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Keep on Trucking: U.S. Big Rigs

Turnover from Diesel to Electric

Team 13638

1 Executive Summary

Electric vehicles are the way of the future. There has been a concerted effort
in recent history to transition from natural gas, gasoline, and diesel fuel to more
sustainable and Eco-friendly energy types. The problem we were presented with
included understanding how the transition to electric would occur and using
models in order to make the transition as seamless as it could be.

The first problem, we were tasked with tackling was deducing the per-
centage of semi-trucks that will be electric in the future. To model this, we
created a model derived from the SIR model which is commonly used to model
the spread of an epidemic since the spread of information about and interest
in electric semi-trucks can be assumed to behave similarly to an epidemic. By
using a number of modeling and curve-fitting techniques such as using least
square curve fitting, binary search, and a system of ordinary differential equa-
tions. Solving the system of ordinary differential equations, we arrived at the
prediction of that 2.74% of semi-trucks will be electric in 5 years, 11.55% in 10
years, and 88.52% in 20 years from 2020.

For second problem, we were tasked with determining the location and
amount of charging stations assuming that all current trucks became electric
trucks. To tackle this problem effectively, we utilized the data provided by the
M3 Challenge concerning battery charging information, traffic information, and
various other factors. With these factors in mind, we modelled the traffic to
follow a wave function and used a model based on the maximum location cover-
age problem. This provided us a robust way to model the amount of traffic and
from that, the amount of charging stations and their location. In addition, the
problem also tasked us with finding the amount of chargers that each charging
station would need. Similar to the location of the chargers, we used the traffic
modeled by a wave function to determine the amount of people at each station.
From this, we were able to factor in charging information and various other
factors to determine the amount of charging stations needed at each charging
location.

For the third problem, we were tasked with ranking which areas would be
most beneficial to transition to electric trucks first. We used root mean squared
of the Z scores after normalizing the data of our four indexes. The four indexes
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were: Community benefit index, community wealth index, community environ-
mentalist index, utilitarian index. Throughout this, we realized that LA to SF
was the best corridor.
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2 Introduction

As the electric vehicle industry has come into full focus with the emergence of
Tesla, every niche has begun to see the benefits. Electric cars have become far
more common because of their efficiency and their Eco-friendly nature. Unfor-
tunately, the trucking industry has not been able to make the same strides as
the commercial car industry. Class 8 trucks in general average between 5 and 8
mpg[6], which is far worse than UPS says about new EVs. They project their
new electric vehicles to be about 52 mpg efficient equivalent.[10] It is extremely
likely that soon, all trucks on the road will be electric. Making that transition
as smooth and logical is possible is key in helping perfect the industry, which
will be both good for the economy and great for the environment. Strategi-
cally placing the charging stations and chargers will minimize the up-front cost
of transitioning between diesel and electric, which makes it more lucrative for
companies and individuals to transfer. Tesla has already announced its own
electric semi truck that is already in production and expected to release late
this year. The release of the Tesla semi truck signifies the beginning of an era
of more Eco-friendly society. However, not everyone can afford the changeover
instantly, so it is important to know which geographic areas are more suited to
the transition to electric vehicles.

3 Part I

3.1 Problem Definition

Electric trucks represent a path toward the future. In this section, we will
outline a model for predicting the transition rate from diesel to electric semis.
The results will show the percentage of semis that will have completed the
transition by 2025, 2030, and 2040.

3.2 Assumptions and Justifications

1. The main assumption we made is that the spread of information is similar
to the spread of epidemics. We reason that spread of information can
be likened to an infection of the mind, the comparison is fairly accurate.
There are multiple research papers that support this claim [2][4][5][8].

2. We assumed that semi-trucks are either diesel or electric because diesel
semis make up 97% of the semis on the road right now. Furthermore,
there is an extremely low likelihood of any other gasoline based fuel-types
being used in the future because of the poor environmental effects and
poor efficiency when compared to modern diesel.[7]

3. We assume the difference in lifespan of an electric semi and a diesel semi
is negligible. This assumption comes from extensive research supported
by UPS and Forbes.[3][10]
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3.3 Model

The model we used to find the percentage of electric semis in the future is
based on a SIR model which is commonly used to model the spread of an
epidemic. Since the number of electric trucks is directly affected by the spread
of information about and interest in electric trucks, according to assumption 1,
it is reasonable to predict the percentage of electric semis using an SIR model.
Below is a flowchart detailing our theoretical model.

In this model, Q represents the production of semis, D and E represent the
number of diesel and electric semis, respectively, and N represents the number
of semis which have reached the end of their life span. There is a continuous
influx of newly produced semis, and those are then categorized to either diesel-
or electricity-powered. We also (observed) that some of the diesel semi drivers or
owners may decide to switch to an electric one, of which the rate is proportional
to both the number of diesel and electric semis (according to assumption 1).

