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1 Executive Summary

To the City Council of Memphis, Tennessee,

In recent years, global warming has only continued, with some of the worst effects yet to be faced.
This has been felt particularly in Memphis, with heat waves on the rise [1]. Dangerous weather
events, exacerbated by global warming, will especially hurt the elderly, the very young, and those
with underlying health conditions [2]. Combating the effects of global warming is difficult given the
scope of the issue, and the limited means provided to Memphis’s government. However, it is crucial
that the government of Memphis does everything it can to help its citizens.

We first predicted the internal temperature of non-air-conditioned dwellings in Memphis over a
24-hour period during a heat wave. We formed a model based around Newton’s Law of Cooling
and added in heat transfers from other sources such as the sun and internal heat. We found the
internal temperature of a home rises much quicker for apartments than for single-family residences.
Specifically, apartments are affected 1.5 times as much by external temperature, 1.6 times as much
by solar gain, and 1.25 times as much by internal heat generation. Still, both become hotter inside
than outside without air conditioning, showing the disastrous effects of heat waves on the citizens
of Memphis.

Secondly, we developed a model to predict peak demand on Memphis, Tennessee’s electric grid
during the months of June, July, and August, and how this peak demand will change in twenty years.
For this we used SARIMA time series model with gradient boosting (XGBoost). We showed the
peak demand in our projections to be within the range of 3400–3600 kWh per customer, and shows
that this peak demand was directly correlated to temperature changes caused by heatwaves. We
projected a 2024 peak demand of 1.46 billion kWh, and predicted a 2044 peak demand of 1.755 billion
kWh, which is a 20.2% increase in power grid demand over twenty years. This increase in demand
will put a sizable strain on the Tennessee and Memphis power grid, and energy infrastructure will
need to be updated to meet demand.

We finally standardized a vulnerability score for all of the 27 provided neighborhoods in Mem-
phis. This vulnerability score was found through a principle component analysis (PCA) of over
20 neighborhood characteristics. The vulnerability score predicts risk from a heat wave or power
grid failure, with a higher score indicating greater risk of experiencing the worst effects of these
events, and a lower score indicating lower risk. This measurement can be used by Memphis’s gov-
ernment to prioritize preparation for and response in the case of a heat wave or power grid failure.
Our model showed that roughly 49% of variance was made up of by transportation and workforce;
21% by urban density and older housing; 8% by housing diversity; and 7% by recent development
and income. By looking at these risk factors, we hope in the long-term Memphis will be able to
curb the issues causing these inequities. Our mitigation strategy for Memphis is grid hardening,
or preparing the power grid to handle heat and precipitation. This can be accomplished through
running underground lines, implementing digital technologies, and upgrading critical equipment.
Grid hardening pays off significantly in the long run, with every $1 million spent paying off in a
roughly $2.5 million increase in GDP [3]. Mitigation efforts should be allocated depending on spe-
cific neighborhoods’ vulnerability scores, with the most vulnerable neighborhoods scored at 70–100
prioritized with immediate measures like energy storage and transmission line reinforcement.

We hope these results will assist the city of Memphis in fighting the disastrous effects of heatwaves
by providing specific measures of heat waves and power grid failures, as well as specific factors to
target through new policies. While the effects of heat waves and power grid failures are significant,
they can be curbed with a structured and data-backed response by authorities.
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2 Q1: Hot to Go

2.1 Defining the Problem

The first problem asks us to develop a model to predict the indoor temperature of a non-air-
conditioned dwelling during a heat wave over a 24-hour period in one of two cities. We chose
Memphis, Tennessee. Our model will take into account heat transfer data guidelines by dwelling
type.

2.2 Assumptions

1. Dwellings have no air conditioning
Our model assumes that dwellings have no air conditioning so our governed only by conduc-
tion, convection, radiation, and internal heat sources.

2. There will be no major infrastructure changes in the average non-air-conditioned
dwelling in Memphis, Tennessee, or its close surroundings
We must assume there is no significant change in the infrastructure and material makeup of
the average dwelling, as this could greatly shift the data. We further assume that no disaster
will remove large amounts of dwellings or displace those within them, and no new housing
will be built, as this 24-hour period is to be soon.

3. Humidity, dew point, and wind speed are not included in the original equation
The model uses hourly ambient temperature data from Memphis on July 8, 2022, as the main
input. Although other factors such as humidity, dew point, and wind speed are provided, we
assume that their primary effect is already captured indirectly by adjusting the heat transfer
coefficient k.

