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JUDGE COMMENTS
In this paper, the team consider 50% were long haul truck and 45% were regional haul. Therefore, they simulated 850,000 long 
haul and 765,000 regional haul trucks with normally distributed lifespans. They also included cost analysis information and entered 
all into their MATLAB simulation. They ran this 20 times and obtained 20 estimates for the proportion of electric trucks in the years 
2025,2030, and 2040. In addition, the computed means, standard deviations, and confidence intervals for this proportion in years 
2025 and 2030. For year 2040, all runs produced 100%. 

For question 2, they stated they were placing stations 150 miles apart because of them using 60% of battery life between charges. 
(We have had some discussion about this). It seemed they rounded this number down to make stations equidistant apart. They 
say they obtained traffic densities at various miles for each route, considering city closest to the corresponding station. They did 
provide a nice graphic of the routes with the size dot relative in size to the number of chargers. Another plus for this part is that 
they also considered another type of battery (Chanje V8100) that charges in less time. This would result in more stations but fewer 
chargers per station. 

They considered environment, carbon emissions, budget, cost of electricity, and operating costs for question 3. After obtaining 
information, they normalized each factor so they could be added or subtracted if negative. They should explain more clearly why 
higher is better. This is seen in several papers.

 Questions:
1.	 Please tell us more about your MATLAB code and why you used the variables or factors that you used. 
2.	 Would you discuss in more detail why you used the factors that you used for question 3 and why higher values are ones would 

indicate higher need?
3.	 Could you please tell more about your sources? Namely what did you use to start with 3 hours charging time for a standard 

electric truck battery to charge from 20% to 60%?
4.	 It is impressive that you tried to optimize number of chargers per station after you came up with large numbers (above 1000 

for most stations). Also, what makes you to believe that Chanje batteries will charge in 35 minutes from 20% to 80% compared 
to your initial assumption of 3 hours? 

Overall: Impressive work with modeling using Matlab and factors you used. Very clear graphs and adequate explanations 
accompanying graphs.
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Executive Summary

Trucking is one of America’s most vital industries: anyone who has ever
bought groceries, ordered a package online, or picked up medicine from a
pharmacy is dependent on truckers and the goods they transport. Yet the
industry, which brings in nearly $800 billion annually in the U.S. [1], is on the
precipice of a dramatic change. Heavily polluting diesel vehicles are becoming
outdated, and, in their place, companies across the nation are investing in a
groundbreaking new technology: electric semi-trucks.
To predict the percentage of semis that will be electric in the near future, we
developed a Monte Carlo simulation for the purchasing choice of a shipping
firm. Our model simulates that when a truck becomes too old, the owner
will be a financially rational consumer and will buy the electric or diesel semi
that will come at the cheapest annual cost. Our model accounts for variance
in cost and lifespans and the annual change in typical prices, from inflation
and technology improvements. It predicts that 43%, 83%, and 100% of semis
on the road will be electric, in 2025, 2030, and 2040, respectively.
Our second model determines the minimum number of charging stations
along a corridor to ensure that, if all trucks on the corridor were electric, no
truck would run out of charge. The longest route we tested, San Antonio to
and from New Orleans, would require 7 charging stations. Our model then
considers the number of chargers that would be needed to accommodate the
average truck traffic that passes a given station. Along the tested routes,
between 330 and 1843 chargers would be needed per station, which is likely
unfeasible. If the typical battery charging time was only 11 minutes, however,
each station would have, at most, a more reasonable 120 chargers.
Our third model uses normalized metrics to determine the relative benefit of
switching to electric trucks along each of the five corridors considered. The
factors addressed include the environmental friendliness of the regions near
the route, the environmental benefit of switching, the budget available, and
the costs of the chargers and station needed. We determined that it is most
beneficial to develop the corridor from Minneapolis and Chicago and least
beneficial to do so on the route to and from San Antonio and New Orleans.
Our models provide valuable insights into the potential growth of electric
semi-trucks, the infrastructure that will be needed to be developed to match
the growth, and the corridors along which developing said infrastructure
should be prioritized. We are excited to see this technological development
revolutionize the trucking industry.
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Global Assumption

1 Electronic vehicles will be the only disruptive technology to impact
the trucking industry in the next twenty years.

1 Shape up or ship out

1.1 Restatement of the Problem

Predict the percentage of semi-trucks that will be electric within 5, 10, and
20 years, assuming a readily available supply.

