
SAMPLE PAPER: EXCELLENT

The pre-triage judges were impressed with the executive summary, which makes a good first impression. The team 
provides a brief overview of the problem, recommendations based on their results, and they provide a good sense 
about how they approached the problem. 

The team made use of an ODE for the first part of the problem, and they gave specific guidance about how they 
approximated their final model. It was not clear, though, how they used the data to approximate the ambient 
temperature at any given time during the day other than to say they used the hourly data provided to them. The 
team provided good insights into the robustness of their model. They used a “Sobol analysis” but did not provide 
a citation in the text for their approach. They did make good use of citations and references throughout the rest of 
their paper.

 For the second question the team made use of a Seasonal Auto-Regressive Integrated Moving Average with 
Exogenous Variables model (SARIMAX). They did not provide details as to whether or not the data is consistent 
with the assumptions of the approach. The team used linear regression to model the future temperature trends as 
well as population trends. The team did a good  job of presenting their results, but little analysis on how well the 
regression matched the data was provided.

For the third question, the team defines a “heat index.”  The team states that they use the definition used by NOAA 
but do not include a citation, which is unfortunate as there are other definitions of the heat index. The team made 
direct use of their model from the first question to obtain their results. This was one of the few entries in which the 
team incorporated their previous work into the methods used to address the third question.
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Hot Button Issue: Staying Cool as the
World Heats Up

EXECUTIVE SUMMARY

Dear Birmingham local authorities,
As global temperatures rise, understanding the effect of heatwaves on urban city-spaces and residential

areas is becoming increasingly important. This understanding is integral for protecting vulnerable populations,
ensuring sustainable energy management, and informing effective policy decisions to mitigate the adverse
impacts of extreme heat events.

We first predicted the fluctuation of internal temperatures over a 24-hour period for 4 different dwelling-types
in Birmingham. We employed a thermal Ordinary Differential Equation (ODE) model to capture the
fundamental heat transfer process within a building incoporating factors like solar radiation, convection and
thermal properties of the dwellings. We predict that the maisonnette will have the highest peak temperature,
with the flat, the semi-detached house and the terraced house following respectively. We also show that there
is a lag time associated with the correlation of the outside ambient temperature and the internal temperature
fluctuation. This lag is due to the thermal inertia of the building materials, showing the importance of
considering building design and materials in mitigating heatwave impacts. We utilized Sobol sensitivity
analysis to calculate the robustness of our model, and find out which parameters have the greatest impact
on final model output – we show that specific heat capacity and shadyness are by far the greatest factors,
accounting for 48% and 29% of the models output respectively. This suggests that improving the specific heat
capacity of building materials, and increasing the shade on buildings are two key areas for intervention. More
detailed analysis is shown in Figure 1, illustrating the temporal dynamics of indoor temperature changes
across different dwelling types.

We then used an Seasonal Auto-Regressive Integrated Moving Average Model (SARIMAX) to model the
predicted peak demand to account for during summer months. We find that peak demand is consistently
highest in June and that over a period of 20 years there is an increase in the peak demand that will need to
be accounted for. This increase is likely driven by long term increases in domestic energy consumption by
consumers, with low sensitivities to our exogenous maximum temperature data implying air conditioning’s
role in the energy mix, on the demand side, will remain limited. This is despite assumed long term increases
in maximum temperatures due to climate change. However, this overall increase in demand is accompanied
with a sustained increase in population, showing that our model predictions for per capita energy use will
remain somewhat consistent, likely due to increases in energy efficiency coinciding with increased reasons for
demand.

For the development of heatwave risk metrics, we used our model from the first question calibrated on a
heatwave in 2022 to find maximum heat indices (humidity adjusted temperatures) for different dwelling
classes. By weighting dwelling type for each ward alongside a suitable heuristic, we were able to produce
an aggregated per capita maximum heat index value for each ward. By extension, this provides a way to
quantify the risk of average heat stroke risk by ward through the combination of this ”feels-like” metric
with homogenous internal body temperature. We previously established that grid stability and demand is a
wholly separate issue in question 2, so we decided to focus on this problem entirely through a public health
perspective. The primary benefit of our approach is that it can be augmented with existing weather forecast
solutions to provide live predictions that still capture the relative risks of different wards due to their dwelling
types.

We believe that our models can be used by both home-owners and policymakers to help reduce risk and inform
decisions oriented to cool down cities and residential areas during periods of heatwave. Our models could also
be used to inform energy management going forwards. We provide specific factors to target through informed
policy to aid the many individuals across the UK who may be vulnerable during a period of heatwave.
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Hot Button Issue: Staying Cool as the
World Heats Up

1 Question 1: Hot to Go

1.1 Defining the Problem

The first problem requires us to construct a model to predict the internal temperature of any non-air-
conditioned dwelling during a 24-hour heatwave period. We have modelled this against the July 2022
heatwave in Birmingham.

1.2 Assumptions

Heat loss through conduction and convection is the primary mechanism affecting indoor
temperatures

• Justification: We assume that the radiative effects of Boltzmann’s law are negligible in the temperature
domain studied.

No dwellings have integrated air conditioning units.

• Justification: Less than 5% of the population of the UK has air conditioning in their home [7].

Indoor air mixing is uniform and therefore all rooms have the same temperature.

• Justification: Internal temperature gradients would be too sensitive and specific to building types to
robustly model via a first-order differential equation.

The initial indoor temperature for all buildings is 20°C.

• Justification: Values of room temperature are generally cited as 18-21°C so we can assume that an
initial value of 20°C represents a comfortable internal temperature before any external heating has an
effect. [3]

The heat transfer due to wind speed follows the convection coefficient formula

• Justification: The formula is empirically derived and for the sake of model elegance no external factors
for heat transfer are included.

No structural or physical degradation affect insulation performance over time

• Justification: Insulation materials can degrade due to moisture infiltration, settling, and material
breakdown, but we assume that building regulation and retrofitting provide somewhat continual
maintenance and some degree of consistency.

The effect of doors and windows have the same convection effect in all properties that we
modelled.

• Justification: The absence of granular architectural data for the dwellings provided leads us to assume
that the effects of windows and doors have a similar net convective effect. Additionally, our model
directly incorporates an empirical convective formula which indirectly accounts for airflow around doors
and windows.



Page 4 Team # 17***

Wind speed and convection maintain a linear relationship throughout the 24-hour period.

• Justification: Within the range of wind speeds modelled, non-linear effects such as turbulent eddies
and boundary layer separation are rare and therefore linearity can be assumed.

All buildings studied have the same heat capacity.

• Justification: We assume thermal mass is similar for each dwelling-type.

1.3 The Model

1.3.1 Model development

We chose to model diurnal internal temperatures during a heatwave with a thermal Ordinary Differential
Equation (ODE). Approaching this problem with an ODE allows us to generate predictions grounded in
empirical physical truth as it captures the fundamental heat transfer processes occurring in a building such
as heat gain from solar radiation and heat loss to the environment, and convection. Additionally, it handles
time-varying inputs such as outdoor temperature and solar radiation which allows for accurate and elegant
modelling of internal temperature fluctuation.

We considered the usage of other models such as random forest and gradient boosting models. These
models could suitably capture the complex relationship, but would lack the physical basis that an ODE
allows for. Additionally, more data would be required to train an accurate model and the risk of overfitting
would mean that further measures would be required to maintain model accuracy and generalism.

1.3.2 Model execution

We used the provided dataset to parametrize our ODE. Specifically, we used the hourly heatwave temperatures
and data on dwelling types and their respective unit sizes.