4. A heat wave occurs on any day in which temperature goes above 100 degrees
Fahrenheit
The Tennessee government defines the heat wave threshold as 100 degrees Fahrenheit [4].

5. Our analysis will be relegated to single-family residences and apartment homes
Single-family residences and apartments are the main home types in our data, so they will be
the main ones analyzed in our model.

6. Our model assumes that heat waves follows Newton’s Law of Cooling
Our model will utilize a modified version of Newton’s Law of Cooling to account for different
housing types which have different levels of thermal conductivity [5].

7. There is a negligible temperature gradient within a dwelling
We assume that temperature gradients within the dwelling are negligible, meaning the entire
indoor area has one uniform temperature.

8. Solar Gain is based on ASHRAE standards
Both dwelling types are assumed to have windows with standard characteristics as described
in the ASHRAE Handbook. Single-family residences are assumed to have moderate shade,
whereas apartments are assumed to have greater window exposure [6].

9. Solar Gain follows a sinusoidal pattern
Solar heat gain is a sinusoidal function, representing the daily cycle of the sun. This function
peaks at midday and troughs during the night [7].

10. Internal Heat Generation of a dwelling is assumed constant
The internal heat generation factor is assumed constant for each home type, depending on
the number of occupants and appliances.
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11. Temperature is steady over each hour
The model neglects temporary changes in occupancy, rapid weather changes, or short-term
wind gusts. Coefficients are treated as constants over the period of interest.

2.3 Model

Newton’s Law of Cooling provides a versatile foundation that can be built upon according to a set
of factors instrumental in modeling the transfer of heat. Considering the absence of a comprehensive
AC system, the development of the model is carried out using the physical features of the home.
By adjusting the heat transfer coefficient, the amplitude of the solar heat gain, and the internal
heat generation, a thorough framework has been implemented to model the twenty-four-hour effect
of a heat wave on the indoor temperature of both an apartment and a single-family residence.

2.3.1 Model Development

The Newton’s Law of Cooling states: dT
dt

= k[Tambient − T ] [5]. This equation shows that the
rate of change of an object’s temperature is in proportion to the difference between the object’s
temperature and the ambient temperature, or the temperature of the surrounding area. We chose
this as our base model as it is the real-world equation used in classical physics for heat transfers.
We can expand this to include other factors which could transfer heat to a dwelling. Solar radiation
and internal gains will also have a considerable effect on the indoor temperature. To incorporate
these effects, we will add two more terms.

First, we add Solar Heat Gain: A sin(πt
24
). The sine function measures the sun’s daily pattern, with

a peak at midday and a trough at night [7]. The constant A is chosen based on key characteristics of
the window. The ASHRAE Fundamentals Handbook shows solar heat gain coefficients for building
openings, which supports our A values. The ASHRAE Handbook provides a set of guidelines
and numbers developed by the American Society of Heating, Refrigeration, and Air-Conditioning
Engineers that ensures buildings are designed to be energy efficient. The constants utilized through
the remainder of this question will be taken from the ASHRAE Handbook based on standard
housing materials for a given air-conditioner-less domicile [6].

Second, we add Internal Heat Generation: Q. This term represents a constant contribution from
internal sources such as occupants and appliances. ASHRAE guidelines and building energy codes
provide typical values for internal loads, which allow us to estimate Q [6].

Consequently, the fully integrated and adjusted model becomes:

dT

dt
= k[Tambient − T ] + A sin(

πt

24
) +Q

Table 1: Newton’s Law of Cooling Model Variables

Constant Description Units

k (Heat Transfer Coefficient) rate at which heat travels from the environment into a house hrs−1

A (Solar Heat Gain Amplitude) predicts how much heat is added to a home from the sun C
hr

Q (Internal Heat Generation) rate at which appliances and occupants produce heat C
hr

T (Internal Temperature) Temperature inside a dwelling at a certain time of day C
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Each constant in this equation is tied to measurable or standard values: k is influenced by the
building’s makeup. As described in the ASHRAE Handbook (Section 27.2 and Table 5), overall U-
factors for building components are derived from averages of conduction, convection, and radiation
through walls, windows, and roofs. The U-factor represents the overall heat transfer coefficient of
a building component A is determined from solar gain properties, including the glazing solar heat
gain coefficient, which is provided in ASHRAE literature. Glazing solar heat gain is the thermal
energy transmitted by the sun through glass into a building. Q is estimated from typical internal
loads reported in residential energy studies and ASHRAE design guidelines [6].

