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Keep on Trucking: US Big Rigs Turnover from Diesel to Electric

Executive Summary
In our increasingly interconnected nation, the transportation sector is one of its

largest and most important—semi-trucks in particular carry nearly everything we buy or
build. Despite the trucking industry’s prevalence, it is far from efficient, accounting for
over 12% of fuel purchased in the US [1]. The successful penetration of electric cars into
the automobile market has underscored the trucking industry as a potential next target for
this transition. With the need to analyze the necessary infrastructure for semi-truck elec-
trification, as well as projected electric semi usage, our team seeks to provide a report with
mathematically-founded insights on this issue.

Since the availability of charging infrastructure affects its usage, we first strove to
analyze the electric semi’s potential for market penetration. By assuming that there are no
infrastructural barriers to usage, we projected the percentage of semis that will be electric
over the next two decades by using a generalized Bass diffusion model, which we scaled us-
ing four external factors: cost per mile, total vehicle cost, total vehicle sales, and driving
range. With constants obtained via curve-fitting to historical electric car sales, we applied
our Bass model to electric semis. We found that the percentage of semis that will be elec-
tric in 2025, 2030, and 2040 are 0.16%, 0.84%, and 12.5%, respectively, and that there is a
projected rapid growth period immediately after 2040.

We then determined the necessary infrastructure to support the fully electric long-
haul fleet that was previously assumed. To determine the number of charging stations
needed per corridor, we first placed a station at every interstate highway intersection. We
then calculated stations needed between intersections by accounting for battery longevity
and temperature dependence of its capacity, and single-charge electric semi range. Then,
to determine chargers needed per station, we modeled each station as a M/G/k multi-
server queue to determine k, the number of chargers that would yield at most a 13-minute
wait time. We applied our model to five corridors: San Antonio to/from New Orleans,
Minneapolis—Chicago, Boston—Harrisburg, Jacksonville—Washington, DC, and Los An-
geles—San Francisco. Our model indicated that these routes would respectively require 10,
10, 11, 16, and 10 stations; with an average of 27, 24, 17, 14, and 21 chargers per station.

As suggested by the previous part, the transition to electric trucking requires in-
frastructure installation. We thus developed a metric to rank routes in order of when they
should be developed based on projected public support of the transition around each cor-
ridor. Percentage support was modeled using economic and environmental factors, and we
took a weighted sum of the percent support, construction time, and anticipated route us-
age. By solving a differential equation, the model found the time at which each weighted
sum was greater than a specific threshold, and ranked these times least to greatest for
each of the 5 corridors. Our model output suggests that the Minneapolis—Chicago and
San Antonio—New Orleans corridors should be the first two targeted for development.

While the electrification of the semi-truck industry is still a relatively novel concept
in 2020, recent developments by Tesla and other auto companies are making this transition
a tangible reality. As the trucking industry readies itself for this economic, environmental,
and infrastructural transformation, we believe the models outlined in our paper provide
valuable insight into the numerous factors at play.
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1 Introduction

This section delineates the components of the modeling problem and their objectives. Global
assumptions applying to the entire modeling process are also listed.

1.1 Restatement of the Problem

The problem we are tasked with addressing is as follows:

1. Assuming that all necessary electric semi infrastructure is already in place for a seam-
less transition to fully electric fleets, create a mathematical model to predict the per-
centage of semis that will be electric in 5, 10, and 20 years from 2020.

2. Create a model that determines the number of stations needed along a given route,
as well as the number of chargers needed at each station, to ensure the current vol-
ume of single-driver, long-haul traffic if all trucks were electric. Demonstrate the
model on the following five trucking corridors: San Antonio, TX to/from New Or-
leans, LA; Minneapolis, MN to/from Chicago, IL; Boston, MA to/from Harrisburg,
PA; Jacksonville, FL to/from Washington, DC; Los Angeles, CA to/from San Fran-
cisco, CA.

3. Develop a ranking system to determine which trucking corridors should be targeted
for development first, based on factors such as the amount of required infrastructure
from Part II, community motivation for transition, cost, anticipated usage, route
length, or other factors. Demonstrate the model by ranking the five trucking corri-
dors in Part II.

1.2 Global Assumptions

1. The transportation industry will not have any major technological advances that de-
tracts from the appeal of electric automobiles. It is unreasonable to assume that a
new ground-breaking invention will occur.

2. Companies that build electrical vehicles will continue to build infrastructure to sup-
port them. It is a reasonable to assume these companies will continue to develop
their technology and products, and more infrastructure needs to be built to support
this.

2 Part 1: Shape Up or Ship Out

There are currently around 1.7 million semi-trucks in the United States that altogether
travel an estimated 150 billion miles annually on diesel fuel. Diesel semis not only account
for more than 12% of the fuel purchased in the US but also exhibit extremely poor fuel
efficiency, making a transition to electric trucks an attractive prospect [1]. This section
outlines a mathematical model for projecting the percentage of semis in the US that are
electric in 2025, 2030, and 2040.
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2.1 Assumptions

1. All necessary infrastructure for a fully electric truck industry is already in place.
This is a given assumption in the creation of our model, and allows the model to
measure the usage potential of electric semis in the absence of infrastructural bar-
riers.

2. The transition from diesel to electric semi-trucks can be modeled by a modified Bass
diffusion model. Bass diffusion models are typically used to represent the process of
how new products, particularly technologies, are adopted in a population over time
[2].

3. The relative importance of external factors in the transition from diesel to electric
semis can be approximated by their relative importances in the transition from gaso-
line/diesel to electric cars. Since electric semi-trucks have yet to become widely used
on roads, there is insufficient data to predict future trends. Thus, it is reasonable to
assume that the adoption of electric semis will be motivated by similar factors as the
adoption of electric cars, for which data is available for longer time periods.

4. The relative cost per mile of diesel and electric vehicles impacts the number of elec-
tric vehicles purchased. If the operational (per mile) cost of an electric vehicle is sig-
nificantly greater than that of its diesel counterpart, electric vehicles are logically less
likely to be adopted.

5. The relative total vehicle cost of diesel and electric vehicles impacts the number of
electric vehicles purchased. If an electric vehicle costs significantly more (including
its battery costs) than its diesel counterpart, electric vehicles are logically less likely
to be adopted.