1.2 Local Assumptions

1. The semi-truck market size will stay constant. The production of semi-
trucks has had no clear trend in recent history. A linear regression
of the percentage of trucks produced for regional hauling [4] has a
statistically insignificant R2 of 0.03. Likewise, a linear regression of
the overall market size (number of trucks produced annually) has a
statistically insignificant R2 of 0.07.

2. Consumers act financially rational. Since semis are almost exclusively
used for commercial transportation, we assume that they are acting to
maximize profits and will not altruistically make purchases for the sake
of the environment.

3. All short haulers will be supplied from old long and regional haulers.
When long haul trucks are retired, they are frequently used as short
haulers [2], as reflected in the zero total production of short haul trucks
[4].

4. Semis are retired only due to typical wear and tear that accumulates
over time. Though some semis may be put out of service due to acci-
dents, etc., these trucks will typically be replaced with a similar truck
by insurance. Therefore, the only reason for a new truck to be pur-
chased is if another truck is no longer usable due to age.

5. All decisions by electric car companies are made solely for economic
gain. In America’s current economic climate, the principal goal of most
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firms is to make profit. Thus, we assume that altruistic considerations
and environmental concern are negligible in firms’ decision-making pro-
cesses.

6. No government regulation requiring firms to transition to electric vehi-
cles is implemented. Diesel trucks will only transition to electric trucks
if it is economically advantageous under free-market conditions.

1.3 Model Development

Our simulation begins by creating a representation of the current semi-truck
fleet. There are 1.7 million semi-trucks in the US, but only 50% of those are
long haul and 45% are regional haul [2]. Since we are not considering short
haul trucks, we only created data points for the 850,000 long haul trucks and
the 765,000 regional trucks. We used the annual truck production numbers
to determine the age of each truck [4]. For example, the 850,000 most re-
cently produced long haul trucks are considered to be the long haul trucks
currently on the road.
Another important aspect of a semi-truck is its lifespan. We used a nor-
mally distributed range to generate truck lifespans by dividing estimates for
diesel trucks’ mileage capacities [5, 6] by the typical yearly miles traveled by
each type of truck [7]. The electrical semis’ lifespans were also normally dis-
tributed, per predictions based on current electric vehicle lifespans [8]. The
lifespan of each of the 1.61 million long haul and regional trucks currently in
operation was generated randomly from these distributions. The values for
these characteristics are as follows:

Symbol Value Units

Total Long Haul 850,000 Trucks
Total Regional Haul 765,000 Trucks

Long Haul Age Range 0-11 Years
Regional Haul Age Range 0-8 Years
Long Diesel Haul Lifespan µ = 7.46, σ = 1.14 Years

Regional Diesel Haul Lifespan µ = 12.5, σ = 1.79 Years
All Electric Lifespans µ = 8.5, σ = 1.5 Years

The simulation also includes a cost analysis to determine the optimal
financial purchase for a consumer in need of a new semi. The function cal-
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culates the annualized cost of the purchase of a new semi as follows:

AnnualCost =
PurchaseCost

AverageLifetime
+ Y earlyOperationalCost

The purchase cost was calculated as a normally distributed random vari-
able from current estimates [10, 11] that changes each year at future market
price estimates [9], factoring in inflation and improving technology. This is
modeled using the following exponential increase equation:

PurchaseCost = InitialCost · IncreaseRateyears

The function uses the average of the lifespan distributions used above, seeing
as the consumer will be unsure of what the actual lifespan will be.
The annual operational cost was calculated as

OperationalCost =
MilesDriven

Y ear
· Cost
Mile

where the miles driven per year is based on the average for regional and long
hauls [7] and the cost per mile is from cost estimates [12, 13].
The values for these variables are as follows:

Symbol Value Units

Years Current year − 2020 Years
Initial Cost Electric µ = 165, 000, σ = 15, 000 Dollars
Initial Cost Diesel µ = 102, 500, σ = 22, 500 Dollars

Increase Rate Electric 1.00263
Increase Rate Diesel 1.0057

Driving Per Year, Long Haul 118,820 Miles
Driving Per Year, Regional Haul 70,000 Miles

Per Mile Cost, Electric 1.26 Dollars
Per Mile Diesel, Diesel 1.593 Dollars

As expected, the initial cost for an electric semi will typically be more
expensive, but the operational cost will be cheaper.
The above characteristics were implemented in a MATLAB program. The
initial truck fleet is described by a 4 by 1.615 million matrix in which each
column represents a single truck. Each truck’s type (electric or diesel), mode
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(long haul or regional haul), current age, and lifespan are stored in the first,
second, third, and fourth rows, respectively. At the the start of each year,
the age of every truck is increased by one. For the trucks that have reached
the end of their individual lifespan, the code evaluates the cost function to
replace that vehicle with a diesel versus electric truck. If the electric option
has a lower cost function, then the old truck will be replaced with an electric
truck. If not, it will be replaced with a new diesel truck. The new truck will
have its age set to 0 and a new lifespan created. This procedure is repeated
for a specific number of years, t. For this paper, t is set to 5, 10, and 20
years.