2.3.2 Determination of k (Heat Transfer Coefficient):

For a single-family residence, an effective R-value of R = 5 can be utilized. The R-value measures
how well a material resists heat flow and a higher R-value is an indication of better insulation
[8]. Given this, the corresponding U-factor value can be determined using U ≈ 1

R
. Since U-

factor is found using the inverse of the R-value, a higher U-factor indicates worse insulation and
greater heat transfer [9]. The U-factor is analogous with the k factor so we can determine that
ksf ≈ 1

5
≈ 0.20 hr−1. The same can be done for the apartment utilizing an effective R-value of

approximately 3. kapt ≈ 1
3
≈ 0.33 hr−1. kapt can be rounded to 0.30 for simplicity as well as to stay

consistent with ASHRAE’s guidelines on fenestration [6].

2.3.3 Determination of A (Solar Heat Gain Amplitude):

For the single-family residence, due to partial shading (roof overhangs, vegetation), we assume a
moderate solar gain: Asf = 0.25 ◦C/hr.. For the apartment, with larger or more exposed windows
and less shading, we assign a higher value: Aapt = 0.40 ◦C/hr.. These values are supported by
typical solar heat gain coefficients found in ASHRAE literature [6].

2.3.4 Determination of Q (Internal Heat Generation):

For the single-family residence, estimating an internal load of approximately 400 W distributed
over the dwelling’s thermal mass, we obtain: Qsf = 0.80 ◦C/hr. For the apartment, with higher occu-
pant density and smaller volume, the effective internal heat generation is higher: Qsf = 1.00 ◦C/hr.
These estimates are in line with residential energy load studies and ASHRAE guidelines [6].

2.3.5 Results

Combining the coefficients and other factors above, we arrive at the following equations for
modeling the proposed situation. The differential equations are later numerically integrated in
order to predict the indoor temperature over the 24-hr period and qualitatively compare it using a
graph to the ambient temperature from M3’s provided data over the same time frame [10].

The equation for the single-family residence was determined to be:

dTsf

dt
= 0.20[Tambient − Tsf(t)] + 0.25 sin(

πt

24
) + 0.80

The equation for the apartment was determined to be:

dTapt

dt
= 0.30[Tambient − Tapt(t)] + 0.40 sin(

πt

24
) + 1.00
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Figure 1: Predicted Indoor Temperatures during a Heat Wave

2.4 Discussion

The model reflects external conditions through Newton’s Law of Cooling, as well as solar gain
and internal heat generation.

2.4.1 The effects of k

The k value for the apartment model (k = 0.30) is higher than that of the single-family residence
(k = 0.20), indicating that heat will transfer faster into apartments than single-family residences.
This is reasonable as apartments are less dense and insulated than single-family residences [11].

2.4.2 The effects of A

The A value shows the effects of solar gain on indoor temperature, and is higher for apartments
(A = 0.40) than single-family residences (A = 0.25), showing they will gain heat faster from the
sun’s cycle. This correlates with data from the ASHRAE handbook [6].

2.4.3 The effects of Q

The higher Q for apartments (Q = 1.00) than for single-family residences (A = 0.80) shows that
the effect of internal heat generation is amplified in smaller spaces, such as those of an apartment.
This is in line with data from the ASHRAE handbook [6].

2.4.4 Single-Family Residences vs Apartments

All our constants (k, A, Q) were higher for apartments than single-family residences, showing
that apartments gain heat much faster during a heat wave than single-family residences, which
correlates with real-life results.

It’s imperative that policy-makers understand the dire need to work with industrial companies
to improve the insulation in single-family homes, and especially, apartments. Areas with high
concentrations of lower-income housing (apartments) are likely to be severely affected by heat
waves and abnormally high temperatures and targeted cooling strategies are necessary to alleviate
this. Apartment buildings reaching up to 41 C during a heat wave is a clear sign that intervention
from government officials is needed.
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It is worth noting that both our models predict a higher indoor temperature than the outdoor
temperature during a heat wave, which correlates with what we see in real-world non-air-conditioned
dwellings. This can be seen in findings from researchers from the Arizona Institute for Resilience
who state, ”When it’s 110 F (43.3 C) outside, the 1950s house will likely feel at least 10 F (5.6 C)
warmer inside, even with the same air temperature [12].”

2.5 Sensitivity Analysis

A sensitivity analysis has been performed for the indoor temperature model for both an apart-
ment and a detached single-family home. In the analysis, three ambient temperature scenarios are
considered and the differential equation is solved for each ambient temperature case.

We vary the ambient temperature input by considering three scenarios:

1. Cool Scenario: The ambient temperature is decreased by 2°C.
2. Baseline Scenario: The ambient temperature is used as measured.

