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JUDGE COMMENTS
Team 13702’s paper took three good approaches to solving the problems posed in this challenge. First, when estimating the 
percentage of total trucks that will be electric by 2040, they used a two-state Markov Chain. Their novel use of cost differential and 
payback time to estimate the adoption rate for electric trucks really distinguishes their model from other teams, although their 
model produces one of the more conservative values for electric truck adoption by 2040 (38.74%). 

They take a pretty straightforward approach to the second problem, finding the required number of charging stations between 
two locations by taking the ratio of the energy necessary to drive between the two cities divided by the number of kilowatt hours 
to do so. They use an estimate for the amount of time a truck needs to charge and the number of trucks that require charging 
during peak hours to derive estimated number of charging stations required per location.

The authors finish by ranking five trucking corridors for development of electric trunk adoption. They use the preferences for each 
city, along with things like the population of each city, population of each corridor, to find that the corridor from Los Angeles to 
San Francisco, followed by that from Minneapolis to Chicago, are the most primed for development. Sensitivity analyses were 
done on all three parts of the problem.

As a whole, this paper provided good models for all three parts and appropriately addressed all of the prompts. The authors clearly 
had a good understanding of how their models were built and how they could be interpreted to reflect reality.

1. Walk us through the 2.5% figure you use in 1) in your Markov matrix. You show that 29% of trucks drive the requisite number 
of miles to make the cost worth it, and the average truck travels for 12 years, but the current age of the trucks is variable. Are 
you suggesting that owners will purchase new electric trucks regardless of the age of their current truck? How could you 
modify your model to take into account the current age distribution of trucks?

2.  a) In your second calculation for 2), you use the 20% figure for the amount of time a truck is charging. Does any allowance for 
the staggering of trucks entering the stations need to be made? 
b) How did you calculate the mean and standard deviations in your figure 9? It looks like you’re assuming that all stations 
along a corridor need to be able to handle the same peak traffic volume, even though relatively few regions along each 
corridor have recorded traffic volumes that high. How could you incorporate traffic heterogeneity into your model? 
c) Charging stations and diesel pumps can take up a lot of space. Typical truck fueling stations have 10-12 diesel pumps and sit 
on 20 acres of land. Some of your stops would require almost 10 times as much space. What can you do to address this concern?

3. What do you think would be good weighting variables “supporters”, “income”, “smog” and “populations” if you were forced not 
to make them equal? 
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Executive Summary 
Truckers and their vehicles play a vital role in the American economy by transporting 

goods and materials across the United States, and in recent years there has been buzz about a 
revolutionary change in the industry. The need to fuel inefficient semi-trucks with diesel has 
become a problem of contention: diesel semi-trucks have been historically inefficient and their 
use pollutes the environment. Because of this, electric trucking has seen a recent spike in interest 
[1]. 

Our team was asked to predict the growth of electric trucks over the next 20 years under 
the assumption that all necessary infrastructure is in place. First, we assume the daily miles 
driven by a truck follow a distribution we obtained from a sample government dataset. 
Additionally, we assume that a uniform proportion of trucks would go out of commission 
annually. Our model uses a Markov chain to predict the changing proportions of trucks that are 
electric. We predict that in 2025, 11.53% of trucks will be electric; in 2030, 21.73% will be 
electric; and in 2040, 38.74% will be electric. Our trend showed electric trucks initially increase 
very quickly, but eventually slow down. These trends and results are similar to those found in 
literature. 

We were also asked to create a model to predict the number of electric truck charging 
stations and chargers along five given corridors: Minneapolis-Chicago, Los Angeles-San 
Francisco, San Antonio-New Orleans, Jacksonville-Washington DC, and Boston-Harrisburg. We 
assumed that travel inefficiency due to traffic does not affect battery efficiency of electric trucks. 
We then created a model that considered battery capacity, battery usage, distance traveled by 
trucks, and the effects of altitude differences on electric truck battery usage. We found that the 
Jacksonville-Washington DC corridor would require the most charging stations along its length. 
We were also tasked with determining the number of chargers needed to sufficiently service 
these charging stations. Using average daily truck traffic data along the corridors, we predicted 
the amount of trucks that each charging station would have to accommodate. Operating under the 
framework that at least 99.7% of trucks in need of charging should be accommodated at a time, 
we calculated that Minneapolis-Chicago charging stations should have the most chargers per 
station with 112 chargers. 

Finally, our team was tasked with ranking the aforementioned five trucking corridors in 
terms of suitability and benefit from electric truck infrastructure development. We chose to 
implement an index score that accounts for the preferences of locals for electric trucking. Our 
model assumed that people only voted Democrat or Republican and that the preferences of a 
corridor can be represented by three key cities along the corridor. We normalized the voting 
preferences, income, and air pollution of the corridor area; in addition, we incorporated the 
number of chargers derived previously to represent truck usage and economic benefit for the 
corridor. Then, we summed the various scores and determined that the Los Angeles-San 
Francisco corridor is the best choice for electric truck infrastructure development. 