Due to the difficulty of implementing this model, we took a number of alter-
native routes and began with a baseline much simpler than the one mentioned
above. First, according to assumption 2, since all semis are either diesel or
electric, the production of diesel semis is considered to be the total production
of semis minus the production of electric semis.

dD

dt
= α− dE

dt
(1)

Then, to establish a baseline for dE
dt , we created a logistic curve based on

NAFTA’s projection of their electric truck production as a percentage of total
truck production [11]. The ODE version of the formula for a logistic curve is as
follows:

d

dt

[
E

P

]
= λ

E

P
(M − E

P
) (2)

Here E
P represents the proportion of the production of electric semis to the

total production of semis, λ represents the rate of growth, and M represents
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the carrying capacity. In our baseline for our model, the carrying capacity is
simply the maximum the proportion can be, i.e. 1. Integrating the differential
equation and plugging in 1 for M , we have:

E

P
=

E0/P0

E0/P0 + (1− E0/P0) · e−λt
(3)

Since there is only one unknown, λ, this function is easy to perform curve
fitting on. We wrote a simple snippet of code to perform a binary search that
finds the value for λ that minimizes the root-mean-square error. We used least
square curve fitting in order to acquire the data for future production of electric
vehicles. Least square curve fitting is a common method in data analysis in
which the root-mean-square error is minimized in order to create a more accurate
estimation for the curve. The equation for root-mean-square error is:

E(f) =

√√√√ 1

n

n∑
i=1

(yi − f(xi))2 (4)

Since the square root of an increasing function is still increasing, we can
improve our efficiency by skipping the evaluation of the square root and compare
the sum of mean squared instead, which would still give us the same answer.
The new error function is:

E2(f) =

n∑
i=1

(yi − f(xi))
2 (5)

After running the program, we arrived at a λ value of 0.25 for our base-
line. To convert this baseline logistic curve to our theoretical model, we then
considered the following differential equation:

dE

dt
= βEE (6)

We algebraically manipulated our baseline logistic curve:

d

dt
[
E

P
] =

dE
dt P −

dP
dt E

P 2
= λ

E

P
(1− E

P
) = λ

E

P
− λE

2

P
(7)

dE

dt
= λE(1− E

P
− dP

dt
· 1

P
· 1

λE
) (8)

The last term is multiplied to a factor of 1
P , 1 over the total number of semis,

therefore it is small enough to be negligible. We then arrived at:

βE = λ

(
1− E

P

)
(9)

However, since E is time dependent, βE also becomes time dependent. To
estimate a time independent value of βE , we borrowed the concept of a predictor
in Improved Euler Method. We plugged the initial values of E and P for βE
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as a predictor. The initial value for P is found from the American Trucking
Associations website [9], and the initial value for E is found by multiplying the
production rate of electric trucks in 2019 [11] to P0.

βE = λ

(
1− E0

P0

)
(10)

The differential equation was then integrated for a predictor Ê, and the
average value of E was then estimated using the average function value formula:

Ē ≈ 1

b− a

∫ b

a

Êdt (11)

The new βE value was evaluated:

βE = λ

(
1− Ē

P

)
(12)

Finally, we adjusted the value of βE by dividing it by the average production
of semis per year ᾱ so that it is compatible with our theoretical model.

Another component of our theoretical model was α, the total annual produc-
tion of semis. We again used least square curve fitting in order to acquire the
data for future production of electric vehicles. Using open source least square
curve fitting libraries, we predicted the future production of electric vehicles
through a sine function:

α = sin(0.8909t+ 219.3202) · 45609.0704 + 143645.8527 (13)

Completing the last part of our baseline model, we let the production of
diesel semis be the total production of semis minus the production of electric
semis:

dD

dt
= α− dE

dt
(14)

While the baseline model only accounts for the production of semi-trucks,
there are other factors such as lifespan and spread of interest in electric semis
that can affect the numbers of the two types of semis. According to assumption
3, both diesel and electric semis have a lifespan of around 16 years. Therefore
the rate at which semis reach the end of their lifespan was considered to be
equal to the rate of production 16 years prior:

δD = D(t− 16) (15)

δE = E(t− 16) (16)

Since the production of electric semis was virtually 0 before 2020, δE stays
at 0 until 2036.

The final component of our theoretical model is the rate of conversion from
a diesel semi driver or owner into an electric semi driver or owner. We found
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this rate by parameter fitting and determined that the chance of a diesel semi
driver or owner converting to using an electric semi when the driver or owner
encounters an electric semi driver or owner, σ, is 0.00000002. This value was
verified by the reasonable prediction it produced.
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3.3.1 Variables

Variable Definition Value

Q Production of Semis Time Dependent

D Number of Diesel Semis Time Dependent

E Number of Electric Semis Time Dependent

N
Number of Semis Produced Since
2004 That Are Past Their Lifespan

Time Dependent

α Rate of Production of Semis Time Dependent

βD Rate of Production of Diesel Semis N/A

βE
Rate of Production of Electric
Semis

0.00000138095

t Number of Years Since 2020 Time Dependent

σ
Rate of Conversion From Diesel
Semis to Electric Semis

0.00000002

δD
Rate of Diesel Semis Reaching End
of Lifespan

Time Dependent

δE
Rate of Electric Semis Reaching
End of Lifespan

Time Dependent
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3.3.2 Equations

dQ

dt
= α− βEQE − βDQD (17)

dD

dt
= βDQD − σDE − δDD (18)

dE

dt
= βEQE + σDE − δEE (19)

dN

dt
= δD + δE (20)

3.4 Results

Our model predicted that 2.74% of semi-trucks will be electric in 5 years, 11.55%
in 10 years, and 88.52% in 20 years from 2020. The following figure shows the
predicted number of diesel and electric semis from 2020 to 2040:

3.5 Strengths and Weaknesses

The strength of our model lies in the SIR model as its foundation. The SIR
model from which our model is derived takes into consideration the spread of
the infection of the mind with the benefits of purchasing an electric vehicle.