3. Hot Scenario: The ambient temperature is increased by 2°C.

Let Tambient, cool(t) = Tambient(t)− 2 and let Tambient, hot(t) = Tambient(t) + 2.

Beginning with the apartment, the following baseline parameters are established: k = 0.30 hr−1, A =
0.40 ◦C/hr, Q = 1.00 ◦C/hr.. The differential equation for the apartment in this scenario is
dTapt

dt
= 0.30[Tambient, scenario−Tapt(t)]+ 0.40 sin(πt

24
)+ 1.00. The following Table 2 assumes an initial

indoor temperature of T (0) = 23.8 ◦C.

Table 2: Indoor Temperature Change in Ambient Scenarios in an Apartment

Ambient Scenario Indoor Temperature at t=15 (°C)

Cool (-2°C) 39.127175

Baseline 41.104957

Hot (+2°C) 43.082739

A similar sensitivity analysis can be done for the single-family house model. The ambient tem-
perature input will be accordingly adjusted in the same manner as above and both a graph and
table is presented to summarize the indoor temperature at a key time (t = 15 hours). The following
baseline parameters are established: k = 0.20 hr−1, A = 0.25 ◦C/hr, Q = 0.80 ◦C/hr. The dif-
ferential equation for the single-family home in this scenario is dTsf

dt
= 0.20[Tambient, scenario−Tsf(t)]+

0.25 sin(πt
24
) + 0.80. The following Table 3 assumes an initial indoor temperature of T (0) = 23.8 ◦C.

As presented above in both the apartment and single-family home scenarios, a decrease of 2 de-
grees Celsius in ambient temperature yields as significantly lower indoor temperature for the entirety
of the day. An increase of 2 degrees Celsius in outside temperature also results in a significantly
higher indoor temperature in both instances - especially during peak solar hours. In both cases, an
increase or decrease in ambient temperature of 2 degrees Celsius yields a corresponding 1.9 degrees
Celsius increase or decrease in indoor temperature.

This analysis depicts the importance of accurate ambient temperature data in order to predict
indoor temperature conditions. Seemingly small changes in input data yield a fair yet not abnormal
difference in the output. This noticeable effect shows why data analysts and policymakers must be
scrupulous in the collection and analysis of temperature data.
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Table 3: Indoor Temperature Change in Ambient Scenarios in a Single-Family Resi-
dence

Ambient Scenario Indoor Temperature at t=15 (°C)

Cool (-2°C) 38.085783

Baseline 39.986210

Hot (+2°C) 41.886637

(a) Apartment Sensitivity (b) Single-Family Residence Sensitivity

Figure 2: Comparison of Sensitivity for Apartment and Single-Family Residences

2.6 Strengths and Weaknesses

The model is straightforward and provides a first-order approximation of indoor temperature
dynamics. By incorporating solar heat gain and internal heat generation, the model captures all
major aspects of a dwelling’s temperature change. The model stratifies by different dwelling types,
helping to ensure each is analyzed properly.

The model assumes constant internal heat generation and a constant sinusoidal pattern for solar
gain, which may not reflect short-term fluctuations, such as those caused by clouds. The assumption
of a uniform indoor temperature ignores temperature gradients, such as those in larger buildings.
Although wind speed and humidity data are inputted, their effects are only indirectly included
through adjustments in k, rather than inputted explicitly Without extensive measured indoor tem-
perature data, the constants k, A, and Q are estimated from literature and typical values, but
further calibration to the specific buildings of Memphis would likely yield better results.

3 Q2: Power Hungry

3.1 Defining the Problem

The second problem asks us to develop a model which predicts the peak demand on a city’s power
grid during the summer months, and asks us to predict any changes in this maximum demand in
20 years. We chose the city of Memphis, Tennessee, and our model will take into account previous
power grid demand from 2008–2024.
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3.2 Assumptions

1. There will not be any major changes in the setup of Memphis’s power grid
In predicting the future demand, we must assume that there will be no major changes, either
towards more efficiency or less, of the power grid system within Memphis, Tennessee.

2. The summer months are June, July, and August
We assume the common definition that the “summer months” are inclusive of June, July, and
August. Thus, our analysis will include data from these months.

3. The effect of climate change on demand from Memphis’s power grid will experi-
ence no major shift over the next 20 years
We assume there will no major and unpredicted changes in the rate of global warming within
Memphis. This allows us to ensure it continues to follow the same curve as before.