1.4 Results and Sensitivity Analysis

In order to gain a detailed understanding of the variation and uncertainty of
our model, we ran our code 20 times for each value of t (5, 10, and 20 years),
resulting in 20 estimates for the proportion of trucks that are electric. These
results are shown in the following histograms.
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Figure 1: Proportion of trucks that are electric versus number of oc-
currences for 2025, 2030, and 2040. Note that for 2040, all trucks were
predicted to be electric in all twenty simulations, resulting in a histogram
with no spread.
This allowed us to calculate 1) a mean value for the desired proportion and
2) a 95% confidence interval for the proportion using a bootstrapping routine
in which 1000 re-samples were taken from the original sample of 20.

Year Mean Proportion of Trucks Electric 95% Confidence Interval

2025 0.43045 (0.4303, 0.4306)
2030 0.8269 (0.8268, 0.8270)
2040 1.00 (1.00, 1.00)

Figure 2: On the left vertical axis is the proportion of trucks that are elec-
tric for each year simulated: 2025, 2030, and 2040. On the right vertical axis
is the margin of error for this proportion, calculated based on a 99% confi-
dence interval. In other words, we are 99% certain that the population mean
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proportion deviates from the sample mean proportion less than the margin
of error shown above. As stated above, this margin of error was calculated
in MATLAB using a bootstrapping procedure that took 1,000 re-samples of
the original sample of 20.

Based on these results, we predict the rapid and total adoption of electric
trucks within the next 20 years, with the majority of trucks on the road be-
coming electric between 2025 and 2030. Our error decreases as the number
of years we simulate increases, due to the fact that abnormal behavior of the
simulation in a given year is likely to cancel out in subsequent years.

1.5 Strengths and Weaknesses

The greatest strength of our model is that it simulates every truck in the
United States individually. Our code evaluates the relative cost of replacing
an old truck with a diesel versus electric vehicle for each truck that reaches
its maximum age. This allows us to incorporate the natural variability of
truck lifespan and cost into the model by using random variables rather than
relying on a macro-scale architecture based on point estimates for these quan-
tities. As evidenced in section 1.4, this approach results in an extremely low
error due to the fact the random variables that characterize each truck are
computed more than one million times.
The primary weakness of this model is that it does not account for companies
who may switch to electric cars before it is economically advantageous in or-
der to differentiate themselves, improve the environment, or generate positive
publicity with an increasingly environmentally conscious public. Moreover,
our model does not account for economies of scale. In reality, the cost of each
additional truck of a certain type in a given year would be less expensive than
the last.

2 In it for the long haul

2.1 Restatement of the Problem

Determine, for any given trucking route, the number of charging stations
and the number of chargers at each station that would be necessary to make
current levels of long haul trucking possible if every truck was electric.
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2.2 Local Assumptions

1. Configurations with a lower number of charging stations are preferable
to those with a higher number of charging stations if they both allow
drivers to recharge when needed. We assume that the cost to add ad-
ditional chargers to a charging station is far less than the cost to build
a new charging station. Thus, we seek to minimize the number of
charging stations.

2. Charging stations along any given route should be equidistant from each
other and from the cities at either end of the route. While this may
not be true of the optimal configuration, it will certainly yield the same
number of charging stations, as is now mathematically proved. Proof:
Let the minimum number of equidistant charging stations required to
supply drivers with the opportunity to recharge when necessary be n.
Let the distance d between charging stations be the maximum distance
a truck can drive beginning with 80% charge (the level to which a truck
is typically charged at the station)[3] and ending with 20% charge (con-
sidered to be the point at which recharging is mandatory). It follows
that the total length of the corridor is d ·(n+1). Since we seek to deter-
mine only the number of charging stations necessary, not their spatial
distribution, this assumption would only result in an inaccurate result
if their existed a nonequidistant configuration that a) supplied drivers
with the opportunity to recharge when necessary and b) had fewer
than n charging stations. With fewer than n charging stations, there
is necessarily a pair of stations separated by more than d. Since this
would make it impossible for a truck to travel between these stations
without going below 20% charge, n must be the minimum number of
charging stations, and this assumption can be made without affecting
the resulting number of charging stations.