We used the solarpy library to accurately predict solar beam irradiance with high-granularity anywhere
on earth. We used the scipy.odeint package to numerically integrate a system of ordinary differential
equations using the lsoda method [9][5].

Symbol Variable Unit Home 1 Home 2 Home 3 Home 4
u Thermal transmittance W/m²·K 2.1 0.31 0.74 1.8
A Heat loss area m² 139 74 59 96
Cp Heat capacity J/K 12.6× 106 12.6× 106 12.6× 106 12.6× 106

Tin Indoor temperature °C 20 20 20 20
Ua(t, A, u) Heat transfer coefficient J/(h·K) 1, 051, 740 82, 584 157, 212 622, 080
t Time hours 0-23 0-23 0-23 0-23
s Shadiness factor n/a 0.7 0.5 0.5 0.7

Table 1: Model parameters for different home types

We collated empirical heat transfer coefficient data [4], specific heat capacity data [2]
As such, the differential equation we used to model the problem is provided below:

dTin

dt
=

1

Cp
[−Ua(t, A, u)(Tin − Tamb(t)) +Qsolar(t, A) · s] (1)

1.4 Results

Using our thermal ODE model, we predicted internal dwelling temperature discretized in one-hour timesteps
during the 24-hour heatwave in Birmingham on July 19th, 2022. Figure 1 shows how internal temperature in
different dwelling types changes with regard to ambient outside temperature. We therefore predict that the
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’maisonnette’ will have the highest peak temperature, with the flat, the semi-detached house and the terraced
house following respectively.

Figure 1: Internal dwelling temperature plotted against ambient outdoor temperature.

1.5 Sensitivity analysis

We utilize Sobol analysis (variance-based sensitivity analysis) to quantitatively measure the robustness of our
model.

Parameter S1 (First-Order) S1 Conf (Confidence) ST (Total) ST Conf (Confidence)
Cp 0.48274667 0.17215788 0.5230437 0.12683454
A 0.20129002 0.1149062 0.2386194 0.10131119
s 0.2953626 0.09787687 0.33772019 0.10466462
U Value 0.03176134 0.05759425 0.04948288 0.02911131

Table 2: First-Order and Total Sobol’ Indices with Confidence Intervals

From the first-order Sobol’ indices (S1), we can see that Cp (specific heat capacity) has the largest
individual effect on the model’s output, with an S1 value of 0.4827, followed by Shadyness (0.2954) and Area
(0.2013). This indicates that the value for specific heat capacity affects the model’s output by 48%. This
indicates that changes in the specific heat capacity have the most significant impact on the variation in indoor
temperature.

The total Sobol’ indices (St) consider both the direct effects and the interactions between parameters.
Similar to the first-order indices, Cp contributes the most to the total variance (0.5230), followed by Shadyness
(0.3377) and Area (0.2386). The confidence intervals for the total indices also suggest a strong contribution
of Cp to the variance.
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Parameter Pair S2 (Second-Order) S2 Conf (Confidence)
(Cp, A) 0.00808149 0.30484754
(Cp, s) 0.05786142 0.35510765
(Cp, Ua) 0.05334028 0.37256475
(A, s) -0.00380012 0.18256259
(A, Ua) -0.03893358 0.14545158
(s, Ua) -0.03959983 0.18491372

Table 3: Second-Order Sobol’ Indices with Confidence Intervals

The second-order Sobol’ indices show interactions between parameters affecting indoor temperature during
a heatwave. The strongest interaction is between Cp (specific heat capacity) and Shadyness, followed by
the combination of Cp and Ua (thermal conductivity). These interactions suggest that both the material
properties and shading play an important role in temperature regulation. In contrast to this, the interaction
between Area and Shadyness, and Area and Ua, have much smaller or even negative effects. This indicates
limited impact when considered together.

1.6 Discussion

The data shows that indoor temperature in different dwelling-types rises with less variance but as the ambient
temperature reaches peak temperature, all dwelling types rise correspondingly with a lag factor. Each dwelling
type is differentiated by its variance in corresponding peak internal temperatures. In our Sobol analysis, we
determine specific heat capacity and shadyness to be two key driving factors in reducing internal building
temperature. As such, we recommend intervention in the construction of new buildings to be targeted towards
improving those two areas.

1.7 Strengths and weaknesses

Our ODE approach allows us to dynamically model time-varying effects and gain a mechanistic understanding
of the driving features behind internal dwelling temperature fluctation. This is particularily important for a
model predicting internal temperatures as a mechanistic understanding can help home-owners create the
necessary mitigations to keep their home cool during heat-waves. We use Sobol analysis to critically analyse
the robustness and sensitivity of our model, which is a significant strength as it explores the entire parameter
space as opposed to local sensitivity about a point. This analysis would be critical if we were to extend the
temporal domain of our modelling, as small inaccuracies and sensitivities would quickly amplify.

The model does not account for uncertainty or inaccuracy in the weather data, particularly in the so-
lar irradiation predicted values. Additionally, our model neglects thermal mass distribution and uses an
over-simplified model of a building. We assume uniform temperature and that the building is a singular
thermal mass. Future iterations of our model might take into account specific geographical granularity in the
ODE, and differing heat capacities contingent on more precise information on the composition of a buildings
by building material.

2 Question 2: Power Hungry

2.1 Defining the Problem

The second question required us to predict the peak demand that Birmingham’s power grid should be prepared
to handle during summer months. We have also predicted a longer-term trend for peak energy demand.

2.2 Assumptions

The data exhibits seasonality with a periodicity of 12 months.
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• Justification: Our model assumes that the seasonality of our data is 12-months. This is a long enough
time to capture intra-year seasonal variations, particulary peak demand during the summer months.

The population projection is a reasonable adjustment factor.

• Justification: Our model assumes that our population projections influence consumption in an
invariant way across all periods.

The forecast period is not affected by outliers or unusual events.

• Justification: We assume that there are no outliers or ’black-swan’ events during our forecast period.

The exogenous variable (temperature) are not highly collinear.

• Justification: If temperature and population projections are highly correlated, this could lead to
multicollinearity. This would affect the stability and interpretability of the model.

The forecast horizon is short enough that the model’s dynamics remain relevant.

• Justification: We assume that the dynamics of the model remain stable and predictive over the
maximum forecast horizon of 20 years.

Exogenous variables have a measurable and consistent effect on the power consumption

• Justification: We assume that social dynamics with regard to power consumption and temperature
remains constant.

Population growth increases linearly with respect to a linear regression model

• Justification: We assume that popululation grows linearly over the forecast horizon.

Intra-year seasonal trends can be interpolated and predicted accurately, and do not change
over the forecast horizon.

• Justification: We assume that the intra-year seasonal trend remains constant across both the years
from 2012 and also into the prediction horizon.

2.3 The Model

2.3.1 Model development

We chose a Seasonal Auto-Regressive Integrated Moving Average with Exogenous Variables (SARIMAX)
model [1] to predict the future peak demand required during summer months. This model is highly suitable
as it allows seasonable variation to be accurately accounted for when predicting for summer months specifically.

