [elem[0] for elem in sorted(zip(v, v), key=lambda x: x[1])]

props = np.array(val_ord)/sum(val_ord)

for i in range (1, 27, 1):
print(i, "& ", ordered_array[26-i], "& ", int(val_ord[26-i]), "& ",

int(props[26-i] * 10000)/100, "\\\\")

props = np.array(val_ord)/sum(val_ord)
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