3. All trucks entering a route have at least 80% battery. Trucks entering
the route are just beginning their trip and will have had time to fully
charge overnight prior to entering the route.

4. All trucks traveling on any given route are tractor-trailers and have
the same type of battery as the Freightlander eCascadia model. In this
idealistic scenario, we assume that all of the trucks will be of the same
model, which can travel 250 miles on a full charge and take 3 hours to
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recharge from 20% to 80% [3].

5. All charging stations exclusively use Direct Current Fast Charging (DCFC)
chargers. DCFC chargers have already seen widespread use across the
United States and are much more efficient than any other electric vehi-
cle charger [3]; in order to develop electric car charging infrastructure
on this large of a scale, it is necessary to use DCFC chargers.

2.3 Variables

Symbol Definition Units
S Number of charging stations along a given route
M Mile along route closest to a given charging station
D Total length of a route Miles
n Position of a given charging station
C Number of chargers at a given charging station
T Number of trucks that pass a given highway mile per day

2.4 Model Development

Per our assumptions, the optimal system along a route consists of charging
stations that are equidistant from each other and from the ends of the route.
Additionally, drivers recharge to 80% and will keep driving until they are
down to 20% of their truck battery, then visit a charging station to recharge.
Thus, the number of charging stations on the route can be found by dividing
the total length of the route by the distance an electric truck can drive using
60% of its battery (in our model, a truck can drive 250 miles on a full charge,
so using sixty percent of its battery, it will drive 150 miles) and then taking
the floor of that value:

S =

⌊
D

150

⌋
After determining the number of charging stations on each route, we sought
to find the number of chargers that would be necessary at each charging
station in order to accommodate current levels of truck traffic. There must
be enough chargers at each station to accommodate every truck driver who
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must use them in a day.
Because our model places charging stations equidistant from each other and
relatively far apart, trucks that receive charging at a given station will need
to be charged again by the time they reach the next station on their route.
Thus, we determined that the amount of trucks that would need to be charged
at a charging station would be directly proportional to the amount of truck
traffic it receives.
To find the number of chargers required at a given charging station, we first
found the highway mile that the charging station is closest to. This was
accomplished by calculating the distance between stations (D

S
), then multi-

plying it by the position of the charging station in question (the charging
station closest to the first city listed would have a position of 0, the charging
station second-closest to the first city would have a position of 1, and so on):

M =
D

S
n

Using the mile on the route that is closest to the charging station, we used
national traffic data [14] to determine the average number of trucks that pass
the charging station daily.
We divided that figure by 24 to determine the average number of trucks that
would pass the charging station per hour, then multiplied by amount of time
each truck would need to spend at a charger in order to return to 80% of a
full charge and taking the roof of that number; the result is the minimum
number of operational chargers that the charging station would need in order
to accommodate all of the trucks that planned to use it:

C =

⌈
3T

24

⌉

2.5 Results

We tested our model by using it to analyze five heavily used American truck-
ing corridors:

• San Antonio, Texas to/from New Orleans, Louisiana,

• Minneapolis, Minnesota to/from Chicago, Illinois,

• Boston, Massachusetts to/from Chicago, Illinois,
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• Jacksonville, Florida to/from Washington, DC, and

• Los Angeles, California to/from San Francisco, California.

The number of charging stations required for each corridor was dependent
on the total length of each route. The longest route, San Antonio to/from
New Orleans, had seven charging stations, while the others, which were all
hundreds of miles shorter in length, had significantly fewer. The amount of
charging stations necessary for each route is as follows:

Route Charging Stations Required

San Antonio, TX to/from New Orleans, LA 7
Minneapolis, MN to/from Chicago, IL 2
Boston, MA to/from Harrisburg, PA 2

Jacksonville, FL to/from Washington, DC 4
Los Angeles, CA to/from San Francisco, CA 2

Though the stations were equally spaced, some stations had many more
chargers than other stations on the same route, due to differences in traffic
density at various miles on each route. The number of chargers at each
station on each route is listed in the tables and graphic below.

Distance of Charging Station Number of Chargers
From San Antonio, TX (miles) Required

138 1750
276 1504
414 1843
552 1843
690 1367
828 1367
966 959
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Distance of Charging Station Number of Chargers
From Minneapolis, MN (miles) Required

140 330
280 1403

Distance of Charging Station Number of Chargers
From Boston, MA (miles) Required

128 839
256 842

Distance of Charging Station Number of Chargers
From Jacksonville, FL (miles) Required

139 1241
278 748
417 724
556 670

Distance of Charging Station Number of Chargers
From San Francisco, CA (miles) Required

101 659
202 1270
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Figure 3: A visual representation of each trucking corridor. Each line
represents a trucking corridor, and each dot represents a the location of a
charging station. The length of each line is proportional to the length of the
corridor, and the area of each dot is proportional to the number of chargers
at the charging station located there.