We considered making use of other models, such as a Long-Short-Term-Memory (LSTM) model but we
deemed this inappropriate as similar to machine learning approaches in question 1, much more data would be
needed and overfitting could seriously impact model accuracy and performance.
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2.3.2 Model execution

We used the provided data [6] for the maximum temperature and Varbes [8] for yearly population data.
Additionally, the provided data for 2012 energy consumption formed the basis for our initial seasonal
variation. We then interpolated this variation with the other national consumption values to enrich the
initially seasonally-sparse dataset. We calculated ratios for each month and from there assumed the monthly
variation in 2012 continues to the other years. The SARIMAX equation is as follows:

yt = α+

p∑
i=1

ϕiyt−i +

q∑
j=1

θjϵt−j +
m∑

k=1

βkxt−k +
s∑

l=1

γlyt−12l +
s∑

m=1

δmϵt−12m + ϵt (2)

Symbol Variable Unit
yt Target (dependent) variable - energy consumption Unit of target variable (e.g., kWh)
α Intercept (constant) kWh
ϕi Autoregressive coefficients for past values of y Dimensionless
ϵt Error term (residuals) kWh
θj Moving average coefficients for past error terms Dimensionless

xt−k Exogenous variable (e.g., temperature) °C
βk Coefficients for exogenous variables (temperature) Dimensionless
γl Seasonal autoregressive coefficients for seasonal component Dimensionless
δm Seasonal moving average coefficients for seasonal component Dimensionless
ϵt Error term (random noise or residual) kWh

Table 4: Symbols, Variables, and Units for ARIMAX Model

Additionally, we use a linear regression model to predict both future population [8] and future maximum
temperatures [6] per year.

TempCt = β0 + β1 · t+ ϵt (3)

Symbol Variable Unit
Populationt Predicted population at year t People

β0 Intercept People
t Time Year
ϵt Error term People

Table 5: Symbols, Variables, and Units for Linear Regression Model

Populationt = β0 + β1 · t+ ϵt (4)

Symbol Variable Unit
TempCt Predicted temperature at year t °C

β0 Intercept Celsius (°C)
t Time Year
ϵt Error term Celsius (°C)

Table 6: Symbols, Variables, and Units for Linear Regression Model

We used the sklearn library for the linear regression of temperature and population, and the statsmodels
library for the ARIMAX functionality.
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2.4 Results

Figure 3 shows a linear increase in overall energy consumption in the 20 year forecast window. Table 7 below
shows the predicted peak demand for the summer months in the coming 5 years, showing the precise seasonal
variation between the summer months.

Table 7: Monthly Data for Summer Months (June, July, August) Over Five Years
Month 2023 (kWH) 2024 (kWH) 2025 (kWH) 2026 (kWH) 2027 (kWH)
June 2.685× 108 2.622× 108 2.649× 108 2.596× 108 2.635× 108

July 2.786× 108 2.723× 108 2.753× 108 2.701× 108 2.742× 108

August 2.739× 108 2.677× 108 2.706× 108 2.654× 108 2.695× 108

Figure 2: Population growth as we have predicted it to linearly grow.
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Figure 3: Total energy consumption for Birmingham - historical values and projections

2.5 Discussion

We found that our model suitably projects the long term growth in the demand of energy in Birmingham,
capturing both seasonal variations, the expected medium term dip in demand as well as the expected long
term increase. Our model predicts that June has consistently the highest temperatures, which is a crucial
data point to account for in potential future energy management.

2.6 Sensitivity Analysis

For sensitivity analysis, we used a One At a Time (OAT) method which involved the use of a perturbation of
±10% for our maximum temperature exogenous data. We found that there was very little sensitivity with
regard to max temperature, which makes sense as grid load is unlikely to vary by much due to the lack of AC
in Birmingham and the UK.
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Figure 4: Time series projections with perturbed exogenous variables

Date Change
2030-01-01 ±0.88%
2035-01-01 ±0.90%
2040-01-01 ±0.91%

2.7 Strengths and weaknesses

Our model captures seasonal and trend components of the datasets, which is a significant strength. Addition-
ally, it allows for the incorporation of exogenous variables which can play a critical role in ensuring prediction
accuracy and relevancy. We also account for population growth adjustments which can enhance our model’s
real-world applicability.

However, we demonstrate that the exogenous variables we chose have little effect on the final model output
through OAT sensitivity analysis. To improve our model for future use, we would include a much wider range
of exogenous variables that have a more causal effect on eventual energy consumption. Finally, we would
collate a more data-rich time series for monthly energy consumption rather than just interpolating.

3 Question 3: Beat the Heat

3.1 Defining the Problem

The third problem requires us to construct a vulnerability metric with municipal granularity which can be
used by the authorities to allocate resources to minimize the effects of a heat wave or a power grid failure.

3.2 Assumptions

To simplify the problem, we make the following assumptions:

The heat index is primarily a function of temperature and relative humidity.
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• Justification: This is a standard assumption employed by the National Weather Service (NWS) Heat
Index, derived by Lu and Romps (2022).

The heat index is a suitable gauge for risk associated with heatwaves.

• Justification: The primary effects of heatwaves are associated with public health risks, as risks to grid
stability are negligible due to air conditioning uptake in the UK [?]. If heat indices exceed the internal
body temperature of a human, the risk of heatstroke is introduced.

We can use our results from Question 1 to develop profiles for different dwelling classes.

• Justification: While our heat index can be re-based on any arbitrary heatwave and associated prior
weather forecast to develop indices for a live, evolving threat, choosing a previous heatwave ensures
that the intrinsic relative dynamics of each municipal district remain invariant.

The population is uniformly affected by heat exposure without accounting for individual
physiological differences.

• Justification: The assumption of population homogeneity is a standard statistical simplification,
further reinforced by the fact that internal body temperature is generally uniform.

Heat stroke risk corresponds with heat indices.

• Justification: This assumption relates to how the indices are interpreted. However, we can reasonably
discard irrational behaviors—such as voluntary exercise in heatwave conditions—when considering
public health risks during a crisis.

Inheritance of dwelling class is suitable from Question 1.

• Justification: We define:

– 1- and 2-bedroom houses as semi-detached houses built in 1940.

– 3-, 4-, and 5+ bedroom houses as terraced homes built in 1915.

– 1- and 2-bedroom flats as flats built in the 1980s.

– 3-, 4-, and 5+ bedroom flats as 2010 maisonettes.

These classifications are based on bedroom numbers aligning with previously established dwelling classes
from Question 1. This assumption is valid because the variance associated with an arbitrary house
within its given dwelling class is symmetric. Thus, on aggregate, these variances cancel out, ensuring
that per capita heat indices remain appropriate.

3.3 The Model

After determining the importance of the heat index in calculating the vulnerability score, we incorporate
the model used in Question 1 to provide the temperatures experienced indoors during heatwaves and find
the maximum heat index experienced in each class of dwelling. The pythermalcomfort library was used to
calculate this heat index based on temperature and relative humidity, using the following equation:

HI = c1 + c2T + c3RH + c4T ·RH + c5T
2 + c6RH2 + c7T

2 ·RH + c8T ·RH2 + c9T
2 ·RH2 (5)

The parameters for this equation are defined in the following table:
The empirical coefficients c1 through c9 are derived from NOAA’s heat index formulation.
Once the peak heat index of each class of house was found, assumptions were made to approximate the

number of each type of dwelling in each region of Birmingham. By calculating the number of rooms and
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Symbol Variable Unit
HI Heat Index °C
T Temperature °C
RH Relative Humidity %
c1-c9 Empirical coefficients -

Table 8: Parameters for the Heat Index equation

using that figure to calculate the population living in each class of house, a ”per capita heat index” can be
calculated for each district, which is directly related to the vulnerability score:

1

PT

n∑
i=1

HIi · Pi (6)

The parameters for this equation are defined in the following table:

Symbol Variable Unit
PT Total population of the region -
HIi Maximum heat index for house class i °C
Pi Population in house class i -
n Number of dwelling types -

Table 9: Parameters for the per capita heat index equation

This formula has been applied to calculate the per capita heat index, where n = 4 for each of the types of
dwellings.

3.4 Results

Figure 5: Bar chart of the per capita heat indexes.