Electric trucking has the potential to drastically change the landscape of American freight 
shipping. The associated drops in costs to truckers, as well as the immense benefit to the 
environment, make electric trucking a tantalizing choice for the future. 
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Background 
Trucking is a major American industry, facilitating the transportation of essential goods 

across the nation. Trucking accounts for $288.2 billion of the economy and over 1% of the 
annual American GDP [2]. The industry also has far-reaching influence—disruptions in trucking 
networks can interfere with the operation of a plethora of other industries that rely on freight 
shipping. 
 With the development of electric trucks, many firms have begun considering transitioning 
their diesel fleets to more efficient electric vehicles. The car company Tesla recently released an 
all-electric truck tractor. Electric trucks rid firms of high diesel prices and are exceptionally 
beneficial for the environment. However, they come with the downside of being able to haul less 
cargo; the lack of infrastructure in place to support electric trucks is also a hampering condition. 
 Electric trucks require a significant amount of infrastructure, such as charging stations, to 
be properly implemented. Chargers come in several different levels, each with a different amount 
of power and charging speed. Unfortunately, the cost of these chargers is currently very high, 
with charger prices ranging into the tens of thousands of dollars; this is another barrier to the 
large-scale implementation of electric trucks [19]. 
 

Global Assumptions 
G.1 We assume that the government does not directly intervene in the trucking industry; that is, 
the government does not subsidize the purchase of electric trucks or implement carbon taxes on 
diesel trucks. It is difficult to predict the actions of the federal government; thus, for simplicity 
reasons, we choose to exclude government intervention from our models. 
 

Part I: Shape Up or Ship Out 
1.1 Restatement of Problem 
 We are tasked with creating a mathematical model to predict the percentage of semi-
trucks that will be electric in 2025, 2030, and 2040. 
 
1.2 Local Assumptions 

1. The base cost of electric trucks will not change over the next twenty years. Since electric 
trucks are a developing technology, it is unlikely that the base cost of electric trucks will 
increase or decrease drastically--firms have no incentive to lower the price since they 
must reinvest their profits into research and development. Furthermore, given the high 
barriers to entry to the electric truck market, competition will remain low, causing prices 
to remain mostly constant.  

2. The revenue for diesel-powered trucks is equal to the revenue for electric-powered 
trucks. The revenue that a truck produces is directly related to the number of shipments 
that truck makes. Both diesel-powered and electric-powered trucks are capable of 
shipping the maximum legal cargo weight, 80,000 pounds gross weight, and the speed of 
both trucks is limited by legal speed limits. 

3. The tare weights of both electric and diesel trucks will remain the same over the next 
twenty years. It is difficult to predict technological innovations in trucks that can reduce 
tare weight, so we exclude these potential changes from our analysis.  

4. The per-mile operational costs for diesel and electric trucks will remain the same for the 
next twenty years. The problem tells us that the infrastructure necessary to support 
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electric trucks is fully available, so operational costs should not change due to increased 
access to chargers.  

5. Truck owners will only purchase an electric truck if they can recover their losses from 
purchasing an electric truck within a year. The cost of an electric truck is prohibitive for 
many trucking companies; unless the firm can quickly recoup its investment in expensive 
electric vehicles, it is unlikely that they would do so. Additionally, investors want to see 
profits from new investments as soon as possible. The validity of this assumption is 
further addressed in our validation.  

6. Trucking companies will immediately seek to purchase new trucks when old trucks 
outlive their lifetimes. To stay in business, it is reasonable to expect that companies will 
purchase replacements for worn-out equipment.  

7. 1/12 of all diesel trucks need to be replaced annually. The average lifetime of a diesel 
truck is 12 years, so we assume that a uniform proportion of trucks wear out their 
lifetimes every year [3]. 

8. Electric truck owners do not revert to using diesel trucks. Electric truck owners that were 
willing and able to pay the initial price and maintenance costs of an electric truck will not 
revert back to purchasing a diesel truck, as diesel trucks will no longer provide more 
profit and are generally not seen as an advancement in business.  

 
1.3 Variables 
Symbol Definition Units 

m Miles driven Miles 

p The probability that a truck will transition from diesel to 
electric 

Unitless 

�⃑�𝑣t The vector describing the truck demographics at given 
time t 

Unitless 

Figure 1: Variable definitions for problem 1. 
 
1.4 Solution & Results 

We want to determine the proportion of trucks that will be electric trucks at a given time 
in the future. To do so, we model the growth of electric cars using Markov chains. We define 
two classes of trucks: diesel, D, and electric, E. We then write the general transition matrix A as 
 

 

𝐴𝐴         =                 �1 𝑝𝑝
0 1− 𝑝𝑝� 

 
where p is the probability of a diesel truck owner getting rid of the diesel truck and instead 
choosing to purchase an electric one. 

To calculate p, we first write a linear equation that describes the savings of using an 
electric truck in terms of distance. The average operational cost savings of switching to electric 
trucks is $0.279 per mile, but the initial cost of switching is $30,000 more than diesel [4]. 

          E       D 
E
D 
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Therefore, the more a truck drives, the greater the company’s savings. We can thus write the 
linear equation as  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒) = .279𝑚𝑚 − 30,000 
 
A truck company would begin to save money on electric trucks if the cost difference 

exceeds 0. Thus, an electric truck will pay for its initial costs in a year if the truck drives 107,527 
miles. Assuming the truck is in use 260 days per year (only on weekdays), the truck must drive 
413 miles each day that year [4]. 

Using a set of trucking data from the Department of Energy [18], we construct a 
distribution of distances that truckers would drive if they chose to drive for 11 hours, the 
maximum legal driving duration for truckers.  
 

 
Figure 2: The distribution of distances that trucks drive each day [18]. 

 
Approximately 29% of the trucks in the sample data drive more than 413 miles per day, 

our previously derived breakeven point for purchasing an electric truck. Since diesel trucks lasts 
approximately 12 years on average [5], we divide the percentage of trucks that “should” 
transition by 12 to account for the rate at which diesel trucks become unusable. We therefore 
derive the probability of a diesel truck being replaced by an electric truck to be 2.5% each year. 