The weaknesses of our model lie in the alternative routes that we took to
implement our theoretical model. Being only an estimate of our theoretical
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model, our results may have lost accuracy during the process of simplifying the
implementation of our theoretical model. Moreover, there are factors which our
model could have considered but did not, such as laws and regulations, envi-
ronmental awareness, and company decisions. However, the parameter fitting
for evaluating the rate of conversion from a diesel semi driver or owner to an
electric semi driver or owner was able to partially simulate the effect of those
factors.

4 Part II

4.1 Problem Definition

One of the largest issues in transitioning from diesel trucking to electric is the
vast amount of infrastructure that must be made. In order to effectively transi-
tion, the proper amount of charging stations and chargers are needed to maintain
the current efficiency of semis. In this section, we will model the amount of sta-
tions and chargers per station that will be necessary for an all electric trucking
industry,

4.2 Assumptions and Justifications

1. There is no additional cost in creating a station. The chargers that we are
considering will be added to existing infrastructure. Therefore, the initial
cost for the chargers will be the only additional cost for maintaining and
creating the station.

2. The average maximum range of a electric truck is 300 miles or 480 km.

3. There is a 25% range anxiety for the average driver. Therefore, drivers
are only willing to go 75% of their maximum range. From the above
assumption, the maximum distance the average driver is willing to is 225
miles or 360 kilometers.

4. There is two-way traffic at each of the stations. For each of the corridors,
there will be trucks coming from each direction.

5. The maximum wait time for a given station should be

6. Since all of the routes that are simulated are major trucking routes, all of
the chargers used will be Level 3 or DCFC. This is because this maximizes
the efficiency of the trucks travelling along the route by minimizing the
time that they spend charging their trucks along the route.

7. The corridor between two locations is assumed to be approximately a
Euclidean distance and thus straight paths. This is due to the inherent
nature of highways and freeways due to the fact that they were constructed
in a manner which did not deviate from a straight path due to their
purpose for travelling long distances.
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4.3 Model

The corridor dataset provided by the Mathworks Math Modeling Challenge
was mainly used for this problem[1]. This dataset provides the incremental
distance from one side of the corridor to the other as well as the corresponding
Annual Average Daily Truck Traffic(AADTT) values at each of these distances.
These AADTT values help describe the amount of traffic present between an
interval of the corridor. Some AADTT values were unavailable, but generally,
the relationship between AADT and AADTT values presented in the data sets
was linear, so we extrapolated the missing AADTT values with linear regression.
A separate regression line was made for each geographical area because different
geographical areas will inherently have different amounts of AADTT relative to
their AADT. For example, areas with more factories will have a higher AADTT
rate than other areas. The average R2 value for the graphs after eliminating
outliers was .72. Shown below is an example graph of regression for the Boston
to Harrisburg path.

4.3.1 Model Training

To model the distribution of the cars along the corridor at a random time,
we had to interpolate the points that were present at each of the given points
in the dataset. For example, given an AADTT value at two locations along
the corridor, we determined that there should be a probability distribution for
the discrete points between the upper and lower bound of two adjacent points.
Given the assumption that there is two-way traffic, it is more likely for cars to
be concentrated at the points near charging stations. From this assumption, it
is also less likely for the cars to be present in the middle. This can be modeled
by a modified wavefunction, which plots the probability of being at a certain
location at any time. This is seen by this graph:
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Formula for the wavefunction:(
√

2
Lsin(nπxL )2

The reasoning behind the usage of this modified wavefunction is to accurately
reflect the previous observations that we had about the expected distribution
of cars between two points as well as have a probability of a car being present
at each discrete point in the interval.

Based on the probabilities generated from the wavefunction, we simulated
the state of each corridor at an instantaneous moment. This gave us an accu-
rate representation of the density of truckers along the corridor. As our model
was based on covering the maximum amount of truckers in a certain radius, our
model closely aligned with the maximum coverage location problem. Specifi-
cally, this problem applies to situations wherein there is a condition, in our case
truckers, who should be covered by stations, in our case charging stations. In
addition, each charging station is deemed to have a radius of coverage or range.
In our model, we chose to use a 60 mile radius which is optimized for electric
trucking as it satisfies the range anxiety problem and provides ample charging
stations for them not to be overcrowded. With these factors, the maximum
location coverage problem closely aligns as we face the problem of creating a
model for placing charging stations in a way such that the cost is optimized and
the truckers are satisfied. The maximum coverage location problem also has an
interesting property of not overlapping or double-counting truckers who will be
serviced by another station. This allows the algorithm to deduce the optimal
amount of stations to have along each corridor along with their location. Due to
the benefits and accuracy the maximum location coverage problem would bring
to this problem, we decided to use it as the model for this problem. Due to
the nature of such a problem being NP-complete, we chose to use a computer
program and apply greedy properties in order to generate an approximate yet
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accurate solution to this problem. Utilizing the probabilities of existence cre-
ated by the wavefunction simulation, we could apply algorithm to realistic data
and generate the points which we deemed should be charging stations.