6. The relative vehicle range of diesel and electric vehicles impacts the number of elec-
tric vehicles purchased. If the single-charge range of an electric vehicle is significantly
less than the range of its fully filled diesel counterpart, electric vehicles are logically
less likely to be adopted.

7. The total vehicle sales per year impacts the number of electric vehicles purchased.
If the total vehicle sales, including both diesel and electric vehicles, is particularly
low, this typically indicates a recession in the vehicle industry, and it is reasonable to
expect a decline in electric vehicles purchased.

8. The cost per mile, total vehicle cost, and driving range of both diesel and electric
vehicles are approximately constant over a 20-year period. This assumption is rea-
sonable for diesel vehicles because their technological development will be relatively
stagnant over this time duration, and gasoline prices cannot be viably predicted.
While this assumption is not technically accurate for electric vehicles, it is necessary
due to the dearth of historic data on their costs and driving range.
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2.2 Model Development

The analysis of how populations adopt novel products and technologies over time is a
highly complex phenomenon, but can be represented by diffusion of innovation models
that provide simplified mathematical representations of the adoption process’ main charac-
teristics. One such diffusion of innovation model is the Bass diffusion model, a widely-used
technique in technology forecasting that is therefore applicable for modeling adoption of
the technology of electric semis over time [2].
The generalized Bass model describes the fraction of adoption f(t), which is defined as the
number of adopters at time t out of the total number of eventual adopters. In the below
equation, parameter p describes adoption of a new technology by innovators, while q de-
scribes adoption by imitators:

df

dt
= (1− f(t)) · (p− q · f(t)) · x(t) (1)

where x(t) is a scaling function that is dependent on external factors, which are chosen to
be specific to the product or technology being modeled. x(t) is further defined as follows
[3]:

x(t) = 1 +
α1 · x′1(t1)
x1(t0)

+
α2 · x′2(t2)
x2(t0)

+ . . . +
αn · x′n(tn)

xn(t0)
(2)

Each xi represents an external factor. As defined in assumptions 4, 5, 6, and 7, the ex-
ternal factors affecting adoption of electric semi-trucks are the cost per mile, total vehicle
cost, total vehicle sales, and driving range, corresponding to variables x1 through x4, re-
spectively. x1, x2, and x4 represent comparisons between values for diesel and electric ve-
hicles and are thus represented by ratios of the electric vehicle value to the diesel vehicle
value, as summarized in Table 2.2.1. On the other hand, x3 is meant to track the overall
state of the automobile industry and is thus not expressed as a ratio. The integrated form
of the overall scaling function x(t) is given below:

x(t) = 1 + α1 · ln
(
ct
cc

)
+ α2 · ln

(
tt
tc

)
+ α3 · ln (s) + α4 · ln

(
rt
rc

)
(3)

Additionally, the integrated form of the Bass model differential equation is as follows:

F (t) =
1− e−(p+q)X(t)

1 + p
q
e−(p+q)X(t)

(4)
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Table 2.2.1: Definitions and Values for Constants and Variables in Modified
Bass Model

Symbol Definition Value
p Describes adoption due to innovators TBD via curve fitting
q Describes adoption due to imitators TBD via curve fitting
α1 Weight for fuel cost per mile TBD via curve fitting
α2 Weight for total vehicle cost TBD via curve fitting
α3 Weight for vehicle sales TBD via curve fitting
α4 Weight for driving range TBD via curve fitting
ce Cost of electricity per mile for a electric car $0.04
cd Cost of electricity per mile for a gasoline car $0.37
te Total cost of electric car $55,600
td Total cost of gasoline car $36,718
s Total car sales Variable
re Driving range in miles of electric car 200 miles
rd Driving range in miles of gasoline car 350 miles

As per assumption 3, we model the adoption of electric semi-trucks by comparing the driv-
ing factors of the transition to those of the adoption of electric personal cars. Thus, the
constants were calculated using values for diesel- and electric-powered automobiles, and
the proportion of electric cars out of all cars each year from 2011 to 2019 was obtained as
follows [4]:

%EV =
Number of electric cars

Number of total cars
(5)

The values obtained from Equation 4 were plotted and are represented by the red dots
in Figure 2.2.1. Then, Equation 1 was plotted and fit to the electric car proportion data
using the curvefit function of the Python library scipy, which implements a least-squares
curve-fitting procedure (bass.py). The resulting fitted curve is shown below, and had an
R2 value of 0.9975, indicating that the curve fit the data well.
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Figure 2.2.1: Bass Diffusion Model Fit to Historical Electric Car Data

Since the curve was fit to the data by changing the value of constants p, q, and α1 through
α4, we obtained the values for these as reported in Table 2.2.2.

Table 2.2.2: Constant Values for Bass Model
Constants Value

α1 5.12831681
α2 15.1822397
α3 1.29455132
α4 0.695236647
p −0.000125231319
q 0.355918396

2.3 Results

To apply the values of EV (electric vehicle) proportions obtained from curve-fitting to the
adoption of electric semi-trucks beginning in 2020, we shift the starting time of the graph
in Figure 2.2.1 (2011) to 2020, since electric semis are not currently in use and our all-
infrastructure-available assumption 1 dictates that the transition to electric trucks begins
today. We then plot the Bass diffusion model to predict the proportion of electric semis
from 2020 (where the proportion is equal to 0) to 2040 (in 20 years—the endpoint of our
analysis). This graph is shown in Figure 2.3.1. We also obtain specific prediction values of
the percentage of semis that will be electric in 2025, 2030, and 2040, which are reported in
Table 2.3.1.
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Figure 2.3.1: Electric Semi Proportions Projected by Bass Model, 2020 to
2040

Table 2.3.1: Percentage of Electric Semis in Five, Ten, and Twenty Years
Year Percentage of Semis that are Electric
2025 0.1658
2030 0.8379
2040 12.53

The projected percentages of electric semi-trucks from our modified Bass diffusion model
are relatively low. However, given how our model was constructed—based on real histori-
cal data on the adoption of electric cars—the results are expected, since in 8 years the per-
centage of electric cars only rose to about 4%. Additionally, in context, the low levels of
adoption predicted by our model suggest that the benefits of adopting electric semis most
likely are unable to outweigh the benefits of continuing to use diesel trucks.