Using this information, we construct our transition matrix A as 
 

 �1 . 025
0 . 975� 

and construct the Markov chain 

       �⃑�𝑣𝑒𝑒 = �1 . 025
0 . 975�

𝑒𝑒
�01� 

 
where A is the transition matrix and t is the number of years. We define the seed of the Markov 
chain v, the vector with the current distribution of trucks, as <0, 1>, as the proportion of electric 
trucks currently in use is negligible. Our Markov chain model is thus 

 
�⃑�𝑣t+1 = A * �⃑�𝑣t 

 

The other values in the matrix can be calculated from this percentage. Because each 
column in a transition matrix adds up to one, the probability of a diesel truck remaining diesel is 
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equal to 1 minus p. For the other column, because of logistics and costs, the probability of a 
truck transitioning from electric trucks back to diesel is assumed to be zero (Assumption 9). 
Thus, the probability of an electric truck staying electric is 100%. 

 
Figure 3: Projected changes in the proportion of trucks that are electric. 

 
We iterate our Markov chain model for t= 5, 10, and 20 to find the proportion of trucks 

that are electric in the years 2025, 2030, and 2040, respectively. The results are as follows: 
 

Year Vector 

2025 (.1153, .8847) 

2030 (.2173, .7927) 
 

2040 (.3874, .6126) 
Figure 4: The projected state vectors of our Markov chain. The first value is the proportion of trucks that are 

electric, and the second value is the proportion of trucks that are diesel-powered. 
 

Using our model, we thus predict that in 2025, 11.53% of trucks will be electric; in 2030, 
21.73% will be electric; and in 2040, 38.74% will be electric. 
 
1.5 Validation 
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Figure 5: Amount of electric vehicles (no trucks) on the road since 2011 [5]. 

 When electric trucking develops, we should expect the industry to grow faster than the 
electric car industry since it has access to infrastructure used by electric cars, like charging 
stations, which was not available for electric cars at their introduction. Our model displays this as 
we predict 9% of trucks to be electric by 2024, four years after 2020, which is when we claim the 
electric trucking industry began; however, four years after the electric car industry emerged in 
America in 2011 [5], only 1% of cars were electric [6], which matches our prediction that the 
electric trucking industry will grow faster than the electric car industry in its first years. After a 
period of time, the electric trucking industry should lose its comparative advantage in 
development since further growth occurs due to the expansion of access of the infrastructure, so 
the industries should be similar after a long period of time. Our model predicts that, in 2034, 
29% of trucks will be electric, and projections show that 31% of cars will be electric in 2025 [6], 
which show that the strength of the two industries will become similar in the long run. 
 Moreover, the growth of the electric car industry is monotonic and increasing [5], which 
matches our projections that also show that the electric trucking industry will only increase. 
 
1.6 Sensitivity Analysis 

As noted in assumption 6, we assume that truck owners will want to switch from diesel 
trucks to electric trucks if the savings accrued by the lower operational costs the electric trucks 
pays for higher sticker price in one year. We perform an analysis to determine the reasonability 
of this one-year payback period. 
 We repeat the process outlined in section 1.5 to determine the proportion of trucks that 
will be electric in the year 2040, except we vary the payback period from 0 years to 1.5 years in 
0.01-year increments. We find that as the payback period increases, the proportion of electric 
trucks also increases, which makes sense because electric trucks tend to make higher profits the 
longer they are in use. 

https://www.forbes.com/sites/mikescott/2019/06/10/electric-models-to-dominate-car-sales-by-2040-wiping-out-13m-barrels-a-day-of-oil-demand/#7fcfb97342e1
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Figure 6: Sensitivity of the proportion of trucks that are electric by 2040 to the desired payback period. 

 
Our assumption of a one-year payback period is not the strongest. The above curve has a 

relatively high slope at the one-year payback period, suggesting that the proportion of electric 
trucks is extremely sensitive to the payback period. However, our assumption is not 
unreasonable because the results were validated in section 1.5. The high sensitivity could 
possibly be because of the relative lack of information regarding electric trucks; since they are a 
relatively new innovation, there is quite a bit of uncertainty about the future of such vehicles. 
 
1.7 Strengths & Weaknesses 
Strengths 

• Our model accounts for a number of factors, including the operational cost differences 
between diesel and electric trucks, initial purchase prices, and truck lifetime. These 
factors ensure that our model provides a fairly detailed assessment of the future growth of 
electric trucks. 

• Our use of Markov chains allowed us to create a dynamic computational model that can 
account for the rate of new truck production. 

• Our model focuses on changes in electric truck usage due to profit rather than taste 
preferences for going “green” or other subjective standards. This is a better reflection of 
real-world business models. 

 
Weaknesses 

• We do not account for the relationship between increasing travel distances and increasing 
repair costs associated with those distances. 

• Our Markov chain model is discrete. In reality, truck purchases are not discrete but 
continuous: people can purchase trucks at almost any time they choose. Our model 
assumed that truck purchases all occur at the beginning of a given year. 
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• The proportion of trucks that will be electric in 2040 is extremely sensitive to the 
payback period, the period of time after which the truck owners expect an investment 
return. 

 
Part II: In It for the Long Haul 

2.1 Restatement of Problem 
We are asked to create a mathematical model to determine how many charging stations 

should be installed along a route a trucker travels on, as well as how many chargers would be 
sufficient at each station. We define sufficient chargers to mean that a charging station is able to 
accommodate, on average, at least 99.7% of potential customers. 
 