Although this problem is fundamentally NP-complete, we were able to de-
velop an approximate algorithm to identify where the charging stations should
be located. Due to the nature of the problem, the algorithm followed the greedy
principle. The algorithm was developed to be as follows. (Greedily select the
subset of usubk which selects the most elements from U in its radius
such that element e is not apart of any other subset)

The second part of the problem challenged us to find the number of charg-
ing stations at each charging station. In order to calculate this number, we
once again referenced the wavefunction simulation in order to approximate the
amount of people at the station at an instantaneous moment. Using the same
random seed as the simulation from which we deduced the position of charging
stations, we calculated the amount of truckers who could possibly arrive at each
charging station. This was deduced by taking the distance of each trucker from
each charging station and if this distance was less than the radius we selected
previously, then that trucker was deemed as a candidate for refueling at that
station. This gave us the total possible truckers who could arrive at each station.
From the total possible amount of truckers, we decided to account for the worst
possible situation and the extreme that all the truckers would arrive at that
situation. This would leave the station able to handle maximum capacity. In
order to find the number of charging stations needed, we divided the maximum
number of truckers at that station by 48. This is due to the fact that there are
48 charging cycles which represents the AADTT and thus gives us the amount
of people at the station in an instantaneous moment. This is deduced because
there are 30 minute charging increments, meaning 48 charging cycles. From our
model, we are thus able to find accurate charging locations which optimize the
cost and provide safety so that even in the extreme case every trucker needs to
refill, there should be sufficient capacity.
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4.4 Results

San Antonio to New Orleans
Charging
Station Dis-
tance from
Start (miles)

Number of Possible
Trucks Needing Charge

Required Chargers

84 7 1
160 37 1
282 2509 52
307 2782 58
326 3236 67
426 5865 122
512 5056 105
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Minneapolis to Chicago
Charging
Station Dis-
tance from
Start (miles)

Number of Possible
Trucks Needing Charge

Required Chargers

5 185 4
67 223 5
127 52 1
236 35 1
288 72 2
359 1386 29

Boston to Harrisburg
Charging
Station Dis-
tance from
Start (miles)

Number of Possible
Trucks Needing Charge

Required Chargers

18 443 9
138 3016 63
259 390 8
317 202 4
359 219 5
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Jacksonville to Washington DC
Charging
Station Dis-
tance from
Start (miles)

Number of Possible
Trucks Needing Charge

Required Chargers

56 87 2
139 97 2
246 127 3
279 246 5
397 2738 57
515 3002 63
626 8161 170
674 4687 98
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Los Angeles to San Francisco
Charging
Station Dis-
tance from
Start (miles)

Number of Possible
Trucks Needing Charge

Required Chargers

7 2491 52
69 2413 50
156 237 5
259 302 6
280 276 6

4.4.1 Sensitivity Analysis

We conducted sensitivity analysis on our algorithm by changing the radius and
confirming that our algorithm was robust. As seen from this graph, the output
with the radius increased by 10 is very similar to the radius we used for our
results. This proves that our model is robust and is accurate.

4.5 Strengths and Weaknesses

One strength of our model is that the maximum location coverage problem
solves not only the location of the charging stations, but also the amount of
charging stations. This means that unlike alternative algorithms and models in
which these must be deemed separately, our model takes into account inherent
characteristics based on the location. This provides a more robust model and
should lead to improved results. One weakness of our solution is that the max-
imum location coverage problem is inherently NP-complete. This meant that
for edge cases, particularly areas with low amount of vehicles, our model could
perform poorly. However, this can be easily mitigated with human verification.

5 Part III

5.1 Problem Definition

5.2 Assumptions and Justifications

1. We assumed that the average GDP per capita of each of the states traveled
in the path was an accurate estimate of the overall economy of the areas
because the GDP is the most common estimate of economic state of an
area.

2. We assumed that all registered voters have an opinion on environmental-
ism, which although isn’t 100% true, should be a solid estimate. Although
not all voters would have an opinion on environmentalist issues, current
non-registered voters should make up the difference.
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3. We assumed that the corridor data from part 2 is still applicable, and
the assumption that the relationship between AADT and AADTT is still
linear.

5.3 Model Development

Our model uses four different factors to create our necessity index that deter-
mines which of the corridors should be targeted for development first. The four
main factors that we use to create this index is the community wealth index,
community environmentalist index, community benefit index, and the utilitar-
ian index. We determined a weighted sum that would map to a aggregate index,
called the necessity index, which would allow us to determine the corridor which
would be most benefited by being targeted with increased development. For each
of the parameters, they will be normalized by calculating the mean, standard
deviation, and z-score of the 5 values corresponding to each of the different cor-
ridors. A root-mean-square of the 4 indices will then be averaged to determine
the final necessity index.
The mean is calculated as:

X̄ =
1

n

n∑
i=1

Xi (21)

The standard deviation is calculated as:

σ =

√√√√ 1

s− 1
(

n∑
i=1

X2
i −

1

n
(

n∑
i=1

Xi)2) (22)

The z-score is calculated as:

z =
x− X̄
σ

(23)

The root mean square is calculated as:√∑n
i=1 a

2
i

n
(24)

Each parameter is described as follows:

1. Community Wealth Index: We utilized the GDP per capita of each region
to determine which areas are the most economically sound. This is impor-
tant because a more economically strong area would be more receptive to
the change toward electric trucks. The initial costs of switching towards
electric trucks would be an added expense that requires excess wealth.
Furthermore, the higher the GDP, the better the overall living conditions
generally are in an area which makes it so that the area would be more
able to make the transition to electric without anyone in the community
suffering.
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2. Community Environmentalist Index: The environmentalist index provides
an attempt at estimating the environmentalists in the areas affected. En-
vironmentalists would generally be more receptive to the changes and
actively support them. In theory, having a higher environmentalist in-
dex would mean a lower up front cost because there would be a higher
likelihood for donations and support for environmentally friendly actions.

3. Community Benefit Index: A greater amount of trucker traffic would mean
a greater benefit for transitioning to electric, and a faster economic benefit.
The community benefit index uses the AADT and AADTT values found
from part 2 to create an index that seeks to maximize the amount of
trucker traffic that is reached. The index itself takes the slope of the linear
regression equations found earlier to account for the baseline AADTT and
the percentage growth of the AADTT per AADT.