It is important to note that the amount of chargers at some stations listed is
too large to feasibly implement with current battery technologies and rates
of electric vehicle adoption. This shows that, realistically, the entire trucking
industry could not suddenly switch to electric vehicles. To do so, we would
need to implement a more gradual solution than that described in the prob-
lem; furthermore, we would need much more reliable technology than that
which is is currently available.

2.6 Further Analysis and Validation

We used two different methods of analysis to better understand our results.
Since our model determined that with current battery technology it would
be not feasible to create a low number of charging stations that handle the
demand of traffic, we wanted to figure out how much more efficient charging
times would have to be for these stations to be of a feasible size. To have
charging stations with a max of 120 chargers, the number of pumps in a very
large gas station [15], we rearranged the formula used to calculate the num-
ber of pumps needed in a given station. We set the number of pumps in each
station equal to 120 and solved for the charging time, which was previously
3 hours.
For all 17 of the charging stations to have at most 120 pumps, the recharg-
ing to 80% battery would have to take at most 11.7 minutes. This seems
like an incredible advance in battery technology, cutting the charging time
to almost 1

18
of what it currently is, but other batteries, such as the Chanje

V8100 battery [3], can already charge in less than an hour, so in the near
future this technology could be readily available. Additionally, current diesel
refueling stops average 10-15 minutes [16], so it seems extremely plausible
that with better charging and battery technology, refueling times can reach
11.7 minutes and our suggested refueling stations can be developed to handle
the entire fleet of semi-trucks being electric.
To further test our model, we implemented it using the Chanje V8100 bat-
teries as the battery of every truck. These batteries would be able to travel
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only 90 miles on each charge but would only require 35 minutes on average
to recharge [3]. As expected, the number of charging stations required on
each route would increase to the amounts as follows:

Number of Charging
Route Stations Required

San Antonio, TX to/from New Orleans, LA 12
Minneapolis, MN to/from Chicago, IL 4
Boston, MA to/from Harrisburg, PA 4

Jacksonville, FL to/from Washington, DC 7
Los Angeles, CA to/from San Francisco, CA 3

The number of chargers required at each station would significantly de-
crease, with the most chargers being 666, as compared to 1,843 originally.
The overall number of chargers would decrease, albeit less significantly, to
8,118 (from 19,359 total chargers originally).
These results all make logical sense considering the faster charging, shorter
ranged engines, and shows that are model is working as expected.

2.7 Strengths and Weaknesses

The most important strength of this model is its simplicity. It is very easy
to understand our results. The model is very malleable and can be changed
for new battery types, as seen in the Sensitivity Analysis. Additionally, the
derivation of the model is logical, which leads to a setup that would theoreti-
cally work. Additionally our model does account for different traffic densities
in different regions. Charging stations will have a number of chargers that
meet the demand of that specific station. This ensures no waste due to lo-
cally modified results.
Our model is weakened in that it assumes that the optimal approach will
be in a minimal number of equidistant charging stations. This ignores the
costs associated with creating a large number of chargers in a single station,
namely the vast land that would be needed to do so. Additionally, with
various areas of traffic density, equidistant charging stations might not be
the option that leads to the minimum number of chargers. Our model also
oversimplifies wait times. The wait times considered assume that a trucker
is an ideal driver who immediately begins charging upon arrival and leaves
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right after which is impossible in real life. Also, by just using the average
traffic throughout a day, our system ensures no traffic backups, but there will
be heavy delays during peak traffic times that will cause backups that will
take most of the rest of the day to pass, and it doesn’t account for seasonal
traffic trends.
Although our system may lead to unnecessary traffic and wasted driver time,
the traffic will dissipate at slower traffic times, so the buildup would not in-
crease infinitely and our model does accurately provide the theoretical min-
imum number of charging stations for each corridor.

3 I like to move it, move it

3.1 Restatement of the Problem

Create a model that will determine how beneficial it would be to develop
electric vehicle infrastructure on a given trucking corridor. Use this model to
rank each of the five trucking corridors discussed in Part 2 and decide which
of them should be developed first.

3.2 Local Assumptions

1. The regional preferences of a given trucking corridor will be based on the
states the corridor passes through. The development and maintenance
of an interstate highway are funded by the states that it runs through
[17].