2.2 Local Assumptions 

1. Cars cannot use charging stations designated for electric trucks. The level 3 chargers 
usually used by trucks are incompatible with electric personal vehicles.  

2. Truckers do not take detours or side-paths but instead follow the suggested routes on 
Google Maps. It is very difficult to account for the smaller, local roads that truckers 
occasionally take, so we choose to assume that truckers do not deviate from large 
highways. 

3. High amounts of traffic and slowdown do not substantially impact the battery efficiency 
of electric trucks. Electric vehicles do not face the same efficiency problems that 
petroleum-based vehicles do in traffic jam situations. For example, an electric car that has 
come to a full stop in traffic spends nearly none of its battery [7]. 

 
2.3 Variables 

Symbol Definition Units 

d Distance from end city to end city of a trucking corridor Miles 

h Elevation difference between two cities Feet 

S The number of stations required between two locations Stations 

FuelUse Percentage of semi-truck battery to be used 
We assume this to be 80% - 25% as more than 80% 

charge damages the battery and truckers prefer keeping 
their fuel above 25% [20] 

Unitless 

FuelCapacity Energy capacity of a fully charged semi-truck battery 
[19] 

Kilowatt Hours 

mileage Energy required per mile for an electric semi-truck [19] Kilowatt 
Hours/Mile 

Figure 7: Variable definitions for Problem 2. 
 

2.4.1 Charging Stations Solution & Results 
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To find the number of stations required between two locations, we use the distance 
between the cities, the altitude difference, and the mileage capabilities of electric trucks. We 
derive the following equation: 

𝑆𝑆 =
� 𝑑𝑑
𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑� + 𝑚𝑚𝑚𝑚ℎ

𝐹𝐹𝐹𝐹𝑑𝑑𝑚𝑚𝐹𝐹𝑐𝑐𝑑𝑑 ∗ 𝐹𝐹𝐹𝐹𝑑𝑑𝑚𝑚𝐹𝐹𝑚𝑚𝑝𝑝𝑚𝑚𝑐𝑐𝑑𝑑𝑐𝑐𝐹𝐹
 

 
For the numerator, we find the amount of energy required in driving between two 

locations. First, altitude differences between cities can have a substantial impact on the 
efficiency of electric trucks, so we account for these. We use the equation 𝑃𝑃𝑃𝑃 =  𝑚𝑚𝑚𝑚ℎ to 
calculate energy required of the truck for driving between cities with elevation differences, with 
m, mass, the gravitational constant 9.801 𝑚𝑚/𝑐𝑐2, and h, the altitude differences. We then add this 
value, converted to kilowatt hours, to the distance driven between the two locations divided by 
the mileage. Thus, the units are consistent, and the sum is equal to the energy required to drive 
from the first location to the second. 

In the denominator, we find the product of the percentage of battery charge used before 
recharging and the total fuel capacity of a heavy electric truck. This will give the kilowatt hours 
used per trip of an electric truck. 

We divide the numerator by the denominator to find S and round it up to the next largest 
integer to give a conservative estimate for how many charging stations are needed between two 
locations. We obtain the following: 
 

Corridor Number of Charging Stations 

San Antonio-New Orleans 5 

Boston-Harrisburg 3 

Los Angeles-San Francisco 3 

Minneapolis-Chicago 3 

Jacksonville-Washington, DC 6 
Figure 8: Recommended number of charging stations for each corridor. 

 
2.4.2 Chargers per Station Solutions & Results 

In the problem statement, we define “sufficient charger” availability to be: each charging 
station must have enough chargers to serve all trucks during peak traffic hours 97.7% of days. 
The number of trucks is equal to 

# 𝑇𝑇𝑑𝑑𝐹𝐹𝑐𝑐𝑇𝑇𝑐𝑐 = # 𝑣𝑣𝑑𝑑ℎ𝑑𝑑𝑐𝑐𝑚𝑚𝑑𝑑𝑐𝑐 ∗ 𝑝𝑝𝑑𝑑𝑐𝑐𝑝𝑝𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑 𝑐𝑐𝑑𝑑 𝑣𝑣𝑑𝑑ℎ𝑑𝑑𝑐𝑐𝑚𝑚𝑑𝑑𝑐𝑐 𝑐𝑐ℎ𝑚𝑚𝑐𝑐 𝑚𝑚𝑑𝑑𝑑𝑑 𝑐𝑐𝑑𝑑𝐹𝐹𝑐𝑐𝑇𝑇𝑐𝑐 
We can calculate that trucks travel 137.5 miles between charges by multiplying the 

estimated 55% battery usage with the 250 miles a long-haul car can travel with 100% battery 
usage [8]. Considering that trucks travel around speed limits of 70 mph, and trucks last about 2 
hours between charges. Charging a truck from 25% to 80% battery level requires 30 minutes [9]. 
A truck therefore spends approximately 20% of its trip charging at a station. 
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Let N be the number of charging stations on a corridor. Therefore, a truck spends (20%
𝑁𝑁

) 
percentage of its trip charging at each station. During peak hours--approximately noon to 1pm--
the number of trucks that require charging represents 6.8% of all trucks that use the corridor that 
day. This means, during peak hours, 20% ∗ �6.8%

𝑁𝑁
� = �1.36%

𝑁𝑁
� of all trucks that use the corridor 

will be charging at a single given station. 
We use the given corridor data on Annual Average Daily Truck Traffic to find the daily 

truck traffic [10]. In some states, Annual Average Daily Truck Traffic is unavailable. We instead 
calculate our own Annual Average Daily Truck Traffic by multiplying the list of Annual 
Average Daily Traffic (all vehicles) by the average percentage of vehicles that are trucks. We use 
this process to find the Annual Average Daily Truck Traffic values for each of the five corridors. 
The mean and standard deviation of these lists are below. 