Since our curve in Figure 2.3.1 follows an apparent exponential trend, we wanted to in-
vestigate the end behavior of the function given more time to see if the trend persisted.
Thus, we graphed the function until 2080, as shown in Figure 2.3.2. From this graph, we
can form the additional conclusion that the values in Table 2.3.1 are low because they just
precede the period of rapid exponential growth from approximately 2040 to 2060. As the
Bass diffusion model is essentially a modified logistic growth model, the shape of Figure
2.3.1 is very logical because the proportion of electric semis initially rises slowly before
growing rapidly and leveling off at a maximum of 1. It is also reasonable in context be-
cause the initial slow-growth period represents innovators adopting the new technology of
electric semis, while the middle rapid-growth period represents imitators rapidly adopt-
ing a popular technology, while the final slow-growth period represents laggards eventually
adopting the technology as well.
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Figure 2.3.2: End Behavior of Bass Diffusion Model

2.4 Strengths and Weaknesses

Our model’s strength lies in its implementation of the Bass model, which is a well-known
model for diffusion of innovations that has been demonstrated to model the phenomenon
well even when generic constants are used. It also is able to incorporate historical data
because of its assumption that the adoption of electric semis can be compared to the adop-
tion of electric cars—a particularly important strength given that data for electric semis
currently are essentially unavailable. In addition, the curve-fitting procedure yielded a
high R2 value of 0.9975 and the final Bass curve has a logical, intuitive shape. Our model
can also easily be expanded to incorporate a wider variety of factors; similarly, each of the
external factors considered in the scaling function x(t) can be made functions of time once
more years of historical data eventually become available.

However, a lot of values in our model are held constant when they would perhaps be more
aptly modeled as functions of time. The assumptions of constancy were necessary due to
the shortage of data involving both electric cars and electric trucks. In addition, since
companies are the purchasers of semi-trucks and individuals are typically the purchasers
of automobiles, the adoption patterns of the two products may not be closely comparable.
Overall, given the overarching data limitations of the technology in question, our model is
built logically and outputs sensible results.

3 Part II: In It For the Long Haul

Development and installation of charging infrastructure is necessary for sustainability and
expansion of the electric truck industry. In this section, we formulate a model to deter-



Team #13555 Page 9

mine the sufficient number of stations, and chargers per station, along a given electric
truck corridor, and apply the model to five corridors: San Antonio to New Orleans, Min-
neapolis to Chicago, Boston to Harrisburg, Jacksonville to Washington, DC, and Los An-
geles to San Francisco.

3.1 Assumptions

1. A charging station will be placed at every interstate highway intersection. This is an
efficient placement method given that these intersections will generally be the loca-
tions with the highest volume of traffic flow, allowing charging stations to service the
maximum number of vehicles.

2. Interstate highways are linear between intersections. Logically, highways do not con-
tain any significant turns, so the difference between a straight line between two inter-
sections and the actual highway path should not be very large.

3. Truck batteries are charged to 80% of capacity and are charged at 20%. Electric vehi-
cle batteries are typically charged up to 80% of capacity to ensure battery longevity,
so we assume long-haul electric semis will be charged to this maximum recommended
value. We also assume that the trucks are charged at 20% battery to not only pre-
serve battery quality but more importantly to provide a safety net against a vehicle’s
battery dying before reaching the next charging station [1].

4. Battery degradation of long-haul semis is negligible over a 5-year period. While the
battery capacity of long-haul semis do degrade over time, we assume that this change
will not be significant because companies typically change out their long-haul trucks
after 5 years to be repurposed as short-haul or regional-haul semis, which are not
considered in our model [1].

5. Maximum battery capacity decreases linearly as temperature decreases. Approximate
linearity is apparent from graphs of battery capacity at different temperatures [5], so
perfect linearity is reasonably assumed in our model to make the process of calculat-
ing required distance between charging stations more efficient.

6. The minimum range of an electric semi per charge is 200 miles. This is the lower
end of the current claims for the range of electric semis (Daimler electric e-Cascadias)
[1]. Since technological innovation in the electric vehicle industry is expected to in-
crease this range over time, it is reasonable to assume that 200 miles will be less
than or equal to the ranges of approximately all electric semis.

3.2 Model Development

3.2.1 Determining Stations Needed Per Route

Perhaps the most crucial consideration in placing charging stations is assuring that vehi-
cles will not be left “stranded” between two stations. For this reason, several worst-case
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scenario accommodations, as described below, are necessary to account for approximately
all electric semis.

As per assumption 1, we assume the placement of a charging station at each interstate
highway intersection (at a rest area) along a trucking route. However, additional charg-
ing stations will need to be placed along the route between those points because the dis-
tance between major intersections may be too large for an electric semi to travel on a sin-
gle charge. Also, it is expected that electric semis will neither be charged to full capacity
nor charged only when the battery is completely depleted; assumption 2 states that the
vehicles are charged to about 80% and charged at about 20%, according to research.

In addition, an electric vehicle’s battery capacity depends upon the temperature in which
it operates; maximum capacity decreases approximately linearly as temperature decreases
(see assumption 5). Consequently, charging stations will need to be placed at increasingly
smaller intervals as a truck travels from a warmer region to a colder region, particularly
for longer routes that pass through a significant temperature gradient. We calculate the
degradation of driving range as a function of temperature from a 2019 AAA study that
found that at an ambient temperature of 20◦F, electric vehicles can only travel 88% of the
distance that they can at 75◦F [6]. As per assumption 5, we perform a linear regression to
yield the below equation for the battery capacity as a proportion out of 1, where T is the
ambient temperature in degrees Fahrenheit:

Cap(T ) = 0.00218T + 0.836 (6)

The distance between charging stations is also dependent on the range of the electric semi.
Our worst-case scenario truck range is given by assumption 6 as 200 miles on a single
charge (0% to 100%). Finally, to determine the maximum required distance R between
consecutive charging stations, we combine the above factors into the equation below:

R(T ) = 0.6 · Cap(T ) · 200 (7)

Since charging infrastructure will be placed along major trucking routes, we also place
charging stations at each endpoint (which often coincide with interstate intersections). We
wrote a Python program (stations.py) to decide the total stations needed by first calcu-
lating T and R. In order to account for the worst-case scenario (maximum degradation
of battery capacity), we decided to calculate T based on the coldest days of the year. To
this end, we obtained data from the Python API forecastio; however, the API limited the
number of daily queries per user. Since we found that according to the National Oceanic
and Atmospheric Administration, the coldest day of the year lies in January for a majority
of the country [7], we decided it would be appropriate to limit our search to only January
in order to estimate the coldest temperatures. The values of T are used to calculate R for
each station.