4. Utilitarian Index: The utilitarian index refers to its namesake philosophy,
seeking the greatest good for the greatest number. The utilitarian index
finds the total number of people who will be affected by the limited amount
of emissions and the long term economic benefits of electric vehicles and
seeks to maximize that number.

5.4 Results

Index SA to NOLA MIN to CHI BOS to HBURG JAX to DC LA to SF
Community Benefit Index 756.1056 128.3416 306.7764 223.9257 311.7852
Community Wealth Index 48856 51687 61408 62977 58619
Community Environmentalist Index 118233332 10150459 20159331 21785976 17641362
Utilitarian Index 31606634 24095317 42875521 53752268 38802500

Root mean squared for Sa to Nola 1.192 Root mean squared for Minn to Chi
1.057 Root mean squared for SA to NOLA 0.579 Root mean squared for Bos to
hburg 1.054 Root mean squared for SF to LA 1.375
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7 Appendix

7.1 Estimating data using Least Square Curve Fitting

import x l rd
import numpy as np
import pandas as pd
from s c ipy . opt imize import c u r v e f i t
import matp lo t l i b . pyplot as p l t

from s c ipy . opt imize import l e a s t s q

df = pd . r e a d e x c e l ( ’ s emi product ion and use . x l sx ’ , sheet name=’ product ion ’ , sk iprows =[0 , 1 , 2 , 25 , 26 , 27 , 28 , 29 ] )

data = df [ ’ Class 8 t o t a l ’ ]

#i n i t i a l parameters
g u e s s f r e q = 1
guess ampl i tude = 3∗np . std ( data ) / ( 2∗∗0 . 5 )
gues s phase = 0
g u e s s o f f s e t = np . mean( data )

#d e f i n e the s i n f u n c t i o n and t u p l e
p0=[ g u e s s f r e q , guess ampl i tude ,

guess phase , g u e s s o f f s e t ]
def my sin (x , f r eq , amplitude , phase , o f f s e t ) :

return np . s i n ( x ∗ f r e q + phase ) ∗ amplitude + o f f s e t

f i t = c u r v e f i t ( my sin , df [ ’ Year ’ ] , data , p0=p0 )

#f i r s t guess
data g1 = my sin ( df [ ’ Year ’ ] , ∗p0 )

#o pt i mize the curve f i t t i n g
d a t a f i t = my sin ( df [ ’ Year ’ ] , ∗ f i t [ 0 ] )

f i g , ax = p l t . subp lo t s ( )

#p l o t a l l data
ax . p l o t ( data , ’ . ’ )
ax . p l o t ( d a t a f i t , l a b e l=’ a f t e r f i t t i n g ’ )
ax . p l o t ( data g1 , l a b e l=’ f i r s t guess ’ )
ax . l egend ( )
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#save the p l o t to a png
f i g . s a v e f i g ( ’ s i n e . png ’ , dpi =500)

7.2 Utilizing a greedy algorithm to solve the maximum lo-
cation coverage problem and predict charging station
distributions

import numpy as np
import pandas as pd
import matp lo t l i b . pyplot as p l t
from random import seed , uniform , rand int
from s c ipy . s p a t i a l import d i s t ance mat r i x
import matp lo t l i b . patches as mpatches

seed (0 )

# MCLP Implementation r e f e r e n c e d from Duke U n i v e r s i t y
# Uses i n t e g e r programming and assumes i t i s a s t r a i g h t l i n e from l o c a t i o n 1 to l o c a t i o n 2

def genCandidateS i tes (minX , maxX, numOfCandidates ) :
s i t e s = [ ]

for i in range ( numOfCandidates ) :
randX = randint (minX , maxX)
s i t e s . append ( [ randX , 0 ] )

return s i t e s

def mclp ( points , cand ida t eS i t e s , rad ius , maxSites ) :
distMat = d i s tance mat r i x ( cand ida teS i t e s , po in t s )
r e t u r n e d S i t e s = [ ]
s t r i n g S i t e s = [ ]

for i in range ( maxSites ) :
print ( distMat )
cur rHighes tPo int s = −1
currCandidate = None

for j in range ( len ( c a n d i d a t e S i t e s ) − 1 ) :
# For each proposed s i t e , we want to c a l c u l a t e i t s d i s t a n c e and see i f i t i s the l o w e s t
currSum = 0

for k in range ( len ( po in t s ) − 1 ) :

i f ( distMat [ j ] [ k ] != −1 and distMat [ j ] [ k ] <= rad iu s ) :
currSum += 1
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i f ( currSum > cur rHighes tPo int s ) :
# Current s i t e becomes h i g h e s t cand ida te
cur rHighes tPo int s = currSum
currCandidate = j

# After s i t e i s s e l e c t e d , s e t a l l p o i n t s in i t s r a d i u s = to −1

for j in range ( len ( po in t s ) − 1 ) :
i f ( distMat [ currCandidate ] [ j ] <= rad iu s ) :

for k in range ( len ( c a n d i d a t e S i t e s ) − 1 ) :
distMat [ k ] [ j ] = −1

print ( ’Found candidate at : ’ + str ( currCandidate ) )
s t r i n g S i t e s . append ( ’Found candidate : ’ + str ( currCandidate ) + ’ at : ’ + str ( c a n d i d a t e S i t e s [ currCandidate ] [ 0 ] ) )
r e t u r n e d S i t e s . append ( currCandidate )
i f ( currCandidate == 0 and distMat [ 0 ] [ 0 ] == −1):

print ( s t r i n g S i t e s )
return r e t u r n e d S i t e s

return r e t u r n e d S i t e s

df = pd . r e a d e x c e l ( ’ f i x e d c o r r i d o r d a t a . x l sx ’ , sheet name=’LA SF ’ , sk iprows =[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 ] )

s ta r tLoc = ’ Los Angeles ’
endLoc = ’ San Franc i sco ’

d i s t a n c e s = df [ df . columns [ 0 ] ]
aadtt = df [ df . columns [ 3 ] ]

po in t s = [ ]