4. Peak demand will be the max aggregate demand of all nodes on the power grid
Peak demand will add up the demand of all sources taking up electricity, including businesses,
homes, and public facilities.

5. Our model assumes that the ratio of Memphis’s average demand to the national
average demand is constant
We assume that the ratio of Memphis’s average in kWh to the national average demand in
kWh is constant. We are finding this ratio with annual demands and assuming it applies the
same during the summer months.

6. Peak summer demand pertains to the demand of the summer month with the
greatest value
This assumption allows us determine response variables for our modeling.

7. The total electric customers in Memphis will increase every year at 0.6%
We have to use the 0.6% average population growth of the Memphis metropolitan area to
estimate the total number of customers up to 2044. This is reasonable, since electric demand
is largely derived from this area, even with outside rural and suburbs. We can account for
supply-chain relationships this way.

3.3 Model

3.3.1 Development

To project peak demand, we first defined historical peak demand as the demand of the summer
month (June, July, August) with the highest value. Using this definition, we extracted data from
the U.S. Energy Information Administration for the peak demand per customer averaged across
the whole U.S from 2008–2024 [13]. The M3 Challenge data provides that the Memphis average
annual consumption is 15172 kWh while the national average is 10791 kWh, creating a ratio of
approximately 1.4 [10]. We then estimated Memphis’s historical peak demand per customer by
multiplying 1.4 to the national average.

Our explanatory variable was the set Memphis heatwave temperatures provided [10]. We could
not find high-resolution data for future projections of heatwave temperature, but we noticed that
the historical data followed a sinusoidal, seasonal pattern. Taking advantage of this, we fitted a
SARIMA (Seasonal Auto-Regressive Integrated Moving Average) time series on temperature to
project 20 years ahead to 2044. Figure 3 shows our SARIMA results, in which we observed that
sinusoidal seasonality was captured accurately.

8



Figure 3: Forecasted Heatwave Temperatures

After preparing the explanatory variable, we were ready to project Memphis’s peak demand per
customer based on heatwave temperatures. We opted for a gradient boosting algorithm, XGBoost,
for its suitability with non-linear and strongly seasonal data.

3.3.2 Results

In our projections, we found that the peak demand per customer generally ranged from 3400–3600
kWh and was directly correlated to heatwave temperature fluctuations (Figure 4a. However, these
projections do not reflect the maximum demand the entire Memphis grid handles, as they are only
per-customer values. We multiplied the total electric customers in Memphis to these projections to
calculate the total grid demand. In 2024, the total electric customers was around 431,000, and we
estimated the future number of customers based on the Memphis metropolitan area’s 0.6% average
annual population growth [14]. Figure 4b shows the final projected peak demand for the whole grid
after multiplying per-customer values by our estimated electric customers.

(a) Peak Demand per Customer (b) Total Grid Peak Demand

Figure 4: Peak Demand Projections
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3.4 Discussion

Examining Figure 4, we found a steady increase in peak demand due to the population rise of
electric customers over the next two decades [13]. In 2044, we projected a peak demand of 1.755
billion kWh, which is a clear 20.2% increase from 2024’s peak demand of 1.46 billion kWh. Due to
the projected rising of summer peak demand, the Memphis power grid will likely face load issues,
supply-demand deficits, and outages if the capacity of energy infrastructure is not upgraded.

3.5 Strengths and Weaknesses

Our model pipeline is logical: we first extend the explanatory temperatures through SARIMA,
then project Memphis peak demand per customer using XGBoost, and finally calculate total grid
demand with our electric customer population multipliers. Additionally, both our SARIMA and
gradient boosting models were trained to capture the seasonality of heatwave temperatures well
and outputted reasonable projections. However, without high-resolution data for established tem-
perature projections and specific city-level electric consumption, our methodology is built upon
assumptions. Our extrapolation of heatwave temperatures may be problematic due to long-term
climate change, although we do see a gradual incline in projections in Figure 3. Additionally, we
gathered data for the whole U.S., then calculated Memphis values based on an assumed ratio, so
this could be a factor of instability.

4 Q3: Beat the Heat

4.1 Defining the Problem

The goal for the third problem is to develop a vulnerability score for the 27 neighborhoods
throughout Memphis to help allocate resources equitably in the case of a heat wave or power grid
failure. We are also tasked with recommending an approach on incorporating vulnerability scores
into mitigating heat wave effects.

4.2 Assumptions

1. There will not be any major changes in the setup of Memphis’s power grid within
the scope of our prediction
In predicting future vulnerability in particular areas, we must assume that there will be no
major changes of the power grid setup within Memphis, Tennessee.