Starting at the colder endpoint of each trucking corridor, the program then iterates through
every segment between highway intersections (which is equal to Stationsintersections − 1
segments) until the warmer corridor endpoint. If the distance between the endpoints of a
segment exceeds R, the program places a new charging station a distance R towards the
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other endpoint and repeats the process: calculate R, compare R to the distance remaining,
and place a charging station if necessary. During this process, Stationsbetween is the total
number of stations added by the program for the entire route. Thus, the total number of
stations along a route is calculated as follows:

Stationstotal = Stationsintersections + Stationsbetween (8)

Note that the number of in-between stations calculated by starting at the colder endpoint
and moving toward the warmer endpoint will usually, but not always, be equal to the
number of in-between stations calculated in the opposite direction. We chose the former
direction for our algorithm because the R values are slightly shorter when moving from
colder to warmer temperatures than vice versa and we wanted to account for the worst-
case scenario. In this case, our value for Stationsbetween may occasionally be higher than
the opposite-direction calculation for corridors with particularly sparse highway intersec-
tions.

Our model is demonstrated on five sample corridors in Section 3.3.

3.2.2 Determining Chargers Needed Per Station

To determine the number of chargers needed per station, we used queuing theory to an-
alyze the wait times at each station based on the rate of trucks entering the station and
charging at the station. We used the M/G/k multi-server queuing model, which describes
a queue where the trucks entering are Markovian because we assume that the arrival rate
is constant (i.e., we use a homogeneous Poisson process), the truck charging time has a
general distribution for which we found data, and there are k chargers as opposed to the
M/G/1 model that only has one charger. With this queue, pictured below, we can deter-
mine the average waiting time and the average number of trucks waiting to charge at a
certain station.

Figure 3.2.1: Diagram of Multi-Server Queuing Model
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We define three variables that are inputted into the model. First, we define λ as the num-
ber of trucks that arrive at the charging station per hour or the mean rate of arrival. This
data was retrieved from the corridor data dataset given to us in the M3 information set.
We obtained the value of truck traffic at each of the locations of our charging stations de-
tailed in Section 3.2.1. Where the truck traffic was not available, we used the average of
the car/truck proportion along the corridor to convert the car traffic into truck traffic.
Then, we obtained the average charging time and its standard deviation and found the
reciprocals µ and σ [8]. The value k represents the number of chargers inputted into the
model.

There is no way to directly obtain the average waiting time, but one effective method is to
approximate mean waiting time using an M/M/c queue, which is a queue where charging
times have an exponential distribution. This method is called the Kingman’s law of con-
gestion [9].

First, we define ρ as the probability of the chargers being used. It should be noted that k
needs to be increased if ρ ≥ 1 because it will yield an unstable curve. At a minimum, k
should be large enough that ρ < 1 for the model to be able to predict waiting times.

ρ =
λ

kµ
(9)

Then, Little’s law provides the following results given Lq as the mean number of trucks in
the queue and Wq as the mean waiting time in the queue [10]:

Lq = λWq (10)

According to the M/G/k queue model, we can define the probability of there being 0 trucks
in the entire system for a M/M/c, that is, waiting or charging, as follows:

P0 =

(
k−1∑
m=0

(
(kρ)m

m!
) +

(kρ)k

k!(1− ρ)

)−1
(11)

Using that, we can find the mean number of trucks in the M/M/c queue using the follow-
ing:

Lq =
P0(

λ
µ
)kρ

k!(1− ρ)2
(12)

We then find the average waiting time for the M/M/c queue using Little’s law:

WM/M/c
q = Lq/λ (13)

Finally, we can write the following to use Kingman’s law of congestion to approximate the
average of the M/G/k that we want to analyze:

WM/G/k
q =

C2
s + 1

2
WM/M/k (14)

where Cs is defined as the coefficient of variation of the charging time distribution:
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C2
s =

σ2
s

(1/µ)2
(15)

Market surveys indicate that customers are only willing to wait a maximum of 13 minutes
to start charging their cars [11]. Therefore, we found the minimum k that yielded a wait
time of less than 13 minutes. The resulting average chargers per station are shown in Ta-
ble 3.3.2 in Section 3.3.

3.3 Results

To demonstrate the functionality of our model, we apply it to the following five trucking
corridors:

1. San Antonio, TX to/from New Orleans, LA

2. Minneapolis, MN to/from Chicago, IL

3. Boston, MA to/from Harrisburg, PA

4. Jacksonville, FL to/from Washington, DC

5. Los Angeles, CA to/from San Francisco, CA

The values for the number of interstate highway intersections, additional stations needed,
and total stations along a route are given in Table 3.3.1. The number of interstate high-
way intersections along a route was obtained manually from Google Maps. We also pro-
vided the length of each route in miles, which is not required for our model but is included
in the table for reference.

Table 3.3.1: Charging Station Breakdown for Five Sample Trucking Corridors
Corridor Total Mileage Intersection

Stations
In-between Stations Total Stations

San Antonio,
TX to New
Orleans, LA

543 6 4 10

Minneapolis,
MN to Chicago,

IL

408 6 4 10

Boston, MA to
Harrisburg, PA

390 10 1 11

Washington,
DC to

Jacksonville, FL

706 10 6 16

San Francisco,
CA to Los

Angeles, CA

382 6 4 10
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The numbers of total required stations outputted by our model are logical. Notably, a
greater total mileage for a route does not necessarily correspond to a greater number of
total stations. This is because our model, by placing a charging station at each interstate
highway intersection, places more charging stations around more urban regions, since these
regions will also have more tighter-knit networks of highways. In addition, since the dis-
tance between interstate intersections is smaller around more urban regions (particularly
for the Boston to/from Harrisburg corridor), the Python program also logically places a
fewer number of in-between stations (only 1 for that same corridor).