# Use o f wave f u n c t i o n to determine p r o b a b i l i t y o f e x i s t i n g at c e r t a i n g iven AADTT
dataDict = dict ( zip ( d i s tance s , aadtt ) )
dictKeys = l i s t ( dataDict . keys ( ) )

L = 20
n = 1
def ps i s qua r ed (x , L , n ) :

return np . square (np . s q r t (2/L)∗np . s i n (n∗np . p i ∗x/L) )

p s i v a l d i c t = {}
t o t a l p s i v a l = [ ]
x l i s t d i c t = {}
t o t a l x l i s t = [ ]
for i in range ( len ( dataDict )−1):
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x l i s t d i c t [ i ] = np . l i n s p a c e ( dictKeys [ i ] , d ictKeys [ i +1] , int ( dataDict [ d ictKeys [ i ] ]+ dataDict [ d ictKeys [ i +1 ] ] )//100)
t o t a l x l i s t . extend ( x l i s t d i c t [ i ] )
p s i v a l = [ ]
for x in x l i s t d i c t [ i ] :

p s i v a l . append ( p s i s qua r ed (x , dictKeys [ i +1]−dictKeys [ i ] , n ) )
p s i v a l d i c t [ i ] = p s i v a l

t o t a l p s i v a l . extend ( p s i v a l )

print ( len ( t o t a l x l i s t ) )
print ( len ( t o t a l p s i v a l ) )
print ( type ( t o t a l x l i s t ) )
print ( type ( t o t a l x l i s t ) )

p r o b a b i l i t y o f e x i s t a n c e = dict ( zip ( t o t a l x l i s t , t o t a l p s i v a l ) )

for item in p r o b a b i l i t y o f e x i s t a n c e . i tems ( ) :
po s i t i on , p r o b a b i l i t y = item
random num = uniform (0 , 1)
i f ( random num < p r o b a b i l i t y ) :

po in t s . append ( [ int ( p o s i t i o n ) , 0 ] )

low x = int ( po in t s [ 0 ] [ 0 ] )
h igh x = int ( po in t s [ len ( po in t s ) − 1 ] [ 0 ] )
print ( str ( low x ) + ’ ’ + str ( h igh x ) )
c a n d i d a t e S i t e s = genCandidateS i tes ( low x , high x , 400)

c h o s e n s t a t i o n s = mclp ( points , cand ida t eS i t e s , 70 , 30)

p l t . t i t l e ( ’ D i s t r i b u t i o n o f charg ing l o c a t i o n s from ’ + star tLoc + ’ to ’ + endLoc )

po int x = [ ]
po in t y = [ ]
for po int in po in t s :

po in t x . append ( po int [ 0 ] )
po in t y . append ( po int [ 1 ] )

s t a t i o n l o c a t i o n s x = [ ]
s t a t i o n l o c a t i o n s y = [ ]
for s t a t i o n in c h o s e n s t a t i o n s :

s t a t i o n l o c a t i o n s x . append ( c a n d i d a t e S i t e s [ s t a t i o n ] [ 0 ] )
s t a t i o n l o c a t i o n s y . append ( c a n d i d a t e S i t e s [ s t a t i o n ] [ 1 ] )

p l t . s c a t t e r ( po int x , po int y , alpha =0.3)
p l t . s c a t t e r ( s t a t i o n l o c a t i o n s x , s t a t i o n l o c a t i o n s y , c o l o r=’ r ’ )

p l t . x l a b e l ( ’ Distance from ’ + star tLoc + ’ ( mi l e s ) ’ )

Page 25



Team 13638 M3 Challenge

p l t . y t i c k s ( [ ] )

red patch = mpatches . Patch ( c o l o r=’ red ’ , l a b e l=’ Charging Sta t i on ’ )
b lue patch = mpatches . Patch ( c o l o r=’ blue ’ , l a b e l=’ E l e c t r i c Semi−Truck ’ )

p l t . l egend ( handles =[ red patch , b lue patch ] )

p l t . show ( )

7.3 Calculating the amount of people charging at each
station

import numpy as np
import pandas as pd
import matp lo t l i b . pyplot as p l t
from random import seed , uniform , rand int
from s c ipy . s p a t i a l import d i s t ance mat r i x
import matp lo t l i b . patches as mpatches

seed (0 )

# MCLP Implementation r e f e r e n c e d from Duke U n i v e r s i t y
# Uses i n t e g e r programming and assumes i t i s a s t r a i g h t l i n e from l o c a t i o n 1 to l o c a t i o n 2

def genCandidateS i tes (minX , maxX, numOfCandidates ) :
s i t e s = [ ]

for i in range ( numOfCandidates ) :
randX = randint (minX , maxX)
s i t e s . append ( [ randX , 0 ] )

return s i t e s

def mclp ( points , cand ida t eS i t e s , rad ius , maxSites ) :
distMat = d i s tance mat r i x ( cand ida teS i t e s , po in t s )
r e t u r n e d S i t e s = [ ]
s t r i n g S i t e s = [ ]

for i in range ( maxSites ) :
print ( distMat )
cur rHighes tPo int s = −1
currCandidate = None

for j in range ( len ( c a n d i d a t e S i t e s ) − 1 ) :
# For each proposed s i t e , we want to c a l c u l a t e i t s d i s t a n c e and see i f i t i s the l o w e s t
currSum = 0