 

Corridor Daily Truck Traffic 
Mean 

Daily Truck Traffic Standard 
Deviation 

San Antonio-New Orleans 3318 1541 

Boston-Harrisburg 4580 1822 

Los Angeles-San Francisco 7950 5961 

Minneapolis-Chicago 9596 7415 

Jacksonville-Washington, 
DC 

6522 4392 

Figure 9: Daily truck traffic statistics for each of the five corridors. 
 

We know that 1.36%
𝑁𝑁

 of trucks are charging at a given station during peak hours, from the 
above means and standard deviations, we can determine the number of trucks that require service 
during peak hours. For all trucks to be able to be simultaneously charged during peak hours 
97.7% of days, we need to supply one charger for each of 
𝑀𝑀𝑑𝑑𝑚𝑚𝑑𝑑 𝑑𝑑𝑚𝑚𝑑𝑑𝑚𝑚𝐹𝐹 # 𝑐𝑐𝑑𝑑 𝑐𝑐𝑑𝑑𝐹𝐹𝑐𝑐𝑇𝑇𝑐𝑐 𝑐𝑐ℎ𝑚𝑚𝑐𝑐 𝑑𝑑𝑑𝑑𝑟𝑟𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐ℎ𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑚𝑚 𝑑𝑑𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚 𝑝𝑝𝑑𝑑𝑚𝑚𝑇𝑇 ℎ𝑐𝑐𝐹𝐹𝑑𝑑𝑐𝑐 +
2 𝑆𝑆𝑐𝑐𝑚𝑚𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑣𝑣𝑑𝑑𝑚𝑚𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐   
(97.9% of values fall to the left of 2 positive standard deviations).  
 
  Daily number of trucks that require 

charging during peak hours 
 

Corridor Number 
stations 

Mean Standard Deviation Chargers 
per 
Station 

San Antonio-New 
Orleans 

5 9.2 4.2 18 
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Boston-Harrisburg 3 21.2 8.4 38 

Los Angeles-San 
Francisco 

3 36.6 27.4 92 

Minneapolis-Chicago 3 44.1 33.7 112 

Jacksonville-
Washington, DC 

6 15.0 10.1 36 

Figure 10: Projected number of trucks that require charging and recommended chargers per station along the given 
corridors. 

 
2.5.1 Charging Stations Sensitivity Analysis 
Fuel Use 
(% of 
tank) 

SA 
⇄ NO 

MPS 
⇄ CHI 

BSTN 
⇄ HBG 

JX ⇄  DC  SF ⇄ LA 

45 5 4 4 7 4 
50 5 4 4 6 4 
55 5 3 3 6 3 
60 4 3 3 5 3 
65 4 3 3 5 3 
Figure 11: Number of stations needed for each corridor based on varying percentages of fuel use/battery charge. 

 
Some truckers want to charge when their fuel capacity is lower than 25%. Assuming that 

they still charge their tank up to 80% of its total capacity, we consider how many stations are 
needed given that they want to charge their trucks at 15% to 35% capacity instead, which 
corresponds to 65% and 45% fuel use, respectively. Though the number of stations varies by up 
to two stations, a general trend emerges, with longer roads requiring more stations, regardless of 
the percent of their tank a trucker may run down.  
 

2.5.2 Chargers per Station Sensitivity Analysis 
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Figure 12: The number of chargers per station needed along each corridor as days where all trucks are charged 

changes. 
 

As expected, as the demand for chargers increases, the number of chargers required also 
increases. Near the 97.7% value, the number of required chargers is moderately sensitive because 
the slope of the sensitivity analysis graph is large; however, even as the demand for chargers 
changes, the number of chargers per station remains qualitatively similar. 
 
2.7 Validation 
Corridor Predicted Number of 

Charging Stations 
Number of PlugShare 
Supercharging Stations [11] 

San Antonio-New 
Orleans 

5 7 

Boston-Harrisburg 3 6 

Los Angeles-San 
Francisco 

3 6 

Minneapolis-Chicago 3 5 

Jacksonville-
Washington, DC 

6 9 

Figure 13: Comparison between predicted number of truck charging stations and the number of electric car 
charging stations along each corridor. 
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Although the range of electric cars is similar to the range of electric trucks, it is 
reasonable that the number of car charging stations is higher than the number of truck charging 
stations, as the PlugShare company must produce enough stations to provide charging security 
for electric car drivers. The general trend of the number of truck charging stations is relatively 
similar to the trend of Supercharging stations data; for example, the San Antonio-New Orleans 
and Jacksonville-Washington DC have more stations than the other three corridors. 
 
2.8 Strengths & Weaknesses 
Strengths 

• Our model is simplistic and intuitive to understand and thus has easily interpretable 
results. It can also be applied to a wide variety of cities with minimal data. 

• Our model uses statistically significant results to justify the minimum number of chargers 
needed per station. 

Weaknesses 
• Our model does not take into account a number of factors, such as the availability of rest 

stops. It only considers data regarding the corridors and the cities themselves; less 
attention is given to the route between the cities. 

• We assume that the charging stations are optimally distributed across the corridor while 
in reality, charging stations are usually clustered around major cities. 

• Our model only finds the minimum number of charging stations needed between the 
corridors. Some corridors are more popular and require more stations as more trucks need 
to stop on them. This explains why our number of chargers per station to popular cities 
like Chicago and Los Angeles are so high, near a hundred. 