Then, to determine the number of chargers required per station, we implemented our M/G/k
multi-server queuing model developed in Section 3.2.2. We obtained graphs of the daily
average queuing time per truck while waiting for a charger and the average number of
trucks in the queue as a function of the number of chargers at the station for one sample
charging station (in San Francisco, CA); these are displayed in Figure 3.3.1. Since drivers
are only willing to wait 13 minutes in line (or 0.217 hours), this sample station would
need 26 chargers. This procedure was repeated for every station (defined in Section 3.2.1)
along the five corridors, and the average number of chargers per station and total number
needed for each corridor are reported in Table 3.3.1.

Figure 3.3.1: Average Wait Time and Queue Size for Sample San Francisco
Charging Station
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Table 3.3.2: Charging Station Breakdown for Five Sample Trucking Corridors
Corridor Average Number of Chargers Total Number of Chargers

San Antonio,
TX to New
Orleans, LA

27.4 274

Minneapolis,
MN to Chicago,

IL

23.6 236

Boston, MA to
Harrisburg, PA

17.1 188

Washington,
DC to

Jacksonville, FL

14 224

San Francisco,
CA to Los

Angeles, CA

21.4 214

The shape of the curves in Figure 3.3.1 are logical because with a very small number of
chargers, the wait time and number of trucks in queue will both be very large because
electric vehicles require relatively long periods of time to charge from 20% to 80%. This
value rapidly decreases as more chargers become available; however, the queue time quickly
levels out to 0 because if additional chargers are added to a station where there are al-
ready enough stations for the traffic volume to be serviced, queue time will no longer de-
crease (there are no more vehicles waiting to use those chargers). Furthermore, the num-
ber of chargers per station projected in the table are also feasible for installation.

3.4 Sensitivity Analysis

Table 3.4.1: Sensitivity Analysis for Average Number of Chargers per Station
Constant -10% Change in Constant +10% Change in Constant

λ -9.489% +8.759%
µ +9.489% -6.569%
σ -1.460% +0.730%

We conducted a sensitivity analysis on the three variables we used in our model to deter-
mine the average number of chargers per station, by changing each constant by +10% and
-10% and calculating the resulting change in the average number of chargers predicted.
The small percent changes in the average number of chargers, each in the appropriate di-
rection, shows that our model is robust and resilient to small alterations in its parameters.

3.5 Strengths and Weaknesses

One of the greatest strengths of our first model—for calculating the required number of
stations—is its focus on the worst-case scenario of nearly all of its parameters. This al-
lows our calculation of stations to cover essentially all electric semi-trucks by assuming
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the minimum estimated single-charge range and the minimum ambient temperatures as
well as calculating the number of in-between stations from the colder to the warmer end-
point of corridors. It is also comprehensive, for it takes into account factors such as the
degradation of battery life due to temperature drops along a route. On the other hand,
our model’s “generous” estimate most likely renders the cost of installing the proposed in-
frastructure more costly than absolutely necessary; particularly as technology for electric
vehicles is in development, the single-charge range can probably be expected to rise within
the decade.

Our second model is sound because it uses an established method, queuing theory, for
determining the number of chargers to be placed at each station. The resulting figures
align with intuition, and a sensitivity analysis suggests that the model is resilient to small
changes. It also relies on relatively few, easily obtainable variables so that the model can
easily be applied to other trucking corridors. However, the most prominent drawback of
the queuing model is that the number of chargers needed is calculated based on average
daily traffic data, and so at rush hour or particularly busy travel days, truck drivers would
most likely have to queue for more than the desired amount of 13 minutes.

4 Part III: I Like to Move It, Move It

The transition to electric trucking is motivated by a variety of factors—economic, environ-
mental, or otherwise. Considering these factors, we developed a metric to rank the desir-
ability of developing trucking corridors and used it to rank the five routes in Part II.

4.1 Assumptions

1. The only infrastructure required for electrification of the trucking industry are the
charging stations. While maintenance centers, among other structures, might also be
necessary, we make this assumption in order to use our infrastructure models from
Part II in making our metric.

2. The decision of whether to develop infrastructure depends on community motivation,
time necessary for development, and its anticipated usage. Support from the com-
munity is essential to develop infrastructure. Infrastructure that takes less time to
create should be created first because it also has less cost. In addition, chargers in
higher-frequency routes should be created first to suit the demands of the popula-
tion.

3. Any constants that are factored into the calculation of every corridor are arbitrary
because they will not affect the final ordering of which corridors should be built first.
The proportionalities and variable data is what will determine this order. The con-
stants are there to ensure the values make sense numerically. This assumption is fur-
ther justified by the results of our sensitivity analysis.

4. Each charger costs the same amount of money and takes the same amount of time to
construct. As chargers are identical, their installation should be similar.
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4.2 Model Development

Table 4.2.1: Variables Used in Differential Equations
Constants Meaning Value

α Proportionality constant of people convinced by others
who want route

0.01

β Proportionality constant of people changing their
belief due to economic or environmental reasons

0.02

γ Proportionality constant for people initially wanting
route due to economic reasons

0.004

E Fixed initial percentage of people who want to route
due to environmental reasons

0.2

λ1 Weight on the time it takes to construct −0.0007
λ2 Weight on the anticipated usage 7.7 · 10−6

The proportion of ri denotes how many people support the building of electric charging
stations. Future supporters will either be influenced by their own desires (increased con-
venience or wanting to save the environment) or by people who are already in favor of the
construction of electric charging stations. To account for this, the change in the propor-
tion of people who support building more charging stations is the sum of two factors as
detailed below:

dri
dt

= αri(1− ri) + β(1− ri)

Initially, there is a fixed number of people who support the development for environmental
reasons, which is denoted by E. There are also a number of people who support the de-
velopment due to economic reasons. The revenue that is produced is proportional to both
the traffic and the number of chargers available, so it is proportional to niTi. Additionally,
individuals who earn less are more likely to support the development due to economic rea-
sons, so this component of ri is proportional to niTi

Ii
. γ has been chosen as the constant of

proportionality for this term. The formula for ri is below.