The bar chart demonstrates the variations in heat vulnerability across Birmingham’s districts, with Sutton
Coldfield and Birmingham Hodge Hill and Solihull North having the highest per capita heat indexes, implying
their greater risk of heat-related health impacts. Birmingham Edgbaston, Northfield, and Perry Barr are
relatively vulnerable areas, while Birmingham Edington and Hall Green and Moseley have lower per capita
heat indexes, suggesting these region’s higher resilience to extreme heat. The variation between these regions
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however is quite small which could suggest that heat vulnerability is a widespread issue across Birmingham
rather than just being in a few higher risk areas. This emphasises the need for strategies to deal with these
area’s vulnerabilities.

3.5 Discussion

These results highlight the importance of humidity in determining perceived temperature. The model suggests
that even moderate temperature increases can lead to dangerous heat index values when humidity is high.
Future work should explore urban heat island effects and individual physiological differences.

3.5.1 Using the vulnerability score to mitigate heat-related risks

Regions that have a high per capita heat index correspond to where residents are at a greater risk of
heat-related illnesses, and so targeted intervention strategies are essential.

To significantly reduce the impact of heatwaves in Birmingham, authorities can make use of our calculated
vulnerability scores when creating their emergency response and resource allocation strategies. Here is our
proposed approach for doing so:

By mapping out vulnerability scores across different districts, authorities can identify high-risk areas
that require immediate intervention. A general heuristic for this would be to compare the heat index to
typical body temperatures but inputs from public health experts would likely be needed. In these districts,
the following measures can be prioritized: Local public buildings such as community centres, libraries, and
schools can be converted into cooling centres where residents can find relief from extreme heat. Moreover,
districts with the highest vulnerability scores should be given water stations, portable fans, and cooling kits.
Furthermore, awareness campaigns and education on heat-related illnesses and preventative methods would
go a long way to further mitigate the risks of days of extreme heat.

In addition, the vulnerability index needs to be continuously updated based on real-time weather forecasts
and population variations. This can be achieved through making use of live temperature and humidity data
that can refine our heat index calculations hence improving the accuracy of the vulnerability score whilst
enabling dynamic risk assessments. Residents in high-risk areas could also receive SMS or app-based alerts
forecasting incoming heatwaves whilst informing them of safety measures to take. Finally, long-term strategies
should include increasing green spaces, implementing reflective roofing materials, and improving building
insulation to reduce indoor heat retention.

By incorporating these approaches, Birmingham can effectively use these vulnerability scores to minimize
the impact of heat-related health risks and ensure that resources can be distributed appropriately during
extreme weather events. The vulnerability score can be further improved by focusing on refining the model
by incorporating additional socio-economic factors, urban heat island effects, and physiological variations
among the population.

3.6 Strengths and weaknesses

Our model accurately determines per capita head consumption from the composition of dwelling class per
ward, which is a significant strength. Additionally, by leveraging our existing, sophisticated model from
question 1, we are able to achieve similar levels of versatility and we can thus inherit existing uncertainty and
sensitivity measures.
However, we do also inherit existing issues from question 1 and more approaches. One such inherited issue
is the lack of quantitative empirical data. Deploying any such models would necessitate more effective
calibration to real world typical specific heat capacities of buildings. Another could be the lack of uncertainty
quantification with weather data, relying on augmentation with pre-existing solutions for weather prediction.
A new shortcoming introduced downstream of our internal ODE model would be the assumption per capita
heat indices are obtained from people staying at home. People may venture outside where it is more or
less shaded, or go to public places like parks or shopping centres. Collation with more data rich land use
information would subsequently yield quite beneficial results, particularly in the city centrer.
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4 Conclusion

We examined the effect of heatwaves on cities and residential areas. Specifically, we modelled the internal
temperature fluctuation for 4 different dwelling types in Birmingham during the June 2022 heatwave. The
model predicted that maisonnettes would have the highest peak internal temperature, and that all housing
types would have a thermal inertia causing a lag between the peak ambient temperature and the peak internal
temperature.

We also modelled the increase in peak demand capacity for a forecast horizon of 20 years, particularly
examining the seasonality around the summer months. We conclude that June is consistently the month that
has the highest energy consumption. Additionally, we establish that the maximum demand increases over the
period of 20 years we predicted for.

Finally, we use predictions from our examination of internal temperature fluctuation in buildings (question 1)
to build a risk model that calculates the heat index in various municipalities of Birmingham. This risk model
will allow health officials to provide targeted support to communities

Our research could be improved by incorporating more granular architectural data, accounting for thermal
mass distribution of buildings and addressing uncertainties in weather data such as solar irradiation. The
SARIMAX model could benefit from the introduction of more relevant exogenous variables. For our risk
model, we could incorporate more diverse prediction factors.

5 Acknowledgements

Large language models (LLMs) were utilised for purely administrative tasks, such as assisting with data
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A Code Appendix

1

2 #arimax.py

3

4 import numpy as np

5 import pandas as pd

6 from statsmodels.tsa.statespace.sarimax import SARIMAX

7 import matplotlib.pyplot as plt

8 import q2_data_parser

9

10 data = pd.read_csv(’data/q2newdata.csv’, header =0)

11

12 exog_data = pd.read_csv(’data/q2_maxtemp_data.csv’, header=None , names=[’Year’, ’Date’, ’

TempF’, ’TempC ’])

13 exog_data[’Year’] = exog_data[’Year’]. astype(int)

14 exog_data.set_index(’Year’, inplace=True)

15

16 months = [’Jan’, ’Feb’, ’Mar’, ’Apr’, ’May’, ’Jun’, ’Jul’, ’Aug’, ’Sep’, ’Oct’, ’Nov’, ’Dec’

]

17 monthly_data = data.melt(id_vars =[’Year’], value_vars=months , var_name=’Month’, value_name=’

Consumption ’)

18 monthly_data[’Date’] = pd.to_datetime(monthly_data[’Year’]. astype(str) + ’-’ + monthly_data[

’Month’], format=’%Y-%b’)

19 monthly_data = monthly_data.sort_values(’Date’).set_index(’Date’)

20 monthly_data[’Year’] = monthly_data.index.year

21 monthly_data = monthly_data.merge(exog_data [[’TempC’]], left_on=’Year’, right_index=True ,

how=’left’)

22 monthly_data = monthly_data.drop(’Year’, axis =1)

23

24 model = SARIMAX(monthly_data[’Consumption ’], exog=monthly_data[’TempC’], order=(3, 3, 3),

seasonal_order =(1, 1, 1, 12))

25 model_fit = model.fit()

26 forecast_steps = 240

27 future_dates = pd.date_range(start=monthly_data.index [-1] + pd.DateOffset(months =1), periods

=forecast_steps , freq=’M’)

28 future_exog = pd.DataFrame ({

29 ’TempC’: [q2_data_parser.project_max_temperature(date.year) for date in future_dates]

30 }, index=future_dates)

31

32 forecast_result = model_fit.get_forecast(steps=forecast_steps , exog=future_exog)

33 forecast_baseline = forecast_result.predicted_mean

34 confidence_intervals = forecast_result.conf_int ()

35

36 updated_baseline_forecast = []

37 for date , consumption in forecast_baseline.items ():

38 year = date.year

39 updated_baseline_forecast.append ([date , consumption * q2_data_parser.project_population(

year)])

40 forecast_baseline = pd.Series(dict(updated_baseline_forecast))

41

42 total_consumption = []

43 for date , consumption in zip(monthly_data.index , monthly_data[’Consumption ’]):

44 year = date.year

45 total_consumption.append(consumption * q2_data_parser.project_population(year))