2. The implementation of the developed scores will require allocating more resources
to at risk areas
Our model is based on the idea that a higher score means an area is more at risk and thus
will need more help in our final implementation.

3. Neighborhood characteristics can be reduced or grouped into components
Multicollinear variables can be grouped together to simplify our analysis to less variables.
While variables may not be perfectly correlated, if they are closely correlated, they can be
grouped to make analysis possible.

4.3 Model

4.3.1 Development

To develop a vulnerability metric, we examined the neighborhood characteristics and variables
(around 20+ variables including number of households, population, etc.). All variables are measured
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in counts and can be found in the M3 Challenge’s provided data (not included since there are too
many to put in this paper) [10]. We found prominent multicollinearity between some variables
(Figure 5) due to overlapping metrics like household or transportation data. To clarify our analysis,
we chose to utilize Principle Component Analysis (PCA), an unsupervised learning technique to
reduce dimensionality while preserving the key ”principle components” that explain the variability
between the neighborhood characteristics.

Figure 5: Correlation Matrix

We then scaled the neighborhood characteristics to balance their weight, and calculated a co-
variance matrix to quantify the similarity between each variable. From the direction of maximum
variance within the data, we determined four eigenvectors (principle components v) and correspond-
ing eigenvalues λ. The explained variance of each principle component (PC) vj was calculated with
the ratio of λj over the summed eigenvalues of all PCs. We also used the loading factors of each
PC to determine the most important neighborhood characteristics and define PCs into categories
like infrastructure, transportation, etc.

Explained Variance =
λj∑p
k=1 λk

4.3.2 Results

From our four main components, we examined their key neighborhood characteristics and divided
PC1–PC4 into the categories of transportation/workforce, urban density/older housing, housing
diversity and recent development/income. Results are shown in Table 4.
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Table 4: Principal Component Vulnerability Analysis

PC Category Top Variables (Loading Factor) Explained Variance

PC1 Transportation/Workforce Households w/ 1+ vehicles (0.30),
Population aged 16+ working
(0.30), Primary mode of trans-
portation to work is driving (0.30)

0.49

PC2 Urban Density/Older Housing Primary mode of transportation
to work is walking/public tran-
sit (0.38), Homes built before
1950 (0.38), Homes built 1950–1969
(0.37)

0.21

PC3 Housing Diversity Mobile homes/other (0.47), Town-
house (0.35), Apartments (0.33)

0.08

PC4 Recent Development/Income Proportion of developed/open space
(0.65), Homes built after 2010
(0.32), Median household income
(0.30)

0.07

Our vulnerability score was calculated based on these four principle components for each neigh-
borhood, weighted by their proportion of explained variance, then normalized on a 0–100 scale.
However, PCA does not automatically correlate with heatwave or outage vulnerability. We negated
the contributions of PC1 and PC4 due to their inverse relationships with vulnerability. For example,
in PC1, higher transportation and workforce numbers indicate economically strong, car-dependent
areas, and therefore less vulnerability. In PC4, more development and income also correspond with
less vulnerability, an inverse effect. Our PCs combined explained around 85% of total variance,
which shows the strength of our model. Our vulnerability calculation is shown below with the
coefficients representing each PC’s explained variance.

Vulnerability Metric = (−PC1× 0.49) + (PC2× 0.21) + (PC3× 0.08) + (−PC4× 0.07)

4.4 Discussion

Our model showed transportation of people in the workforce as the most correlated variable with
increased vulnerability, followed by urban density/older housing, then housing diversity, and finally
recent development/income. It is worth noting that these variables in total do not explain all the
variance, yet offer a significant portion of it, at 85%. This shows our model is quite strong.

Figure 6 depicts a heat map displaying the most at-risk areas. West Memphis consists of the most
areas which are considerably vulnerable to heat waves and the ensuing power outages. The most
at-risk areas residing in West Memphis include Uptown/Pinch District, South Forum/Washington
Heights, and Rossville. The neighborhoods that have the highest chance of withstanding heat-
waves and persisting without power outages are East Memphis neighborhoods including Arlington,
Cordova, and Collierville. Given this, it’s crucial that policymakers pay special attention to West
Memphis neighborhoods whose citizens are most vulnerable to power outages. Our vulnerability
score is distributed from 0–100, so we recommend dividing the neighborhoods into 0–30 (least

12



Figure 6: Heatmap of Vulnerability

vulnerable), 30–70 (moderately vulnerable), and 70–100 (most vulnerable). The city should be
actively engaging in mitigation strategies with the most vulnerable neighborhoods, utilizing energy
storage, transmission line upgrades, or emergency measures. Of course, neighborhoods labeled
0–30, are much less impacted by heatwaves or outages, and the government should implement
passive measures like energy usage awareness. By looking at the variables most correlated with
vulnerability, policymakers can not only provide more for highly at-risk areas, which will have
a higher vulnerability score, but also work to fix underlying issues leading certain areas to be
vulnerable to heat waves and power grid failures.