 
Part III: I Like to Move It, Move It 

3.1 Restatement of Problem 
We are asked to rank the five trucking corridors addressed in Part II to determine which 

of the five should be targeted for the development of electric truck infrastructure first. 
 
3.2 Local Assumptions 

1. The preferences of the population of towns and cities along the corridor can be 
represented by the preferences of three cities: the two endpoints and the largest city in 
between. The given corridors are not especially long; in most cases, the corridors only 
traverse one other major city, excluding the endpoints. Furthermore, in most corridors, 
the three key cities that we examine account for a plurality of the population. 

2. Everyone votes for either Republican or Democratic candidates; that is, there are no 
independents. It is difficult to account for independents, since there is no way of 
determining how self-proclaimed independents choose to vote. We thus exclude them 
from our model and assume that voting patterns align with the traditional dichotomy of 
Republican and Democrat. 

3. People do not like smog and will prefer cleaner air to polluted air. Air pollution can lead 
to serious health problems, including lung disease. It is widely acknowledged that clean 
air is preferable to polluted air. 

 
3.3 Variables 
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Symbol Definition Units 

𝑚𝑚𝑥𝑥,𝑦𝑦,𝑧𝑧 The value of metric x for city y, which lies on corridor z 
 

Variable depending on 
the metric 

𝑤𝑤𝑚𝑚𝑥𝑥,𝑦𝑦,𝑧𝑧 The value of the population-weighted metric for city y, 
which lies on corridor z 

Variable depending on the 
metric 

𝑐𝑐𝑚𝑚𝑥𝑥,𝑧𝑧 The metric x across the entire corridor z, found by summing 
the weighted 𝑤𝑤𝑚𝑚𝑥𝑥,𝑦𝑦,𝑧𝑧 of each city 

Variable depending on the 
metric 

𝑑𝑑𝑐𝑐𝑚𝑚𝑥𝑥,𝑧𝑧 The value of the metric x across the corridor z, but relative to 
the total values of metric x across all five corridors 

Unitless (a proportion) 

𝐹𝐹𝐹𝐹𝑧𝑧 The final ranking value of corridor z, found by summing all 
the 𝑑𝑑𝑐𝑐𝑚𝑚𝑥𝑥,𝑧𝑧values for the corridor z 

Unitless (a proportion) 

Figure 14: Variable definitions for problem 3. 
 
3.4 Solution and Results 

For each corridor, we choose to examine the two endpoint cities and the largest intermediate city 
along the corridor; these three cities represent the demographics along the corridor. We compiled data on 
the various cities’ political leanings, median household income, air quality, and population. 

 

 
For each city, we found the number of Democrats and Republicans [12], from which we could 

calculate the total number of people who politically support green energy measures, such as electric 
trucks; 90% of Democrats and 52% of Republicans support increased use of electric transportation [13]. 
The greater the number of supporters, the more a city desires electric trucking implementation. 

Higher income has been found to be correlated to a higher preference for electric transportation 
adoption [14]. A higher smog/air pollution index indicates that a corridor more desperately needs electric 
vehicles to reduce air pollution [15]. Higher population along a trucking corridor means that a greater 
number of individuals would enjoy the plethora of environmental and economic benefits that electric 
trucking stations bring [16]. 

Using our predictions from Part II, we were also able to consider the total number of electric 
truck chargers stations along the corridors, which is equal to the number of charging stations multiplied 
by the number of chargers per station. The total number of chargers along each corridor is an important 
metric: 

1. Truckers’ usage of a corridor is proportional to the total number of chargers. This is because in 
Part II, we used daily truck traffic to calculate the number of chargers per corridor. 

2. The initial economic benefit conferred by hiring builders to construct chargers and stations is 
proportional to the number of chargers that need to be built. 

3. The long-term economic benefit conferred by hiring employees to maintain the chargers is 
proportional to the number of chargers in use. 
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 Then, within each corridor, we scale each of the three cities’ metrics according “influence” on the 
corridor. To do so, we multiplied each metric by that city’s population, which we then divided by the 
population of each corridor. Summing the results of the three cities in a corridor creates a weighted 
average for each metric. 
 
 

𝑤𝑤𝑚𝑚𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝑚𝑚𝑥𝑥,𝑦𝑦,𝑧𝑧 ∗ �
𝑃𝑃𝑐𝑐𝑝𝑝𝐹𝐹𝑚𝑚𝑚𝑚𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒𝑦𝑦 𝑦𝑦

𝑃𝑃𝑐𝑐𝑝𝑝𝐹𝐹𝑚𝑚𝑚𝑚𝑐𝑐𝑑𝑑𝑐𝑐𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑐𝑐𝑒𝑒 𝑧𝑧
� 

 
 To find the total population of the corridor, we simply summed populations of the three cities. 
Then, for each corridor, the modified metrics of the three cities were summed together to produce the 
corridor metrics. 
 