46 monthly_data[’Consumption ’] = total_consumption

47

48 print("------␣Forecasting␣Monthly␣Consumption␣with␣Max␣Temperature␣using␣SARIMAX␣------")

49 print("Confidence␣intervals␣for␣the␣baseline␣forecast:")

50 print(confidence_intervals)

51

52 plt.figure(figsize =(12, 6))

53 plt.plot(monthly_data.index , monthly_data[’Consumption ’], label=’Observed ’)

54 plt.plot(forecast_baseline.index , forecast_baseline , color=’red’, label=’Baseline␣Forecast ’)

55 plt.fill_between(forecast_baseline.index ,

56 confidence_intervals.iloc[:, 0],

57 confidence_intervals.iloc[:, 1],
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58 color=’pink’, alpha =0.3)

59 plt.title(’SARIMAX␣Forecast␣of␣Monthly␣Consumption␣with␣Max␣Temperature ’)

60 plt.xlabel(’Date’)

61 plt.ylabel(’Consumption␣(kWh)’)

62 plt.legend ()

63 plt.savefig(’monthly_forecast_plot_with_exog_q2.png’, dpi=300, bbox_inches=’tight’)

64

65 print("Forecast␣for␣the␣next␣12␣months␣(baseline):")

66 print(forecast_baseline.head (60))

67

68 # ---------------- Sensitivity Analysis ----------------

69 sensitivity_factors = [0.9, 1.0, 1.1]

70 sensitivity_forecasts = {}

71

72 for factor in sensitivity_factors:

73 scenario_exog = future_exog.copy()

74 scenario_exog[’TempC’] = scenario_exog[’TempC’] * factor

75

76 scenario_forecast_result = model_fit.get_forecast(steps=forecast_steps , exog=

scenario_exog)

77 scenario_forecast = scenario_forecast_result.predicted_mean

78

79 scenario_updated_forecast = []

80 for date , consumption in scenario_forecast.items ():

81 year = date.year

82 scenario_updated_forecast.append ([date , consumption * q2_data_parser.

project_population(year)])

83 sensitivity_forecasts[factor] = pd.Series(dict(scenario_updated_forecast))

84

85 plt.figure(figsize =(12, 6))

86 plt.plot(monthly_data.index , monthly_data[’Consumption ’], label=’Observed ’, color=’black’)

87 colors = {0.9: ’blue’, 1.0: ’red’, 1.1: ’green ’}

88 labels = {0.9: ’Forecast␣(-10%␣TempC)’, 1.0: ’Baseline␣Forecast ’, 1.1: ’Forecast␣(+10%␣TempC

)’}

89 for factor , forecast_series in sensitivity_forecasts.items ():

90 plt.plot(forecast_series.index , forecast_series , color=colors[factor], label=labels[

factor ])

91 plt.title(’Sensitivity␣Analysis:␣Forecast␣with␣Varying␣TempC␣Exogenous␣Input’)

92 plt.xlabel(’Date’)

93 plt.ylabel(’Consumption␣(kWh)’)

94 plt.legend ()

95 plt.savefig(’sensitivity_analysis_forecast_q2.png’, dpi=300, bbox_inches=’tight ’)

96 print("Sensitivity␣Analysis␣Forecast␣(first␣12␣months):")

97 for factor , series in sensitivity_forecasts.items():

98 print(f"\nScenario␣factor␣{factor }:")

99 print(series.head (12))

1

2 #data_parser.py

3

4 import pandas as pd

5

6 class DataParser:

7 def __init__(self , path , columns , process_func=lambda x: x):

8 self.path = path

9 self.data = pd.read_csv(self.path)

10 self.data = process_func(self.data , columns)

11

12 def get_data_from_column(self , id, column):

13 return self.data[column ]. values[id]

14

15 def process_data(data , columns):

16 data = data[columns]

17 data = data.dropna ()

18 return data

19

20 def load_data(columns , path):

21 return DataParser(path , columns , process_func=process_data)
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22

23 columns = [’Time’, ’Temperature␣(celsius)’, ’Wind␣Speed␣(miles␣per␣hour)’, ’Humidity␣(%)’]

1 #model_3.py

2 from pythermalcomfort.models import heat_index_lu

3 import ode

4 import pandas as pd

5 import numpy as np

6 from scipy.integrate import odeint

7 from solarpy import irradiance_on_plane

8 import matplotlib.pyplot as plt

9 from datetime import datetime , timedelta

10 from SALib.analyze import sobol

11 from SALib.sample import saltelli

12 import data_parser

13

14 # Read the CSV file and print its head

15 data = pd.read_csv(’data/q3data.csv’)

16 print(data.head())

17

18

19 # 1915 style house

20 t_1915 = odeint(ode.model , ode.T_in_0 , ode.t_hours , args=(ode.Cp_1915 , ode.

heat_loss_area_1915 , ode.shadyness_1915 , ode.Ua_1915))

21 heat_indices_1915 = []

22 for a, x in enumerate(t_1915):

23 humidity = float(ode.parser.data[’Humidity␣(%)’]. values[a])

24 heat_indices_1915.append(heat_index_lu(tdb=x[0], rh=humidity).hi)

25 max_1915 = max(heat_indices_1915)

26 print("Max␣HI␣for␣1915␣style␣house", max_1915)

27

28 # 1940 style house (this is the style we will perform sensitivity analysis on)

29 t_1940 = odeint(ode.model , ode.T_in_0 , ode.t_hours , args=(ode.Cp_1940 , ode.

heat_loss_area_1940 , ode.shadyness_1940 , ode.Ua_1940))

30 heat_indices_1940 = []

31 for a, x in enumerate(t_1940):

32 humidity = float(ode.parser.data[’Humidity␣(%)’]. values[a])

33 heat_indices_1940.append(heat_index_lu(tdb=x[0], rh=humidity).hi)

34 max_1940 = max(heat_indices_1940)

35 print("Max␣HI␣for␣1940␣style␣house", max_1940)

36

37 # 1980 style house

38 t_1980 = odeint(ode.model , ode.T_in_0 , ode.t_hours , args=(ode.Cp_1980 , ode.

heat_loss_area_1980 , ode.shadyness_1980 , ode.Ua_1980))

39 heat_indices_1980 = []

40 for a, x in enumerate(t_1980):

41 humidity = float(ode.parser.data[’Humidity␣(%)’]. values[a])

42 heat_indices_1980.append(heat_index_lu(tdb=x[0], rh=humidity).hi)

43 max_1980 = max(heat_indices_1980)

44 print("Max␣HI␣for␣1980␣style␣house", max_1980)

45

46 # 2010 style house

47 t_2010 = odeint(ode.model , ode.T_in_0 , ode.t_hours , args=(ode.Cp_2010 , ode.

heat_loss_area_2010 , ode.shadyness_2010 , ode.Ua_2010))

48 heat_indices_2010 = []

49 for a, x in enumerate(t_2010):

50 humidity = float(ode.parser.data[’Humidity␣(%)’]. values[a])

51 heat_indices_2010.append(heat_index_lu(tdb=x[0], rh=humidity).hi)

52 max_2010 = max(heat_indices_2010)

53 print("Max␣HI␣for␣2010␣style␣house", max_2010)

54

55 csv2DArray = [

56 list(map(float , line.strip ().strip(",").split(",")[1:]))

57 for line in open("data/q3data.csv").readlines ()[1:]

58 ]

59

60 houseColumns = [2, 3, 2, 3]

61
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62 regions = [] # list of dictionaries

63 for row in csv2DArray:

64 iStart = 0

65 populationPerType = []

66 for ind in houseColumns:

67 iEnd = iStart + ind

68 count = sum([row[iStart + i] * ((( iStart + i) % 5) + 1) for i in range(ind)])

69 populationPerType.append(count * row[-2])

70 iStart = iEnd

71 official_total_population = row[-1]

72 regions.append ({

73 ’pop_per_type ’: populationPerType ,

74 ’official_total ’: official_total_population

75 })

76

77 per_capita_heat_index = []

78 for region in regions:

79 pop_per_type = region[’pop_per_type ’]

80 total_heat_index = (max_1940 * pop_per_type [0] +

81 max_1915 * pop_per_type [1] +

82 max_1980 * pop_per_type [2] +

83 max_2010 * pop_per_type [3])

84 per_capita_heat_index.append(total_heat_index / region[’official_total ’])

85 print("Raw␣housing␣counts␣per␣type:", pop_per_type)

86 print("Official␣total␣population:", region[’official_total ’])

87 print("Total␣heat␣index␣for␣region:", total_heat_index)

88 print("Per␣capita␣heat␣index␣for␣region:", per_capita_heat_index , "\n")

89

90 regions_list = [

91 "Birmingham␣Edgbaston",

92 "Birmingham␣Erdington",

93 "Birmingham␣Hall␣Green␣and␣Moseley",

94 "Birmingham␣Hodge␣Hill␣and␣Solihull␣North",

95 "Birmingham␣Ladywood",

96 "Birmingham␣Northfield",

97 "Birmingham␣Perry␣Barr",

98 "Birmingham␣Selly␣Oak",

99 "Birmingham␣Yardley",

100 "Sutton␣Coldfield"

101 ]

102

103 plt.figure(figsize =(10, 6))

104 plt.bar(regions_list , per_capita_heat_index , color=’skyblue ’)

105 plt.xlabel(’Regions ’)

106 plt.ylabel(’Per␣Capita␣Max␣Heat␣Index’)

107 plt.title(’Per␣Capita␣Heat␣Index␣for␣Different␣Regions ’)

108 plt.xticks(rotation =45, ha=’right ’)

109 plt.tight_layout ()

110 plt.savefig(’q3_bar_chart.png’)

111

112

113 # ---------------------------------------------------------------------

114 def model_max_hi(params):

115 Cp, heat_loss_area , shadyness , Ua = params

116 t_model = odeint(ode.model , ode.T_in_0 , ode.t_hours , args=(Cp , heat_loss_area , shadyness

, Ua))

117 hi_values = []

118 for a, x in enumerate(t_model):

119 humidity = float(ode.parser.data[’Humidity␣(%)’]. values[a])

120 hi = heat_index_lu(tdb=x[0], rh=humidity).hi

121 hi_values.append(hi)

122 return max(hi_values)

123

124 nominal_params = [ode.Cp_1940 , ode.heat_loss_area_1940 , ode.shadyness_1940 , ode.Ua_1940]

125 problem = {

126 ’num_vars ’: 4,

127 ’names’: [’Cp’, ’heat_loss_area ’, ’shadyness ’, ’Ua’],

128 ’bounds ’: [[0.8 * param , 1.2 * param] for param in nominal_params]
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129 }

130

131 param_values = saltelli.sample(problem , 128, calc_second_order=True)

132

133 Y = np.array([ model_max_hi(params) for params in param_values ])

134

135 # Perform Sobol sensitivity analysis on the model output.

136 Si = sobol.analyze(problem , Y, print_to_console=True)

137

138 print("\nSensitivity␣Analysis␣Results␣for␣1940␣Style␣House:")

139 print(Si)

140

141 def model_max_hi_1915(params):

142 Cp, heat_loss_area , shadyness , Ua = params

143 t_model = odeint(ode.model , ode.T_in_0 , ode.t_hours , args=(Cp , heat_loss_area , shadyness

, Ua))

144 hi_values = []

145 for a, x in enumerate(t_model):

146 humidity = float(ode.parser.data[’Humidity␣(%)’]. values[a])

147 hi_values.append(heat_index_lu(tdb=x[0], rh=humidity).hi)

148 return max(hi_values)

149

150 nominal_params_1915 = [ode.Cp_1915 , ode.heat_loss_area_1915 , ode.shadyness_1915 , ode.Ua_1915

]

151 problem_1915 = {

152 ’num_vars ’: 4,

153 ’names’: [’Cp’, ’heat_loss_area ’, ’shadyness ’, ’Ua’],

154 ’bounds ’: [[0.8 * p, 1.2 * p] for p in nominal_params_1915]

155 }

156 param_values_1915 = saltelli.sample(problem_1915 , 128, calc_second_order=True)

157 Y_1915 = np.array([ model_max_hi_1915(params) for params in param_values_1915 ])

158 Si_1915 = sobol.analyze(problem_1915 , Y_1915 , print_to_console=True)

159 print("\nSensitivity␣Analysis␣Results␣for␣1915␣Style␣House:")

160 print(Si_1915)

161

162 # Sensitivity Analysis for the 1980 Style House

163 def model_max_hi_1980(params):

164 Cp, heat_loss_area , shadyness , Ua = params

165 t_model = odeint(ode.model , ode.T_in_0 , ode.t_hours , args=(Cp , heat_loss_area , shadyness

, Ua))

166 hi_values = []

167 for a, x in enumerate(t_model):

168 humidity = float(ode.parser.data[’Humidity␣(%)’]. values[a])

169 hi_values.append(heat_index_lu(tdb=x[0], rh=humidity).hi)

170 return max(hi_values)

171

172 nominal_params_1980 = [ode.Cp_1980 , ode.heat_loss_area_1980 , ode.shadyness_1980 , ode.Ua_1980

]

173 problem_1980 = {

174 ’num_vars ’: 4,

175 ’names’: [’Cp’, ’heat_loss_area ’, ’shadyness ’, ’Ua’],

176 ’bounds ’: [[0.8 * p, 1.2 * p] for p in nominal_params_1980]

177 }

178 param_values_1980 = saltelli.sample(problem_1980 , 128, calc_second_order=True)

179 Y_1980 = np.array([ model_max_hi_1980(params) for params in param_values_1980 ])

180 Si_1980 = sobol.analyze(problem_1980 , Y_1980 , print_to_console=True)

181 print("\nSensitivity␣Analysis␣Results␣for␣1980␣Style␣House:")

182 print(Si_1980)

183

184 # Sensitivity Analysis for the 2010 Style House

185 def model_max_hi_2010(params):

186 Cp, heat_loss_area , shadyness , Ua = params

187 t_model = odeint(ode.model , ode.T_in_0 , ode.t_hours , args=(Cp , heat_loss_area , shadyness

, Ua))

188 hi_values = []

189 for a, x in enumerate(t_model):

190 humidity = float(ode.parser.data[’Humidity␣(%)’]. values[a])

191 hi_values.append(heat_index_lu(tdb=x[0], rh=humidity).hi)



Page 22 Team # 17***

192 return max(hi_values)

193

194 nominal_params_2010 = [ode.Cp_2010 , ode.heat_loss_area_2010 , ode.shadyness_2010 , ode.Ua_2010

]

195 problem_2010 = {

196 ’num_vars ’: 4,

197 ’names’: [’Cp’, ’heat_loss_area ’, ’shadyness ’, ’Ua’],

198 ’bounds ’: [[0.8 * p, 1.2 * p] for p in nominal_params_2010]

199 }

200 param_values_2010 = saltelli.sample(problem_2010 , 128, calc_second_order=True)

201 Y_2010 = np.array([ model_max_hi_2010(params) for params in param_values_2010 ])

202 Si_2010 = sobol.analyze(problem_2010 , Y_2010 , print_to_console=True)

203 print("\nSensitivity␣Analysis␣Results␣for␣2010␣Style␣House:")