2. Public opinion on regulating CO2 emissions is directly related to pub-
lic support for transitioning to electric vehicles. Greenhouse gases are
emitted by diesel engines through the burning of fossil fuels. Therefore,
the adoption of electric vehicles would decrease CO2 emissions [18].

3.3 Model Development

We identified five primary factors that have a clear impact on whether it
would be beneficial to develop electric vehicle infrastructure on a route:

• the environmental friendliness of regions surrounding the route,
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• the decrease in carbon emissions that would result if drivers on the
route switched to electric vehicles,

• the percentage of budget in surrounding regions that is dedicated to
highway maintenance and development,

• the initial cost of electric vehicle infrastructure,

• and the operational cost of charging.

We first noted that the environmental preferences of the areas near the corri-
dor will directly affect the degree to which locals care about the environmen-
tal benefits of switching to electric semis. Thus, we determined a value for
each corridor by using survey data regarding the percentage of people who
believe that CO2 emissions should be regulated [19]. This value should be
similar to the percent of people who would support environmentally friendly
measures, including switching to electric semis [18]. For corridors that span
multiple states, we averaged the polling data for each state it passes through.
To determine the impact of such a change, we calculated the approximate
number of miles traveled daily by trucks on the route. The number of miles
is found by first averaging the number of trucks on each recorded section of
road, then multiplying that value by the length of the route [14]:

MilesTraveled = Trucks ∗Distance

This value is proportional to the environmental benefit of switching to electric
trucks, as each mile driven by each electric truck will result in a reduction of
carbon emissions.
Another positive factor is the percentage of the budget in regions surrounding
a corridor that is dedicated to highways. We use this to extrapolate the
amount of upkeep dedicated to the corridor and, in turn, the likelihood of
a dramatic infrastructure project-creating charging stations-being approved.
This was found by averaging the percent of the state budget dedicated to
highways [20] for each state bordering a corridor.
A negative factor is the initial cost of building the infrastructure necessary
for a route to switch to electric semis. This contained parts of the results of
Part 2—specifically, the number of charging stations and the total number
of individual chargers.
A final negative factor is the cost of operating an electric vehicle. This
was found by using the average cost of electricity for transportation, as of



Team # 13344 Page 17 of 27

December 2019 [21]. Similar to how people are less likely to drive when
gasoline prices are high [22], people will be less likely to use electric vehicles
when electricity is expensive. Electric truck infrastructure created in areas
where the cost of electricity is high will thus be used less and be less beneficial.
The operational cost of an electric vehicle was tabulated by averaging the
electricity costs for all states that a corridor passes through.
Each of the factors listed above was normalized using featured scaling, which
fits each of the values to a relative score between 0 and 1:

X −Xmin

Xmax −Xmin

The two components of the cost of building infrastructure were separately
normalized and then averaged. The normalization makes it possible to add
the individual scores (and subtract the negative factors) and get a total score
that represents how beneficial it would be to add electric vehicle infrastruc-
ture to a given route.
This model can be generalized to rank any corridor by adding in data for
additional corridors.

3.4 Results

The following tables show the results of the normalization and the total
“Benefit Score” for each corridor:

Variable Definition

C1 Minneapolis, MN, to/from Chicago, IL
C2 Jacksonville, FL, to/from Washington, DC
C3 Los Angeles, CA, to/from San Francisco, CA
C4 Boston, MA, to/from Harrisburg, PA
C5 San Antonio, TX, to/from New Orleans, LA

Score Local Opinion + Miles + Budget - Operational - Initial
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Environmental Miles Budget Operational (-) Initial (-) Score

C1 0.640 0.26 1.000 1.000 0.003 0.897
C2 0.390 0.25 0.330 0.000 0.300 0.670
C3 0.740 0.0 0.330 0.530 0.010 0.580
C4 1.000 0.000 0.380 0.920 0.000 0.460
C5 0.000 1.000 0.420 0.060 1.000 0.360

Our model determined that the corridor that runs from Minneapolis,
Minnesota to Chicago, Illinois would benefit most from transitioning to ac-
commodate more electric trucks. The states which own and maintain this
corridor—Minnesota, Wisconsin, and Illinois—have the greatest budget to
make such changes and nearly the lowest expected initial costs to build charg-
ing stations.
The corridor that runs from San Antonio, Texas, to New Orleans, Louisiana,
benefits the least from such a transition despite the high amount of traffic
that travels along it and the states’ high budgets. This can be attributed to
the extremely high cost of building enough charging stations and chargers to
accommodate the high level of traffic and the length of the route. Locals of
Texas and Louisiana will also be less receptive to the investment of taxpayer
money into the development of electric truck infrastructure.