𝑐𝑐𝑚𝑚𝑥𝑥,𝑧𝑧 =  𝑤𝑤𝑚𝑚𝑥𝑥,𝑒𝑒𝑑𝑑𝑒𝑒𝑦𝑦 1,𝑧𝑧 + 𝑤𝑤𝑚𝑚𝑥𝑥,𝑒𝑒𝑑𝑑𝑒𝑒𝑦𝑦 2,𝑧𝑧 +  𝑤𝑤𝑚𝑚𝑥𝑥,𝑒𝑒𝑑𝑑𝑒𝑒𝑦𝑦 3,𝑧𝑧 
 

 
San Antonio to 
New Orleans 

Jacksonville to 
Richmond 

Boston to 
Harrisburg 

Minneapolis to 
Chicago 

San Francisco 
to Los Angeles 

Supporters 3211929.256 3716183.29 674564.5037 2865916.811 4871122.647 
Income 3.00151033 7.460849709 17.60022685 14.06471036 12.23343926 
Smog 221 148 128 262 307 
Populations 4,248,741 5,210,421 874,576 3,684,418 6,027,675 
Charger 
number 90 216 114 336 276 

Figure 15: Corridor metrics cm for each of the five metrics for each of the five corridors. The corridor metrics 
represent the total electric-truck desirability contributed by each of the five demographic factors. The metrics were 

found by summing the desirability contributed by each of the three cities within that corridor. 

For a given corridor metric 𝑐𝑐𝑚𝑚𝑥𝑥,𝑧𝑧 divide the value 𝑐𝑐𝑚𝑚𝑥𝑥,𝑧𝑧 by the sum of each corridor’s value for 
that metric. This gives us a corridor metric value 𝑑𝑑𝑐𝑐𝑚𝑚𝑥𝑥,𝑧𝑧relative to the sum of all five corridor metrics. 
This will also make the metric unitless. Like before, as 𝑑𝑑𝑐𝑐𝑚𝑚𝑥𝑥,𝑧𝑧 increases, the corridor z increases in 
desirability. 
 
𝑑𝑑𝑐𝑐𝑚𝑚𝑥𝑥,𝑧𝑧 =

𝑐𝑐𝑚𝑚𝑥𝑥,𝑧𝑧

𝑐𝑐𝑚𝑚𝑥𝑥,𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑐𝑐𝑒𝑒 1 +  𝑐𝑐𝑚𝑚𝑥𝑥,𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑐𝑐𝑒𝑒 2  + 𝑐𝑐𝑚𝑚𝑥𝑥,𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑐𝑐𝑒𝑒 3 +  𝑐𝑐𝑚𝑚𝑥𝑥,𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑐𝑐𝑒𝑒 4 +  𝑐𝑐𝑚𝑚𝑥𝑥,𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑐𝑐𝑒𝑒 5
 

 
The results are as follows: 
 Weight SA ⇄ NO MPS ⇄ CHI BSTN ⇄ HBG JX ⇄  DC SF ⇄ LA 
Supporters 1 0.20938  0.18682 0.04397 0.24225 0.31754 
Income 1 0.05521  0.25872 0.32376  0.13724 0.22504 
Smog 1 0.20731  0.24577 0.12007  0.13883 0.28799 
Populations 1 0.21195  0.18379 0.04362  0.25992 0.30069 
Charger 
number 3 0.26162  0.97674 0.33139  0.62790 0.80232 
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Sum ---- 0.94549  1.85188 0.86284  1.40617 1.93360 
Figure 16: Corridor ranking metrics and sum of metrics for each corridor. 

 
Finally, we sum the metrics within each column to obtain each corridor’s final ranking 

value. We weight the 𝑑𝑑𝑐𝑐𝑚𝑚𝑒𝑒ℎ𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒,𝑧𝑧 count three times higher because chargers have critical 
economic functions, as detailed above. The importance of charger count justifies this higher 
weight. 

𝐹𝐹𝐹𝐹𝑧𝑧 = 𝑑𝑑𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑 𝑑𝑑𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒𝑒𝑒,𝑧𝑧 + 𝑑𝑑𝑐𝑐𝑚𝑚𝑑𝑑𝑐𝑐𝑒𝑒𝑐𝑐𝑖𝑖𝑑𝑑,𝑧𝑧 +  𝑑𝑑𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑒𝑒𝑑𝑑𝑐𝑐𝑐𝑐,𝑧𝑧 + 𝑑𝑑𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑝𝑝𝑐𝑐𝑑𝑑𝑎𝑎𝑒𝑒𝑑𝑑𝑐𝑐𝑐𝑐,𝑧𝑧 +
 𝑑𝑑𝑐𝑐𝑚𝑚𝑒𝑒ℎ𝑎𝑎𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒,𝑧𝑧   

The weights and final sums for each of the five corridors are shown in the above table. 
Using our model, we conclude that the San Francisco-Los Angeles corridor is the best 

choice for electric truck infrastructure development, while of the five corridors, the San Antonio-
New Orleans corridor is the worst. 

 
3.5 Sensitivity Analysis 

 
Figure 17: Relationship between final ranking values of each corridor with varying weight on charger count. 

 
It appears that the best corridor depends substantially on the charger count; the San 

Francisco-Los Angeles corridor is the best choice in our model only because of the lower weight 
on charger count. When charger count weight is increased, Minneapolis-Chicago becomes the 
best choice. Thus, the actor can assign their own importance to the number of chargers. 
 
 
3.6 Validation 
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Figure 18: Map of electric car ownership in the US [17]. 
 

The fervor for the electric trucking industry should mirror that of electric cars. Currently, 
San Jose, followed by other major California cities like Los Angeles and San Francisco, have the 
highest market shares for electric vehicles, with San Jose itself accounting for 21% of market 
shares [17]. Our model claims that electric trucking efforts should be focused on the San 
Francisco to Los Angeles, which the electric car industry focused its efforts on. The electric 
vehicle industry is the smallest along the San Antonio to New Orleans corridor compared to the 
other four, with less than 2% of the industry concentrated there [17]. Our model also claims that 
development of the electric trucking industry should focus on that corridor last, corroborating the 
fact that the electric vehicle development is smallest there. 
 