204 print(Si_2010)

1 #ode.py

2 import numpy as np

3 from scipy.integrate import odeint

4 from solarpy import irradiance_on_plane

5 import matplotlib.pyplot as plt

6 from datetime import datetime , timedelta

7 from SALib.analyze import sobol

8 from SALib.sample import saltelli

9 import data_parser

10

11 # --------------------------------------------------------

12 # 1) Define building properties in consistent units

13 # --------------------------------------------------------

14

15 # 1915 Terraced House

16 u_value_1915 = 2.1 # W/ m K (empirical value for solid brick walls)

17 heat_loss_area_1915 = 139 # m (approximate area based on size)

18 Cp_1915 = 3.5 * 3600000

19 Ua_1915 = u_value_1915 * heat_loss_area_1915 # [J/( h K )]

20 shadyness_1915 = 0.7

21

22 # 2010 Maisonette

23 u_value_2010 = 0.31 # W/ m K (empirical value for insulated walls)

24 heat_loss_area_2010 = 74 # m (approximate area based on size)

25 Cp_2010 = 3.5 * 3600000

26 Ua_2010 = u_value_2010 * heat_loss_area_2010

27 shadyness_2010 = 0.5

28

29 # 1980 Flat

30 heat_loss_area_1980 = 59 # m (approximate area based on size)

31 u_value_1980 = 0.74 # W/ m K (effective conductivity for cavity wall)

32 Cp_1980 = 3.5 * 3600000

33 Ua_1980 = u_value_1980 * heat_loss_area_1980

34 shadyness_1980 = 0.5

35

36 # 1940 Semi -detached House

37 u_value_1940 = 1.8 # W/ m K (empirical value for transition -era solid walls)

38 heat_loss_area_1940 = 96 # m (approximate area based on size)

39 Cp_1940 = 3.5 * 3600000

40 Ua_1940 = u_value_1940 * heat_loss_area_1940

41 shadyness_1940 = 0.7

42

43

44 # # 1980 Flat

45 # wall_mass_1980 = 3600

46 # specific_heat_capacity_brick_1980 = 980

47 # heat_loss_area_1980 = 59

48 # u_value_1980 = 1.7 * heat_loss_area_1980

49 # shadyness_1980 = 2/3

50 # # Cp_1980 = wall_mass_1980 * specific_heat_capacity_brick_1980

51 # Cp_1980 = 3.5 * 3600000

52 # Ua_1980 = float(u_value_1980 * heat_loss_area_1980 * 3600)

53
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54 transmittance = 0.7

55

56 # --------------------------------------------------------

57 # 2) Ambient temperature function

58 # --------------------------------------------------------

59

60 parser = data_parser.load_data(data_parser.columns , "data/q1data.csv")

61

62 def T_amb(t):

63 idx = min(int(t), 23)

64 return float(parser.get_data_from_column(idx , ’Temperature␣(celsius)’))

65

66 # --------------------------------------------------------

67 # 3) Solar gain function

68 # --------------------------------------------------------

69

70 # solarpy.irradiance_on_plane (...) returns W/ m (i.e., J/ s m ).

71 # We multiply by cross_section_area ( m ) to get W,

72 # then by 3600 to get J/h.

73 latitude = 52.4862

74 altitude = 0

75 vnorm = np.array([0, 0, -1]) # Horizontal plane (pointing up)

76

77 def Q_solar(t, cross_section_area):

78 start_time = datetime (2022, 7, 19, 0, 0)

79 current_time = start_time + timedelta(hours=int(t))

80 irradiance = irradiance_on_plane(vnorm , altitude , current_time , latitude) # [W/ m ]

81 return float(irradiance * cross_section_area) * 3600 * transmittance

82

83 # --------------------------------------------------------

84 # 4) U_a function

85 # --------------------------------------------------------

86

87 def get_windspeed(t):

88 idx = min(int(t), 23)

89 return float(parser.get_data_from_column(idx , ’Wind␣Speed␣(miles␣per␣hour)’))

90

91 def U_a(t, heat_loss_area , u_value):

92 k_wind = 0.15 # Empirical convection coefficient [W/( m K ) per m/s]

93 wind_speed = get_windspeed(t) * 0.447 # Convert mph to m/s

94 convective_U = k_wind * wind_speed * heat_loss_area * 3600 # Convert to J/( h K )

95 return (u_value * heat_loss_area * 3600) + convective_U

96

97

98 # --------------------------------------------------------

99 # 5) ODE model

100 # --------------------------------------------------------

101

102 # T_in is indoor temperature ( C ).

103 # t is time in hours.

104 # C_p is building heat capacity in [J/K].

105 # U_a is building conduction in [J/( h K )].

106 # Q_solar(t, area) returns solar gain in [J/h].

107 #

108 # net energy flow [J/h] / heat capacity [J/K] => dT/dt [K/h].

109 def model(T_in , t, C_p , area , shadyness , u_value):

110 conduction_loss = U_a(t, area , u_value) * (T_in - T_amb(t)) # [J/h]

111 solar_gain = Q_solar(t, area) * shadyness # [J/h]

112 dTdt = (-conduction_loss + solar_gain) / C_p # [K/h]

113 return dTdt

114 # --------------------------------------------------------

115 # 6) Solve

116 # --------------------------------------------------------

117

118 T_in_0 = 20 # Initial indoor temperature ( C )

119 t_hours = np.linspace(0, 23, 24) # 24 hours , in hours

120 T_in_1980 = odeint(model , T_in_0 , t_hours , args=(Cp_1980 , heat_loss_area_1980 ,

shadyness_1980 , Ua_1980))
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121 T_in_1915 = odeint(model , T_in_0 , t_hours , args=(Cp_1915 , heat_loss_area_1915 ,

shadyness_1915 , Ua_1915))

122 T_in_2010 = odeint(model , T_in_0 , t_hours , args=(Cp_2010 , heat_loss_area_2010 ,

shadyness_2010 , Ua_2010))

123 T_in_1940 = odeint(model , T_in_0 , t_hours , args=(Cp_1940 , heat_loss_area_1940 ,

shadyness_1940 , Ua_1940))

124

125 T_amb_values = [T_amb(th) for th in t_hours]

126

127 # --------------------------------------------------------

128 # 7) Plot results

129 # --------------------------------------------------------

130

131 plt.figure(figsize =(10 ,6), dpi =500)

132 plt.plot(t_hours , T_in_1980 , label=’Indoor␣Temperature␣(Flat)’, color=’blue’)

133 plt.plot(t_hours , T_in_1915 , label=’Indoor␣Temperature␣(Terraced␣House)’, color=’green ’)

134 plt.plot(t_hours , T_in_2010 , label=’Indoor␣Temperature␣(Maisonette)’, color=’red’)

135 plt.plot(t_hours , T_in_1940 , label=’Indoor␣Temperature␣(Semi -detached␣House)’, color=’purple

’)

136 plt.plot(t_hours , T_amb_values , label=’Ambient␣Temperature ’, color=’orange ’)

137 plt.xlabel(’Time␣(hours)’)

138 plt.ylabel(’Temperature␣( C )’)

139 plt.title(’Indoor␣Temperature␣During␣Heatwave ’)

140 plt.legend ()

141 plt.grid(True)

142 plt.savefig("indoor_temperature_model.jpg", dpi =300)

1 #ode_sobol.py

2 import numpy as np

3 from scipy.integrate import odeint

4 from solarpy import irradiance_on_plane

5 import matplotlib.pyplot as plt

6 from datetime import datetime , timedelta

7 from SALib.analyze import sobol

8 from SALib.sample import saltelli

9 import data_parser

10

11 # --------------------------------------------------------

12 # 1) Building & simulation data (using the 1980 flat as an example)

13 # --------------------------------------------------------

14

15 transmittance = 0.7

16 parser = data_parser.load_data(data_parser.columns , "data/q1data.csv")

17 latitude = 52.4862

18 altitude = 0

19 vnorm = np.array([0, 0, -1]) # Horizontal plane (pointing up)

20

21 def T_amb(t):

22 """ Return the ambient temperature at hour t ( C )."""