4.4.1 Recommendations

One key policy that we recommend to support the most at-risk areas is climate-resilient grid
hardening. Hardening the power grid allows it to withstand weather events such as heat waves much
better and leads to significantly less power grid failures [15]. From 2003 to 2012, weather-related
power outages cost the U.S. economy an inflation-adjusted yearly average of between $18 billion
and $33 billion. As of 2022, the annual cost to GDP is around $150 billion [3]. To combat these
losses, grid hardening brings substantial economic benefits by preventing outages and eventually
raising GDP. According to the Federal Energy Regulatory Commission (FERC), every $1 million in
direct spending on grid modernization and hardening generates some $2.5 million in GDP growth,
mainly due to avoided or reduced outages [3].

Grid hardening can take many forms and should be tailored to specific areas as needed. Crucial ap-
proaches include implementing underground power lines, using digital technologies, and upgrading
critical equipment. Other methods include rapid response preparation by utilities and government,
as well as installing advanced protective devices into the power grid. The point of all these forms
is to weatherproof critical infrastructure within power grids from inclement weather events, thus
mitigating the effects of heat waves and power grid failures in turn [3] [15] [16].

The government of Memphis should implement these grid hardening technologies within high
vulnerability score areas first, then go through and implement these technologies in lower and lower
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vulnerability scores. By focusing on first helping the most at-risk areas, we can ensure that those
who are most threatened by heat waves and power grid failures are aided first.

4.5 Sensitivity Analysis

To evaluate the robustness of our vulnerability metric, we examined how small changes in the
weighting coefficients affect the final scores. Our vulnerability metric is defined as

V = −w1 PC1 + w2 PC2 + w3 PC3 − w4 PC4,

with baseline weights

w1 = 0.49, w2 = 0.21, w3 = 0.08, w4 = 0.07.

To understand the sensitivity of our model, we varied each weight by ±10%. For example, w1

varies as

w1 ∈ {0.9× 0.49, 0.49, 1.1× 0.49} = {0.441, 0.49, 0.539}.

We performed similar variations for w2, w3, and w4 while keeping the other weights fixed at
their baseline values. For each case, we recalculated the vulnerability metric V for all 27 neigh-
borhoods. Figure 7 shows sensitivity plots for each weight, where the vulnerability scores (before
0–100 normalization) for all neighborhoods are plotted under three scenarios: the baseline weight,
−10% variation, and +10% variation. These plots clearly demonstrate that even a small change
in the weights leads to noticeable shifts in the vulnerability scores. Table 5 below summarizes the
vulnerability scores for the first five neighborhoods when w1 is varied by ±10% while the other
weights remain at their baseline values. These values indicate that reducing w1 by 10% increases

Table 5: Summary of w1 Variations

Neighborhood Vbaseline Vw1=0.441 Vw1=0.539

1 V baseline
1 V 0.441

1 V 0.539
1

2 V baseline
2 V 0.441

2 V 0.539
2

3 V baseline
3 V 0.441

3 V 0.539
3

4 V baseline
4 V 0.441

4 V 0.539
4

5 V baseline
5 V 0.441

5 V 0.539
5

the vulnerability score, while increasing w1 by 10% decreases it Similar trends are observed for the
other weights.

Our sensitivity analysis shows that the vulnerability metric is moderately sensitive to small
changes in the weighting coefficients. Components with higher baseline weights, such as w1, have
a greater impact on the overall score, causing variations of up to 8.2% from the baseline. We
found that the sensitivity variations proportionally followed the explained variances of the prin-
ciple components. Although the four principal components collectively explain about 85% of the
total variance, precise calibration of these weights is essential for accurately identifying vulnerable
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Figure 7: Sensitivity Plots for w1, w2, w3, and w4

neighborhoods. This insight is crucial for resource allocation and effective mitigation of heat wave
effects.

Overall, even minor adjustments to the weighting coefficients result in significant changes in the
vulnerability scores. This highlights the importance of careful calibration of the weights to ensure
that our metric accurately reflects the true vulnerability of each neighborhood.