3.7 Strengths & Weaknesses 
Strengths 

• Our model is relatively simple, so we can choose to account for many different factors, 
and also how important that factor is to whether a person or city would desire electric 
trucks over diesel ones. 

• Our model incorporates just a few key indicators, making it easily adaptable to any other 
corridors for future analysis. 

 
Weaknesses 

• Our model uses only one factor in assigning scores for certain categories; for example, 
the political support that electric trucks have in a city is determined solely by the voting 
patterns in the last election. This means that some of the more subtle dynamics of some 
cities--historical voting patterns, preference for traditional transportation methods, etc.--
are overlooked by our model. 
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Part IV: Conclusion 
 

 In our first model, we were asked to project the growth of electric trucks in the trucking 
industry over the next twenty years. By creating a transition matrix, we were able to use Markov 
chains to predict the number of trucks that companies would transition towards electric rather 
than diesel. We found that in 5, 10, and 20 years, 11.53%, 21.73%, and 38.74% of all heavy 
trucking would be composed of electric models. Our validation found that our model closely 
corresponded to predictions for electric truck use published in literature. 
 Next, we created a model that could determine the number of electric truck charging 
stations along any trucking corridor by examining electric truck mileage. We then used traffic 
data to calculate the number of chargers required at each station so that all trucks could be served 
at peak hours 97.7% of all days. We applied this model to five corridors: San Antonio to New 
Orleans, Minneapolis to Chicago, Boston to Harrisburg, Jacksonville to Washington, and Los 
Angeles to San Francisco. 
 Finally, we used the predicted number of chargers along the five given corridors to model 
truck usage of the corridors. In addition, we compiled and weighted factors including income, 
political leaning, and air pollution in key cities along the corridor to determine where electric 
trucks would be the most welcome. Using this framework, we were able to assemble and index 
to rank each of the five corridors based on suitability for electric truck infrastructure 
development. 

Electric trucks are an exciting alternative to fuel-inefficient diesel trucks. They provide a 
key step in the reduction of carbon emissions and thus the preservation of the environment, and 
are a notable landmark in the nation’s technological advancement. 
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Appendix:  
The following three MATLAB functions were used to solve Problem 1. 
%% MarkovTrucks function 
%Performs a Markov chain analysis to project transitions from 
diesel to 
%electric trucks. 20 time steps are performed. 
%Assumes electric trucks do not convert back to diesel. 
%INPUT: The input p represents the proportion of diesel trucks 
that 
%transition to electric each year. 
function newvals=MarkovTrucks(p) 
initialvals=[0;1]; %seed vector 
newvals=zeros(2,21); %stores results across the years 
newvals(:,1)=initialvals; %set the initial seed vector 
for year=2:21 
    A=[1 p;0 1-p]; %transition matrix 
    newvals(:,year)=A*newvals(:,year-1); %project the next time 
step's vector 
end 
 
%% MarkovOutcomes function 
% Peforms MarkovTrucks to find the proportion of trucks that 
will be 
% electric. 
function data=MarkovOutcomes(d,truckdist) 
%% Find daily miles driven necessary to make a profit in d years 
[truckcount,~]=size(truckdist); %number of trucks in our dataset 
replacement=1/12; %the rate at which diesel trucks must be 
replaced each year  
daysperyear=260; %number of days each year that trucks are in 
use 
profitdistance=30000/0.279; %the minimum lifetime distance that 
must be driven for electric cars to be more profitable than 
diesel cars 
profitdistanceperyear=profitdistance/d; %the minimum yearly 
distance that must be driven for electric vehicles to be 
profitable 
profitdistanceperday=profitdistanceperyear/daysperyear; %the 
minimum daily yearly distance 
[drivetruck,~]=size(find(truckdist>profitdistanceperday)); %numb
er of trucks that drive the profitdistanceperday distance per 
day 
proptruck=drivetruck/truckcount; %proportion of trucks that 
drive the profitdistanceperday 
transitionprop=proptruck*replacement; %finds the p value used in 
the transition matrix 
%% Markov chain 
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years=2020:2040; 
newvals=MarkovTrucks(transitionprop); %Perform Markov chains 
using Markov Trucks 
data=[years' newvals']; %concatenate data and years into the 
same matrix 
if d==1 %if this function is NOT being used for sensitivity 
analysis, plot the results 
    figure('Name','Change in truck distribution') 
    hold on 
    plot(data(:,1),data(:,2)) 
    plot(data(:,1),data(:,3)) 
    hold off 
    title('Change in truck 
distribution'),xlabel('Year'),ylabel('Proportion of trucks') 
    legend('Electric','Diesel') 
end 
end 
 
%% TruckSensitivity function 
%Performs sensitivity analysis on Markov Outcomes to determine 
if projected 
%truck proportions are sensitive to the desired payback period 
(d in years) 
clc 
sensdata=[]; %create matrix to store data 
for d=0.01:0.01:1.5 %vary the payback period from 0 to 1.5 years 
data=MarkovOutcomes(d,truckdist); %perform Markov chain using 
the payback period 
sensdata=[sensdata; [d,data(21,2)]]; %store Markov chain results 
end 
sensdata %print out data 
figure('Name','Sensitivity of the 2040 electric truck proportion 
to payback period') 
plot(sensdata(:,1),sensdata(:,2)) %plot the sensitivity analysis 
graph 
xlabel('Payback period (year)'),ylabel('Proportion of trucks 
that will be electric in 2040'),title('Sensitivity of the 2040 
electric truck proportion to payback period') 
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