3.5 Sensitivity Analysis

Out normalized values for local opinion, miles, budget, and operational costs
are all based on averages of large, well established data sets. However, we
did not find information that established the relative cost of building new
chargers and new stations. Thus, we simply normalized the cost to build
chargers and stations separately on each route and then averaged those two
values. In this sensitivity analysis, we justify this simplification by showing
that our model is robust to variation in the relative costs of stations and
chargers by considering alternative weightings. In particular, we will now
evaluate the initial cost of building infrastructure for a given corridor as
follows:

I = a

(
c− cmin

cmax − cmin

)
+ b

(
s− smin

smax− smin

)
where c is total number of chargers on the corridor being considered, cmin

is the number of chargers on the corridor with the least number of chargers,
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cmax is the number of chargers on the corridor with the greatest number of
chargers, s is the number of charging stations on the corridor being consid-
ered, smin is the number of charging stations on the corridor with the least
number of stations, smax is the number of charging stations on the corridor
with the greatest number of charging stations, and a and b are constants that
sum to 1 and represent the relative weighting of the cost to build chargers
and stations. The effects of the changes in a and b are shown in the table
below.

a = 0.25, b = 0.75 a = 0.75, b = 0.25
Initial (-) Score Initial (-) Score

C1 0.001 0.899 0.004 0.896
C2 0.348 0.622 0.245 0.727
C3 0.007 0.583 0.021 0.569
C4 0.000 0.460 0.000 0.460
C5 1.000 0.360 1.000 0.360

When shown as a bar graph, the robustness of our model to variation in
a and b becomes more apparent.

Figure 4: Benefit scores for each corridor and three different values of a.
The score is largely invariant with respect to a.
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Since our rankings remain the same despite significantly varying the values
of a and b, we can be more confident in our simplifying decision to average
them in our main model. The only corridor that shows appreciable sensitiv-
ity to a and b is from Jacksonville to Washington, DC. This is because this
stretch is very long and has comparatively low traffic.

3.6 Strengths and Weaknesses

Our model’s main strength is that it considers many different factors through
the normalization process. It is a multifaceted approach that counts for en-
vironmental effects as well budgeting and expenses. Additionally, using nor-
malized factors allows for easy adding of additional factors and manipulation
of current ones, as data becomes available.
The model is weak because it is dependent on arbitrary factors. We con-
sidered several factors and left out several more that could be argued to be
included, such as legislative policies and infrastructure readiness. We de-
cided that determining weightings for each factor would be arbitrary, but
not weighting any is arbitrary in its own nature.
One benefit of including the separate factors’ scores is that one can combine
them as will depending on what aspect of the model they find important. For
example, if a politician just wanted to complete the infrastructure along one
corridor, they could simply chose the one with the least total cost: Boston
to and from Harrisburg.

4 Conclusion

Our analysis highlights the many ways in which electric vehicles could rev-
olutionize the American trucking industry: they are cost-efficient, environ-
mentally friendly, and potentially market disruptive within the next decade
(Part 1). This will only be feasible, though, with substantial infrastructure
development and improved battery technology (Part 2). Still, it is worth the
investment: electric semi-trucks can greatly improve sustainability efforts
and economic efficiency as they are rolled out onto trucking corridors such as
that between Minneapolis and Chicago (Part 3). We encourage Americans
to listen to the buzz about electric trucks and help make our country a more
innovative place.
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A Code

MATLAB Code for Part 1 Monte Carlo Simulation:

n1 = 20;

n2 = 1000;

d = zeros(n1,1);

for i = 1:n1

d(i,1) = Proportion_electric();

end

arithmetic_mean = mean(d)

standard_deviation = std(d)

confidence_interval = bootci(n2,{@(x) mean(x), d},’alpha’, 0.01)
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histogram(d)

function p = Proportion_electric()

%output is the proportion of trucks that are ELECTRIC

%each column represents one truck

%truck type: stored in first row;