4.6 Strengths and Weaknesses

Our model is quite strong, with its components explaining 85% of variance in vulnerability. This
is because it combined several different variables and reduced dimensionality while preserving the
key ”principle components” which explain variability. Our PCA modeling identified key areas to
target: for example, policymakers can focus on the top variables calculated for PC1, which pertain to
transportation and workforce metrics. We were also able to distribute high-resolution vulnerabilities
to specific neighborhoods, structuring future mitigation strategies.

The weakness of our model is revealed in the extra 15% of variance in vulnerability not explained
by our data. We could try to rectify this by finding more explanatory data which we may have
not included. However, 85% is usually a sufficient start for PCA modeling. The primary weakness
is that we do not have any response variables, like actual outages by neighborhood or heat-related
hospital visits, so our vulnerability score calculations are partially based on educated assumptions.
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5 Conclusion

In this study, we addressed three critical questions related to the challenges posed by extreme heat
waves in Memphis, Tennessee. The answers, and most importantly, implementations in reaction to
these given questions can have significant benefits to the well-being of Memphis, Tennessee. The
application of similar modeling work to other major southern cities that suffer from heat waves and
failing electric grids can have outsized effects on society at large.

For Q1, we developed a predictive model for indoor temperatures in non–air-conditioned dwellings
during a heat wave using a modified form of Newton’s Law of Cooling. Our results indicate that
apartments, due to higher heat transfer coefficients and internal loads, experience faster and higher
indoor temperature increases compared to single–family residences. This is of immense importance
for policymakers to consider when regulating housing in the Memphis area. A well-insulated apart-
ment or single-family home can be the difference between a life of good health and prosperity and
that of sickness. The effects that an indoor temperature of 41.1 C and 40.0 C in apartments and
single-family homes respectively can have on a family has repercussions for both their community,
the legal system, and the city’s economy. Significant improvements in insulation for non-AC homes
are necessary to ensure the sustenance of thousands of families who depend on low-income hous-
ing. The social implications of lower-quality insulation and the economic effects of higher-quality
insulation must be weighed when constructing and legislating non-AC homes.

For Q2, we projected the peak power demand on Memphis’s electric grid during the summer
months and forecasted changes over the next 20 years using a SARIMA model integrated with
XGBoost features. Our time series analysis predicted an increase in peak demand over the next two
decades, suggesting that grid efficiency improvements and modernization are absolutely necessary
to offset the rising ambient temperatures and increased energy needs due to heat waves. Our
projections indicated to us that the average peak demand during the summer months per customer
(individual and business) in Memphis is around 3400 to 3600 kWh. Across the total Memphis
grid, demand is expected to increase from 1.46 billion kWh in 2024 during the highest month in
the summer months to 1.76 billion kWh by 2044. This is a massive 20 percent increase over only
two decades which can have catastrophic consequences on Memphis’s electric grid and thereby its
citizens without the proper precautions and structural improvements. Our findings are both eye-
opening and alarming and point to an urgent need for policymakers to collaborate with the electrical
sector to improve grid capacity at a fundamental level and avoid widespread outages that have often
irrecoverable damages.

Finally, for Q3, we developed a vulnerability score for Memphis neighborhoods using principal
component analysis (PCA) on over 20 neighborhood socioeconomic and infrastructure variables.
Our four computed principle components, each covering their own aspects of neighborhoods like
housing diversity and income, explained a substantial 85% of the data. The vulnerability metric
was calculated on a 0–100 normalization, and we recommended grid hardening, along with other
subsidiary measures, to be allocated accordingly based on each neighborhood’s vulnerability rank.

With sensitivity analysis, we confirmed the responsiveness of PCA to variable shocks, with ±10%
variations in PC1 weighting introducing vulnerability score variations of up to 8.2%. The adaptabil-
ity of our vulnerability score will allow calculations to remain effective in a variety of circumstances
in the future and can actively used to diagnose new neighborhoods in addition to our original
27 neighborhoods. This enables policymakers to identify and prioritize at–risk neighborhoods for
interventions such as grid hardening and resource allocation.

In summary, our findings suggest that during heat waves, indoor temperatures in non–air-
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conditioned dwellings can rise significantly—more so in apartments than in single–family homes—while
future power demand may decline due to grid improvements. Moreover, our neighborhood vulnera-
bility score offers a robust, data–driven tool for targeted mitigation strategies. These results provide
valuable insights for policymakers tasked with ensuring equitable resource allocation and enhancing
the resilience of Memphis’s power grid and public infrastructure.
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