Team #13555 Page 18

Table 4.2.2: Average Median Household Income and Daily Truck Traffic Along
Each Route [12][13]

Route # Average Median Household Income Avg Daily Truck Traffic
1 $54, 756 14,288
2 $63, 732 16,022
3 $71, 523 9,293
4 $56, 788 9,515
5 $71, 228 13,975

ri(0) =
γniTi
Ii

+ E (16)

We ran our model with the values in Table 4.2.1. As α, β, γ, and E do not change with
location, as per assumption 3, they are arbitrary and The choice to begin development is
based on the general percentage of the population who agree with it, the time it takes to
construct, and the anticipated usage. The time it takes to construct is proportional to the
number of chargers because each charger takes the same amount of time to construct. The
anticipated usage is proportional to the traffic of trucks through the route. The minimum
threshold such that development should begin is when this expression is 1

2
because a ma-

jority of people agree with the development in the limiting case that ni = 0 and Ti = 0.
The values of λ1 and λ2 serve as arbitrary weighting factors to ensure that they are of the
same magnitude. :

ri + λ1ni + λ2Ti ≥
1

2
(17)

4.3 Results

Figure 4.3.1: Proportion of People who Support Infrastructure over Time in
the Los Angeles, San Francisco Area
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We used development.py to calculate the time in years it takes for the proportion of peo-
ple to exceed the threshold. As seen in Figure 4.3.1, in 25.3 years, the proportion of people
who support the infrastructure will exceed the threshold at which it is favorable to build
it. Doing similar for the other corridors, we arrived at the results below in Table 4.3.1.

Table 4.3.1: Number of Years Until it is Favorable to Build Electric Semi
Infrastructure

Route Number Years Until
Route

Becomes
Favorable

Ranking

San Antonio-New Orleans 21.9 2
Minneapolis-Chicago 21.2 1
Boston-Harrisburg 30.3 5

Jacksonville-Washington, DC 30.0 4
Los Angeles-San Francisco 25.3 3

As shown by the above table, the route from Minneapolis to/from Chicago should be tar-
geted for development first, followed closely by the San Antonio-New Orleans corridor.
The remaining ranks of favorability are the LA-San Francisco, Jacksonville-DC, and Boston-
Harrisburg corridors. The values in the second column suggest that our model is reason-
able because the numbers all fall within a small range; since each corridor spans several
hundred miles, many regional differences are “averaged out,” resulting in the number of
years until favorability being relatively constant across routes.

4.4 Sensitivity Analysis

We conducted a sensitivity analysis on all the constants in our model, inflating and deflat-
ing each by 10% to see how they affected our results. These changes in the constants did
not affect the ordering in which the charging stations should be built. This shows that the
constants in our model have arbitrary values and that the results rise from the differing
income distribution, traffic, and cost for each corridor.

4.5 Strengths and Weaknesses

Our model is resilient because it is unaffected by many confounding constants, as shown
in our sensitivity analysis. The model is comprehensive, as it considers both the economic
and environmental factors that may persuade people to support the building of electric
charging stations. A weakness of our model is that averages data across wide swaths of
geography. While the socioeconomic status and geography may differ greatly between the
ends of each corridor, our model averages them out to come to one value for each corridor.
Overall, our model is solid in predicting the order in which charging stations should be
developed along each of the corridors.
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5 Conclusion

5.1 Further Studies

Our first model relies upon comparing the adoption of electric trucks starting in 2020 to
the adoption of electric cars starting in 2011. This was necessary to create our Bass dif-
fusion model because there is currently no data on electric semi usage. Evidently, further
studies could be done with a greater degree of confidence in the results, and a wider va-
riety of factors, once the necessary data is available. Our infrastructure model could be
improved in the future if more accurate values are obtained for the single-charge value of
an electric semi’s range.

5.2 Conclusion

In Part 1, we used the Bass diffusion model with our own scaling factor based on data
about electric vehicles so that we could predict the proportion of electric trucks that would
be in use by 2025, 2030, and 2040. We produced a curve by solving this differential equa-
tion to determine that there would be 0.1658%, 0.8379% and 12.53% adoption in the truck-
ing industry by 2025, 2030, and 2040, respectively.

In Part 2, we determined the number of charging stations that we would need by plac-
ing a station at every traffic intersection on interstate highways, and then calculating the
amount of stations needed in between, based on battery range as a function of temper-
ature. Then, we determined the number of chargers that would be required at each sta-
tion by modeling each station as a M/G/k queuing system to determine k, the number of
chargers that would be required to reduce the average wait time to charge to be less than
13 minutes. We applied this to five corridors: San Antonio to New Orleans, Minneapolis to
Chicago, Boston to Harrisburg, Jacksonville to Washington, DC, and Los Angeles to San
Francisco.

In Part 3, we found the proportion of individuals who wanted the development as a func-
tion of time. We computed a weighted sum of this percentage, the time it takes to con-
struct the infrastructure, and the anticipated route usage. Using a differential equation,
we found the time at which each weighted sum was greater than a specific threshold value,
and we ranked these times from least to greatest for the same five corridors studied pre-
viously. The model indicated that Minneapolis-Chicago and San Antonio-New Orleans
corridors be targeted first for development.
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7 Appendix

7.1 bass.py

import numpy as np
from scipy.integrate import odeint
from scipy.optimize import curve fit
import matplotlib.pyplot as plt
import sys
import pandas as pd

def read vehicle sales(): # Read in database on historic vehicle sales
def dateparse(x): return pd.datetime.strptime(

x, ’%Y−%m−%d’) # Convert string to date
df = pd.read csv(’TOTALSA.csv’, parse dates=[

’DATE’], date parser=dateparse)
df = df.groupby(df[’DATE’].dt.year).mean() # Get means so its only by year
return np.array(df[’TOTALSA’].to list()) # Return a list

sales = read vehicle sales()

def fuel cost(t): # Our constant ratio of fuel cost
return 0.04/0.37

def vehicle sales(t): # Retreive data from database
if t > 2020:

return sales[−1] # Constant afterwards

return sales[int(t)−1976]

def truck range(t): # Const range ratio
return 200/350

def truck cost(t): # Constant cost
return 55600/36718

total cars = 263.6 ∗ 1e6 # Total cars, relatively constant

hist data = np.array([ # List of electric vehicles data
4000,
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10000,
18000,
22000,
28000,
40000,
80000,
90000,
110000,
140000,
180000,
190000,
220000,
260000,
290000,
310000,
345000,
380000,
405000,
435000,
480000,
515000,
575000,
605000,
655000,
705000,
780000,
820000,
895000,
1000000,
1125000,
1190000,