Page 26



Team 13638 M3 Challenge

for k in range ( len ( po in t s ) − 1 ) :

i f ( distMat [ j ] [ k ] != −1 and distMat [ j ] [ k ] <= rad iu s ) :
currSum += 1

i f ( currSum > cur rHighes tPo int s ) :
# Current s i t e becomes h i g h e s t cand ida te
cur rHighes tPo int s = currSum
currCandidate = j

# After s i t e i s s e l e c t e d , s e t a l l p o i n t s in i t s r a d i u s = to −1

for j in range ( len ( po in t s ) − 1 ) :
i f ( distMat [ currCandidate ] [ j ] <= rad iu s ) :

for k in range ( len ( c a n d i d a t e S i t e s ) − 1 ) :
distMat [ k ] [ j ] = −1

print ( ’Found candidate at : ’ + str ( currCandidate ) )
s t r i n g S i t e s . append ( ’Found candidate : ’ + str ( currCandidate ) + ’ at : ’ + str ( c a n d i d a t e S i t e s [ currCandidate ] [ 0 ] ) )
r e t u r n e d S i t e s . append ( currCandidate )
i f ( currCandidate == 0 and distMat [ 0 ] [ 0 ] == −1):

print ( s t r i n g S i t e s )
return r e t u r n e d S i t e s

return r e t u r n e d S i t e s

df = pd . r e a d e x c e l ( ’ f i x e d c o r r i d o r d a t a . x l sx ’ , sheet name=’LA SF ’ , sk iprows =[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 ] )

s ta r tLoc = ’ Los Angeles ’
endLoc = ’ San Franc i sco ’

d i s t a n c e s = df [ df . columns [ 0 ] ]
aadtt = df [ df . columns [ 3 ] ]

po in t s = [ ]

# Use o f wave f u n c t i o n to determine p r o b a b i l i t y o f e x i s t i n g at c e r t a i n g iven AADTT
dataDict = dict ( zip ( d i s tance s , aadtt ) )
dictKeys = l i s t ( dataDict . keys ( ) )

L = 20
n = 1
def ps i s qua r ed (x , L , n ) :

return np . square (np . s q r t (2/L)∗np . s i n (n∗np . p i ∗x/L) )
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p s i v a l d i c t = {}
t o t a l p s i v a l = [ ]
x l i s t d i c t = {}
t o t a l x l i s t = [ ]
for i in range ( len ( dataDict )−1):

x l i s t d i c t [ i ] = np . l i n s p a c e ( dictKeys [ i ] , d ictKeys [ i +1] , int ( dataDict [ d ictKeys [ i ] ]+ dataDict [ d ictKeys [ i +1 ] ] )//100)
t o t a l x l i s t . extend ( x l i s t d i c t [ i ] )
p s i v a l = [ ]
for x in x l i s t d i c t [ i ] :

p s i v a l . append ( p s i s qua r ed (x , dictKeys [ i +1]−dictKeys [ i ] , n ) )
p s i v a l d i c t [ i ] = p s i v a l

t o t a l p s i v a l . extend ( p s i v a l )

print ( len ( t o t a l x l i s t ) )
print ( len ( t o t a l p s i v a l ) )
print ( type ( t o t a l x l i s t ) )
print ( type ( t o t a l x l i s t ) )

p r o b a b i l i t y o f e x i s t a n c e = dict ( zip ( t o t a l x l i s t , t o t a l p s i v a l ) )

for item in p r o b a b i l i t y o f e x i s t a n c e . i tems ( ) :
po s i t i on , p r o b a b i l i t y = item
random num = uniform (0 , 1)
i f ( random num < p r o b a b i l i t y ) :

po in t s . append ( [ int ( p o s i t i o n ) , 0 ] )

low x = int ( po in t s [ 0 ] [ 0 ] )
h igh x = int ( po in t s [ len ( po in t s ) − 1 ] [ 0 ] )
print ( str ( low x ) + ’ ’ + str ( h igh x ) )
c a n d i d a t e S i t e s = genCandidateS i tes ( low x , high x , 400)

c h o s e n s t a t i o n s = mclp ( points , cand ida t eS i t e s , 70 , 30)

p l t . t i t l e ( ’ D i s t r i b u t i o n o f charg ing l o c a t i o n s from ’ + star tLoc + ’ to ’ + endLoc )

po int x = [ ]
po in t y = [ ]
for po int in po in t s :

po in t x . append ( po int [ 0 ] )
po in t y . append ( po int [ 1 ] )

s t a t i o n l o c a t i o n s x = [ ]
s t a t i o n l o c a t i o n s y = [ ]
for s t a t i o n in c h o s e n s t a t i o n s :

s t a t i o n l o c a t i o n s x . append ( c a n d i d a t e S i t e s [ s t a t i o n ] [ 0 ] )
s t a t i o n l o c a t i o n s y . append ( c a n d i d a t e S i t e s [ s t a t i o n ] [ 1 ] )
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p l t . s c a t t e r ( po int x , po int y , alpha =0.3)
p l t . s c a t t e r ( s t a t i o n l o c a t i o n s x , s t a t i o n l o c a t i o n s y , c o l o r=’ r ’ )

p l t . x l a b e l ( ’ Distance from ’ + star tLoc + ’ ( mi l e s ) ’ )
p l t . y t i c k s ( [ ] )

red patch = mpatches . Patch ( c o l o r=’ red ’ , l a b e l=’ Charging Sta t i on ’ )
b lue patch = mpatches . Patch ( c o l o r=’ blue ’ , l a b e l=’ E l e c t r i c Semi−Truck ’ )

p l t . l egend ( handles =[ red patch , b lue patch ] )

p l t . show ( )