23 idx = min(int(t), 23)

24 return float(parser.get_data_from_column(idx , ’Temperature␣(celsius)’))

25

26 def get_windspeed(t):

27 """ Return the wind speed at hour t (in m/s)."""

28 idx = min(int(t), 23)

29 return float(parser.get_data_from_column(idx , ’Wind␣Speed␣(miles␣per␣hour)’))

30

31 # --------------------------------------------------------

32 # 2) Redefine functions to accept uncertain parameters

33 # --------------------------------------------------------

34

35 def U_a_sobol(t, area , u_value):

36 """

37 Calculate the overall conduction coefficient U_a at time t.

38 Combines a constant conduction term (scaled by u_value and area) with a convective term.

39 """

40 k_wind = 0.15 # Empirical convection coefficient [W/( m K ) per m/s]

41 wind_speed = get_windspeed(t) * 0.447 # Convert mph to m/s
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42 convective_U = k_wind * wind_speed * area * 3600 # [J/( h K )]

43 return (u_value * area * 3600) + convective_U

44

45 def Q_solar_sobol(t, area , transmittance):

46 """

47 Calculate the solar gain at time t.

48 The function computes irradiance on a horizontal plane (vnorm) and scales it by area ,

time , and transmittance.

49 """

50 start_time = datetime (2022, 7, 19, 0, 0)

51 current_time = start_time + timedelta(hours=int(t))

52 irradiance = irradiance_on_plane(vnorm , altitude , current_time , latitude) # [W/ m ]

53 return float(irradiance * area) * 3600 * transmittance # [J/h]

54

55 def model_sobol(T_in , t, Cp, area , shadyness , u_value):

56 """ ODE model for the indoor temperature."""

57 conduction_loss = U_a_sobol(t, area , u_value) * (T_in - T_amb(t)) # [J/h]

58 solar_gain = Q_solar_sobol(t, area , transmittance) * shadyness # [J/h]

59 dTdt = (-conduction_loss + solar_gain) / Cp # [K/h]

60 return dTdt

61

62 def simulate_indoor_temperature(params):

63 """

64 Runs the simulation for one set of parameters and returns the final indoor temperature.

65 """

66 Cp, area , shadyness , u_value = params

67 T_in_0 = 20 # Initial indoor temperature ( C ) - same as original ODE

68 t_hours = np.linspace(0, 23, 24) # 24-hour period

69 T_in = odeint(model_sobol , T_in_0 , t_hours , args=(Cp , area , shadyness , u_value))

70 return T_in[-1] # Return temperature at the final time

71

72

73 problem = {

74 ’num_vars ’: 4,

75 ’names’: [’Cp’, ’area’, ’shadyness ’, ’u_value ’],

76 ’bounds ’: [

77 [1e7, 5e7], # Cp: Building heat capacity (J/K) - Adjusted bounds

78 [50, 150], # area: Heat loss / cross -sectional area ( m ) - Adjusted bounds

79 [0.3, 0.9], # shadyness: Solar gain modifier (dimensionless) - Adjusted bounds

80 [0.5, 2.5] # u_value: Conduction coefficient (W/ m K ) - Adjusted bounds

81 ]

82 }

83

84 # --------------------------------------------------------

85 # 4) Generate samples and run the model

86 # --------------------------------------------------------

87

88 param_values = saltelli.sample(problem , 128)

89

90 Y = np.zeros([ param_values.shape [0]])

91

92 for i, params in enumerate(param_values):

93 Y[i] = simulate_indoor_temperature(params)

94

95 # --------------------------------------------------------

96 # 5) Perform Sobol sensitivity analysis

97 # --------------------------------------------------------

98

99 Si = sobol.analyze(problem , Y, print_to_console=True)

100 print("Sobol␣Sensitivity␣Indices:")

101 print(Si)

1 #q2_data_parser.py

2 import numpy as np

3 from sklearn.linear_model import LinearRegression

4 import matplotlib.pyplot as plt

5

6 def project_population(target_year , should_plot=False):
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7 population_data = [

8 (2022, 1157603) ,

9 (2021, 1143285) ,

10 (2020, 1140525) ,

11 (2019, 1141816) ,

12 (2018, 1141374) ,

13 (2017, 1137123) ,

14 (2016, 1128077) ,

15 (2015, 1112950) ,

16 (2014, 1101521) ,

17 (2013, 1092190)

18 ]

19

20 years = np.array([year for year , _ in population_data ]).reshape(-1, 1)

21 populations = np.array ([ population for _, population in population_data ])

22

23 model = LinearRegression ()

24 model.fit(years , populations)

25

26 extended_years = np.arange(years.min() -1, target_year + 1).reshape(-1, 1)

27 predicted_populations = model.predict(extended_years)

28

29 target_population = model.predict(np.array ([[ target_year ]]))[0]

30

31 if should_plot:

32 plt.scatter(years , populations , color=’blue’, label=’Actual␣Population ’)

33 plt.plot(extended_years , predicted_populations , color=’red’, label=’Linear␣

Regression ’)

34 plt.scatter ([ target_year], [target_population], color=’green ’, label=f’Projected␣

Population␣({ target_year })’)

35 plt.xlabel(’Year’)

36 plt.ylabel(’Population ’)

37 plt.title(’Population␣Over␣Years’)

38 plt.legend ()

39 plt.savefig(’population_trend.png’)

40

41 return int(target_population)

42

43 def project_max_temperature(target_year , should_plot=False):

44 temperature_data = [

45 (2022, 37.2),

46 (2021, 30),

47 (2020, 33.9),

48 (2019, 33.9),

49 (2018, 31.1),

50 (2017, 30),

51 (2016, 31.1),

52 (2015, 32.2),

53 (2014, 27.8),

54 (2013, 31.1)

55 ]

56

57 years = np.array([year for year , _ in temperature_data ]).reshape(-1, 1)

58 temperatures = np.array([ temperature for _, temperature in temperature_data ])

59

60 model = LinearRegression ()

61 model.fit(years , temperatures)

62

63 extended_years = np.arange(years.min(), target_year + 1).reshape(-1, 1)

64 predicted_temperatures = model.predict(extended_years)

65 target_temperature = model.predict(np.array ([[ target_year ]]))[0]

66

67 if should_plot:

68 plt.scatter(years , temperatures , color=’blue’, label=’Actual␣Temperature ’)

69 plt.plot(extended_years , predicted_temperatures , color=’red’, label=’Linear␣

Regression ’)

70 plt.scatter ([ target_year], [target_temperature], color=’green ’, label=f’Projected␣

Temperature␣({ target_year })’)
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71 plt.plot([years.min(), target_year], [predicted_temperatures [0], target_temperature

], color=’red’, linestyle=’--’)

72 plt.xlabel(’Year’)

73 plt.ylabel(’Temperature␣( C )’)

74 plt.title(’Max␣Temperature␣Over␣Years’)

75 plt.legend ()

76 plt.savefig(’temperature_trend.png’)

77

78 return target_temperature

79

80 # project_max_temperature (2040, True)
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