]) / total cars

# Starts at 2011, goes to end of Q1 2019
hist t = np.linspace(2011, 2019.25, len(hist data))

def fit func(t, a1, a2, a3, a4, p, q): # Function to fit the parameters
def bass(f, t):

x = 1 + a1∗np.log(fuel cost(t)) + a2∗np.log(truck cost(t)) + a3 ∗ \
np.log(vehicle sales(t)) + a4 ∗ \
np.log(truck range(t)) # Our general Bass parameter

dfdt = (1−f) ∗ (p − q∗f) ∗ x # Bass differential
return dfdt

f0 = hist data[0] # Run on historical data
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sol = odeint(bass, f0, t)
return sol[:, 0]

print(”Starting fitting”)

print(hist t)
print(hist data)

popt, kcov = curve fit(fit func, hist t, hist data, # Fir curves, with our initial guesses
method=’lm’, maxfev=100000000, p0=[2.5, 1, 1, 0.4, 0.06, 0.37])

# # print(hist t)
print(popt)
# print(kcov)
# sys.exit(0)

hist func = fit func(hist t, ∗popt) # Get the actual historical values
residuals = hist data − hist func
ss res = np.sum(residuals∗∗2)
ss tot = np.sum((hist func−np.mean(hist func))∗∗2)
r squared = 1 − (ss res / ss tot) # Calculate rˆ2 manually

print(”RSQUARED”, r squared)

#popt = [1, 1, 1, 1, 1]

t1 = np.linspace(2011, 2070, 30) # Our predicted times
#t1 = hist t

print(t1)

sha func = fit func(t1, ∗popt)

# # time pointse(0, 20)

# t2 = np.linspac
# # solve ODE
# f sharif = odeint(sharif, y0, t1)
# f bass = odeint(bass, y0, t2)

# plot results
plt.plot(t1+9, sha func) # Shift by 9 years
#plt.plot(hist t, hist data, ’ro’)
plt.xlabel(’Year’)
plt.xticks(np.arange(min(t1+9), max(t1+9)+1, 5)) # Make x labels better
plt.ylabel(’Proportion of EVs’)
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plt.show()

7.2 stations.py

import forecastio
import datetime
from time import sleep
from haversine import haversine, Unit

# Query API to get the temperature at a coordinate

def findTemperature(cord):
lat = cord[0]
lng = cord[1]
temperature = 0
for day in range(1, 32):

current time = datetime.datetime(2019, 1, day, 0, 0, 0)
data = forecastio.load forecast(

api key, lat, lng, time=current time)
forecast = data.hourly()
temp = 0
for hour in forecast.data:

temp += hour.temperature
temp /= len(forecast.data)
# print(str(1)+”−”+str(day)+”: ” + str(temp))
temperature += temp
sleep(0.1)

temperature /= 31
# print(str(lat)+’,’+str(lng)+”: ” + str(temperature))
return temperature

api key = ”d5c793a085e1e881b6fe6df6476e8832”

# san antonio to new orleans
# cords = [(29.417665, −98.491482), (29.777760, −95.360726), (30.272725, −92.012239),
# (30.436903, −91.162000), (30.160854, −90.428748), (29.972942, −90.075752)]

# minneapolis to chicago
# cords = [(44.977757, −93.259357), (44.002900, −90.427642), (43.491266, −89.476002),
# (42.527031, −88.968241), (42.252348, −88.958323), (41.879750, −87.652840)]

# boston to harrisburg
# cords = [(42.359472, −71.059326), (42.110469, −72.031678), (41.745425, −72.642173),
# (41.014642, −73.693406), (41.117336, −74.159782), (40.871334, −74.446501),
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# (40.664688, −74.649443), (40.565243, −75.557297), (40.433047, −76.519679),
# (40.272597, −76.886925)]

# DC to Jacksonville
# cords = [(38.902646, −77.058297), (37.571089, −77.439774), (37.205219, −77.396232),
# (35.978383, −77.895145), (35.460325, −78.505470), (34.598341, −79.143567),
# (34.190401, −79.832836), (33.323715, −80.553616), (32.112230, −81.234370),
# (30.328741, −81.661589)]

# San Francisco to LA
# cords = [(37.766656, −122.427427), (37.690650, −121.922926), (37.744831, −121.553756),
# (34.336156, −118.499355), (34.153521, −118.386955), (34.054378, −118.242518)]

stations = []
for index in range(len(cords)−1): # Go through each coordinate

print(’new intersection station’)
travelled = 0
station = 0
position = cords[index]
destination = cords[index+1]
# Get the distance between stops
distance = haversine(position, destination)
print(”distance: ”+str(distance))
while 1: # Keep on going until we run out of energy

temperature = findTemperature(position)
capacity = 0.00218∗temperature+0.836
step = 200∗0.6∗capacity
print(”step: ”+str(step))
travelled += step
if travelled > distance:

break
station += 1
position = ((cords[index][0]+cords[index+1][0])/2,

(cords[index][1]+cords[index+1][1])/2)
stations.append(station)

print(stations)

7.3 chargers.py

from haversine import haversine, Unit

# san antonio to new orleans
cords1 = [(29.417665, −98.491482), (29.777760, −95.360726), (30.272725, −92.012239),

(30.436903, −91.162000), (30.160854, −90.428748), (29.972942, −90.075752)]
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# minneapolis to chicago
cords2 = [(44.977757, −93.259357), (44.002900, −90.427642), (43.491266, −89.476002),

(42.527031, −88.968241), (42.252348, −88.958323), (41.879750, −87.652840)]

# boston to harrisburg
cords3 = [(42.359472, −71.059326), (42.110469, −72.031678), (41.745425, −72.642173),

(41.014642, −73.693406), (41.117336, −74.159782), (40.871334, −74.446501),
(40.664688, −74.649443), (40.565243, −75.557297), (40.433047, −76.519679),
(40.272597, −76.886925)]