7.4 Prediction of number of class 8 diesel and electric
trucks from 2020 to 2040

from s c ipy . i n t e g r a t e import ode int
import matp lo t l i b . pyplot as p l t
import numpy as np
p l t . rcParams [ ’ f ont . f ami ly ’ ] = ’ s e r i f ’
p l t . rcParams [ ’ f ont . s e r i f ’ ] = [ ’ Times New Roman ’ ] + p l t . rcParams [ ’ f ont . s e r i f ’ ]

# number o f d i e s e l and e l e c t r i c t r u c k at the beg inn ing o f 2020
y0 = 3654240 , 25760
xMin , xMax = 0 , 20
yMin , yMax = 0 , 4000000
r e s o l u t i o n = 20
t = np . l i n s p a c e (xMin , xMax , (xMax − xMin) ∗ r e s o l u t i o n + 1)

# r a t e o f c l a s s 8 e l e c t r i c t r u c k product ion
betaE = 0.25 ∗ (1 − 760012 / 3680000) / 143645.85273649602
sigma = 0.01 ∗ 0 .01 ∗ 0 .01 ∗ 0 .02

# r e t u r n s product ion o f c l a s s 8 t r u c k s in year (2004 + t )
def product ion ( t ) :

return np . s i n ( t ∗ 0.8909006172269278 + 219.32023815530073) ∗ 45609.07035271879 + 143645.85273649602

# a naive d e r i v a t i v e to be i n t e g r a t e d as a p r e d i c t o r
def pred i c t o rDer i v (E, t ) :

return betaE ∗ product ion ( t + 16) ∗ E

# del taE [ t ] = p r e d i c t e d product ion o f c l a s s 8 e l e c t r i c t r u c k s in year (2004 + t / 20) us ing a p r e d i c t o r
deltaE = ode int ( pred i c to rDer iv , 25760 , t ) .T [ 0 ]

# ODE system
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def de r i v (y , t ) :
D, E = y
dEdt = betaE ∗ product ion ( t + 16) ∗ E − ( betaE ∗ product ion ( t ) ∗ deltaE [min( int ( t ∗ 20) , 4 0 0 ) ] i f t >= 16 else 0) + sigma ∗ D ∗ E
dDdt = product ion ( t + 16) − dEdt − product ion ( t ) − sigma ∗ D ∗ E
return dDdt , dEdt

D, E = ode int ( der iv , y0 , t ) .T

f i g , ax = p l t . subp lo t s ( )
ax . a x i s ( [ xMin , xMax , yMin , yMax ] )
d , = ax . p l o t ( t , D, ’ r ’ , l a b e l = ’ D i e s e l Truck ’ )
e , = ax . p l o t ( t , E, ’b ’ , l a b e l = ’ E l e c t r i c Truck ’ )
ax . g r id ( )
ax . set ( x l a b e l = ’Time ( year ) ’ , y l a b e l = ’Number ’ , t i t l e=’ Pred ic ted Number o f Class 8 D i e s e l / E l e c t r i c Trucks From 2020 to 2040 ’ )
p l t . l egend ( l o c = ’ upper r i g h t ’ , handles = [ d , e ] )
ax . g r id ( )
f i g . s a v e f i g ( ’ graph . png ’ , dpi = 500)

# p r i n t p rop or t i on o f e l e c t r i c t r u c k s in a l l c l a s s 8 t r u c k s 5 years , 10 years , and 20 years from 2020
print (E[ 5 ∗ 20 ] / (E[ 5 ∗ 20 ] + D[ 5 ∗ 2 0 ] ) )
print (E[10 ∗ 20 ] / (E[10 ∗ 20 ] + D[10 ∗ 2 0 ] ) )
print (E[20 ∗ 20 ] / (E[20 ∗ 20 ] + D[20 ∗ 2 0 ] ) )

7.5 Binary search curve fitting for logistic curve

from math import exp

data = [ 0 . 0 1 8 , 0 . 035 , 0 . 045 , 0 . 06 , 0 . 07 , 0 . 08 , 0 . 09 , 0 . 1 0 ]

# l o g i s t i c growth f u n c t i o n
def f unc t i on ( lambda , t ) :

return data [ 0 ] / ( data [ 0 ] + (1 − data [ 0 ] ) ∗ exp(− lambda ∗ t ) )

# l o s s f u n c t i o n
def s q u a r e d i f f ( lambda ) :

sum = 0
for t in range ( len ( data ) ) :

sum = sum + ( func t i on ( lambda , t ) − data [ t ] ) ∗∗ 2
return sum

min a , min b , min l o s s = 0 , 0 , 1 e10

# binary search f o r lambda
l = 0
r = 1
while r − l > 0 . 000001 :
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m = ( l + r ) / 2
i f s q u a r e d i f f ( l ) < s q u a r e d i f f ( r ) :

r = m
else :

l = m

# p r i n t r e s u l t s
print ( l )
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