%0 = deisel, 1 = electric

%truck usage mode: stored in second row; 0 = long haul, 1 = regional haul

%current age: stored in thrid row

%lifespan: stored in fourth row

t = 5; %time span being modeled in years

n = 1.615*10^6; % number of operating electric trucks

r_t = 765000; %number of regional haul trucks initially

ar_0 = 107401; %number of regional trucks that

%are at most 0 years old

ar_1 = 208715; %number of regional trucks that

%are at most 1 years old

ar_2 = 275532; %number of regional trucks that

%are at most 2 years old

ar_3 = 342613; %same pattern as above

ar_4 = 448594;

ar_5 = 549963;

ar_6 = 619312;

ar_7 = 692287;

ar_8 = 765000;

al_0 = 99997; %number of long haul trucks that

%are at most 0 years old

al_1 = 190617; %number of long haul trucks that

%are at most 1 years old

al_2 = 260762; %number of long haul trucks that

%are at most 2 years old

al_3 = 316120; %same pattern as above

al_4 = 410915;

al_5 = 484953;

al_6 = 552159;

al_7 = 631898;
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al_8 = 702498;

al_9 = 746419;

al_10 = 792659;

al_11 = 850000;

x = zeros(4, n); %setup initial fleet

x(2,1:r_t) = 1;

x(3,1:ar_0) = 0;

x(3,ar_0 + 1:ar_1) = 1;

x(3,ar_1 + 1:ar_2) = 2;

x(3,ar_2 + 1:ar_3) = 3;

x(3,ar_3 + 1:ar_4) = 4;

x(3,ar_4 + 1:ar_5) = 5;

x(3,ar_5 + 1:ar_6) = 6;

x(3,ar_6 + 1:ar_7) = 7;

x(3,ar_7 + 1:ar_8) = 8;

x(3,ar_8 + 1:al_0) = 0;

x(3,ar_8 + al_0 + 1:ar_8 + al_1) = 1;

x(3,ar_8 + al_1 + 1:ar_8 + al_2) = 2;

x(3,ar_8 + al_2 + 1:ar_8 + al_3) = 3;

x(3,ar_8 + al_3 + 1:ar_8 + al_4) = 4;

x(3,ar_8 + al_4 + 1:ar_8 + al_5) = 5;

x(3,ar_8 + al_5 + 1:ar_8 + al_6) = 6;

x(3,ar_8 + al_6 + 1:ar_8 + al_7) = 7;

x(3,ar_8 + al_7 + 1:ar_8 + al_8) = 8;

x(3,ar_8 + al_8 + 1:ar_8 + al_9) = 9;

x(3,ar_8 + al_9 + 1:ar_8 + al_10) = 10;

x(3,ar_8 + al_10 + 1:ar_8 + al_11) = 11;

for k = 1:n

x(4,k) = Lifespan(x(1,k), x(2,k));

end

for i = 1:t %t is the numebr of years since 2020

x(3,:)=x(3,:) + 1;

for j = 1:n

if x(3,j) > x(4,j)
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%has the truck surpassed its lifespan?

x(1,j) = type_of_truck(x(2,j), t);

x(3,j) = 0;

x(4,j) = Lifespan(x(1,j), x(2,j));

else

end

end

end

a = x(1,:);

b = a > 0;

c = a(b);

p = length(c)./n;

end

function type = type_of_truck(mode, t)

p_e = 165000; %base price of a electric car in 2020

r_e = 1.00263; %rate at which electric base price

%increased per year

s_e = 15000; %standard deviation in electric base

%price in 2020

b_e = random(’Normal’, p_e.*(r_e.^t), s_e.*(r_e.^t));

%base price of an electric car in year 2020 + t

l_e = 8.5; %expected lifetime of an electric truck

if mode == 0

o_e = 149713.2; %cost per year for a long haul

%electric truck

else

o_e = 88200; %cost per year for a regional haul

%electric truck

end
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cost_electric = (b_e./l_e) + o_e;

p_d = 102500; %base price of a diesel car in 2020

r_d = 1.005706; %rate at which diesel base price

%increases per year

s_d = 22500; %standard deviation in diesel

%base price in 2020

b_d = random(’Normal’, p_d.*(r_d.^t), s_d.*(r_d.^t));

%base price of an

%diesel car in year 2020 + t

if mode == 0

l_d = 7.457; %lifetime of a long haul diesel truck

else

l_d = 12.5; %lifetime of a regional haul diesel truck

end

if mode == 0

o_d = 189280.26;

%cost per year for a long haul diesel truck

else

o_d = 111510;

%cost per year for a regional haul diesel truck

end

cost_diesel = (b_d./l_d) + o_d;

if cost_diesel < cost_electric

type = 0;

else

type = 1;

end

end

function l = Lifespan(type, mode)
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if type == 0

if mode == 0

l = random(’Normal’, 7.457, 1.14);

%longhaul diesel

else

l = random(’Normal’, 12.5, 1.785871);

%regional haul diesel

end

else

l = random(’Normal’, 8.5, 1.5); %electric

end

end
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