# DC to Jacksonville
cords4 = [(38.902646, −77.058297), (37.571089, −77.439774), (37.205219, −77.396232),

(35.978383, −77.895145), (35.460325, −78.505470), (34.598341, −79.143567),
(34.190401, −79.832836), (33.323715, −80.553616), (32.112230, −81.234370),
(30.328741, −81.661589)]

# San Francisco to LA
cords5 = [(37.766656, −122.427427), (37.690650, −121.922926), (37.744831, −121.553756),

(34.336156, −118.499355), (34.153521, −118.386955), (34.054378, −118.242518)]

total = 0
for i in range(len(cords5)−1):

# Get the total distance in miles for each route
total += 0.6214∗(haversine(cords5[i], cords5[i+1]))
print(total)

7.4 queue.py

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import factorial
import sys

# Amount of traffic to chargers per route
path1 = [19818, 16500.77339, 17648.38488, 8377.002754, 27139.56221]
path2 = [6009.516888, 33000, 12600, 13100, 11900]
path3 = [4338, 19191, 60935, 9840, 7721, 10301, 6787, 13821, 14065, 7030]
path4 = [11726, 12082, 5583.716502, 3924.404523,

5017.443366, 8480, 5990, 5513, 13944]
path5 = [16519, 20023, 8779, 11397, 10490]

# lmbda = 1/10
# mu = 1/15
# sigma = 8.33∗∗0.5
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# Our M/G/k queue function
def get W mgk(k, lmbda, mu, sigma):

Ca2 = 1
Cs2 = mu∗∗2 ∗ sigma∗∗2
p = lmbda/(k∗mu)

# print(p)

P0 sigma = 0
for m in range(k):

P0 sigma += ((k∗p)∗∗m)/factorial(m, exact=False)
# print(m, P0 sigma)

# print(”fac”, (factorial(k, exact=False)))
P0 sigma += ((k∗p)∗∗k)/(factorial(k, exact=False) ∗ (1−p))

# print(P0 sigma)

P0 = 1/P0 sigma

# print(P0)

L = (P0∗(lmbda/mu)∗∗k ∗ p) / (factorial(k, exact=False) ∗ (1−p)∗∗2)

# print(L)

W mmc = L / lmbda

# print(W mmc, Cs2)

W mgk = ((Ca2 + Cs2)/2) ∗ W mmc

return W mgk

# print(get W mgk(2))
# sys.exit(0)
char = []
chargers = []

a = 2.1∗(500/55 + 2.1)/365/24 # Our lambda
b = 2.1 # Mu
c = 1.533 # Sigma

change percent = 0.1 # Change percentage for sensitivity analysis
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sensitivity = [ # List of sensitivity comparisons
(a, b, c),
(a∗(1 + change percent), b, c),
(a∗(1−change percent), b, c),
(a, b∗(1 + change percent), c),
(a, b∗(1−change percent), c),
(a, b, c∗(1 + change percent)),
(a, b, c∗(1−change percent))

]

for variables in sensitivity: # Do each set of variables
l = variables[0]
mu l = variables[1]
sigma l = variables[2]
#print(l, mu l, sigma l)
for traffic in path1: # Do each path

lmbda l = l∗traffic

k init = 5

k = list(range(k init, 60))
W = []
for k c in k: # Run each charger

W.append(get W mgk(int(k c), lmbda l, mu l, sigma l))
# print(W)
for w i, w in enumerate(W):

#print(w i, w)
if w < 13/60 and w > 0: # Get the one that is just beloe 13 min wait time

#print(”MIN NUMBER OF CHARGERS”, w i + k init)
char.append(w i + k init)
break

# print(char)
chargers.append(char)
char = []

# print(chargers)
avgs = [sum(x)/len(x) for x in chargers] # Get averages of paths
changes = [100∗(avg−avgs[0])/avgs[0]

for avg in avgs] # Get percent change from avgs
print(changes)
# fig, axs = plt.subplots(1, 2)
# axs[0].plot(k, W)
# axs[0].set xlabel(”Number of chargers”)
# axs[0].set ylabel(”Wait time in queue (hrs)”)
# axs[1].plot(k, np.array(W)∗lmbda)
# axs[1].set xlabel(”Number of chargers”)
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# axs[1].set ylabel(”Avg number in queue”)
# plt.show(block=True)

7.5 development.py

import numpy as np
from scipy.integrate import odeint
from scipy.optimize import curve fit
import matplotlib.pyplot as plt
import sys
import pandas as pd

I = [54756, 63732, 71523, 56788, 71228]
n = [274, 236, 188, 224, 214]
T = [14288, 16022, 9293, 9515, 13975]
E = 0

gamma = 0.004

def model(r, t):
alpha = 0.01
beta = 0.02
drdt = alpha∗r∗(1−r) + beta∗(1−r)
return drdt

for i in range(5):
# initial condition dependent on population and income
r0 = gamma∗n[i]∗T[i]/I[i] + E

# time points
t = np.linspace(0, 50)

# solve ODE
r = odeint(model, r0, t)

lmbda 1 = −0.0007
lmbda 2 = 7.7∗1e−6
y = 1/2 − lmbda 1∗n[i] − lmbda 2 ∗ T[i]

# plot results
rate = plt.plot(

t, r, label=’Proportion of people who support infrastructure’)
threshold = plt.plot(

t, y+t−t, label=’Threshold at which it is favorable to construct’)
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plt.xlabel(’Time (years after 2020)’)
plt.xticks(np.arange(min(t), max(t)+1, 5))
plt.ylabel(’r(t)’)

plt.legend()
plt.show()


	Finalist paper cover sheet 2020 TC HONORABLE MENTION_13555.pdf
	main (009).pdf
	Introduction
	Restatement of the Problem
	Global Assumptions

	Part 1: Shape Up or Ship Out
	Assumptions
	Model Development
	Results
	Strengths and Weaknesses

	Part II: In It For the Long Haul
	Assumptions
	Model Development
	Determining Stations Needed Per Route
	Determining Chargers Needed Per Station

	Results
	Sensitivity Analysis
	Strengths and Weaknesses

	Part III: I Like to Move It, Move It
	Assumptions
	Model Development
	Results
	Sensitivity Analysis
	Strengths and Weaknesses

	Conclusion
	Further Studies
	Conclusion

	References
	Appendix
	bass.py
	stations.py
	chargers.py
	queue.py
	development.py



