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Home-Lessening Homelessness: A Mathematical Exploration
Team #17570
Executive Summary

Dear Secretary of the U.S. Department of Housing and Urban Development,

Homelessness rates are an especially concerning issue due to skyrocketing housing costs.
Although approaches from your department and nonprofit organizations have helped, predicting
housing accessibility and determining how to address this issue presents a unique challenge.
Thus, this report investigates long-term housing and homelessness numbers, evaluating the best
overall response to this crisis.

First, we predicted the housing supply in the next 10, 20, and 50 years for Seattle, WA, and
Albuquerque, NM, using population as a baseline assumption. Since both cities represent human
population systems, a logistic growth model was used to determine the theoretical maximum
number of inhabitants. Then, we converted that theoretical maximum to a theoretical maximum
number of houses, assuming the supply of houses fully meets the demand. Using the new
theoretical maximum in a carrying capacity model, we predict the number of housing units in
Seattle will be 260,960 units by 2034, 265,440 by 2044, and 270,500 by 2074. In Albuquerque,
we predict 402,300 units by 2034, 426,590 by 2044, and 460,390 by 2074.

In correlation, we created a model estimating the homeless population in both cities. First, we
extrapolated the non-homeless population using the logistic growth model. Then, making
assumptions about YOY changes, we constructed an asymmetric Markov chain with two
absorption states. Using a corresponding recursive equation, we predict the homeless population
in Seattle will be 31,029 inhabitants by 2034, 41,297 by 2044, and 56,561 by 2074. In
Albuquerque, we predict 6,874 inhabitants by 2034, 9,516 by 2044, and 12,612 by 2074.

Finally, to determine the best homelessness reduction plan in Seattle, we developed a metric
factoring cost, emotional benefits, success in preventing future homelessness, and waiting time.
Since there were multiple criteria influencing effectiveness and efficiency, the TOPSIS and
Grey Relational Analysis (GRA) multi-criteria decision models were combined. While
TOPSIS used entropic weights calculated from each criterion’s value to produce a metric and
GRA did not need weights, both produced a metric between 0 (least optimal) and 1 (most
optimal). Since GRA handles fuzzy data and complex relationships but assumes criteria have a
linear relationship with alternative plans, and TOPSIS accommodates outliers and many
alternatives but assumes independence and fixed weights, both output values were averaged to
produce the final metric. Though we also included combinations of plans, our model ranked
Rapid Re-Housing (RRH) as the best result, followed by Permanent Stable Housing. Finally,
using a queueing model, we calculated that the current number of RRH units could allow
approximately 1,680 unhoused people to find sustainable housing each year.

We sincerely hope that our results may be of use to you and provide insight into the current best
plan for addressing homelessness. If you have any questions, please feel free to connect with us.

Best Regards,
M3 Team #17570
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Background

Housing is a basic human necessity. The Universal Declaration of Human Rights adopted
by the United Nations declares that adequate housing is a human right necessary for a basic
standard of living [1]. Yet, particularly in metropolitan areas, the increasing homeless (or
unhoused) population has become a pressing issue. Homelessness has remained an unsolved
problem since the inception of metropolitan areas and has been exacerbated by gentrification,
budget cuts to the U.S. Department of Housing and Urban Development (including a 41%
decline between 1976 and 2002 [2]), inadequate supplies of affordable housing options, and
numerous other factors [3].

Recent spikes in housing prices have especially made it difficult for the economically
disadvantaged to keep their homes. In large cities like Albuquerque and Seattle, the median
housing cost has approximately doubled within the last decade—a much larger rate of increase
than that of the annual median income [4]. In January 2024, a record half of all US renters paid
over the recommended 30% of income for shelter expenses [5]. Therefore, many households and
individuals have been forced to leave their homes or remain unhoused. However, being unhoused
presents challenges to both individuals and communities. Twenty-one percent of individuals
experiencing homelessness report serious mental illnesses and 16% report substance use
disorders, leading to increased suicide rates [6]. Homelessness also disproportionally affects the
LGBTQ+ community and certain racial groups, and cities with unhoused populations spend
$30,000-50,000 per individual through sanitation, emergency rooms, shelters, and other services
[7].

Although there is no perfect solution, the US government and numerous nonprofit
organizations have already taken several approaches to address homelessness. The most notable
approaches include permanent supportive housing (PSH), which provides long-term housing
assistance and supportive services, rapid re-housing (RRH), which provides short-term
assistance, and Section 8 (or Housing Choice) vouchers, which provide funds for low-income
housing rent. However, each has benefits and drawbacks, so for the sake of helping unhoused
individuals and communities thrive, it is essential to analyze current housing accessibility and
homelessness rates to determine the best course of action.

Global Assumption

G-1: There will not be any significant policy shifts regarding housing or homelessness.
e Justification: Given the polarized nature of Congress, it is extremely difficult to predict

when the government will pass certain policies to aid the housing or homelessness crises.
Assuming consistent trends simplifies the situation so that it can be modeled
appropriately.

1 It Was the Best of Times

1.1 Defining the Problem

Question 1 asks us to build a mathematical model that predicts changes in the amount of housing
over 10, 20, and 50 years, in either two US or UK regions. We chose to model the US regions as
the housing shortage’s larger prevalence allowed us to gather more data easily.
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1.2 Variables and Data
Symbol Definition Units

N The predicted number of housing units in a given city None

P(t) The predicted population of a given city ¢ years after 2010 People
K The maximum possible housing units in a given city Housing

Units

M p The maximum possible population of a given city People

k Growth rate constant None

Table 1: Variables for Problem 1

1.3 The Model

Inherently, the number of housing units in a region is linked to that region’s population.
The greater the population, the greater the demand for housing, thus leading to more houses
being built. This direct correlation, however, is accompanied by an indirect one. Especially in
younger cities like Seattle, as the population increases, so does the price of housing, almost
always at a higher rate than the median income. Even in cities like Albuquerque, where the
median age is increasing and there is little population growth, higher prices continue to increase
faster than income, disincentivizing new residents, and even driving away old ones.

An impactful statistic that emphasizes this disparity is to normalize these housing prices
by putting them in terms of years of income. By dividing the median price by median income,
our team saw that from 2010 to 2022, each of the four regions saw one year of income
representing a smaller percentage of the price of the same median house. In Albuquerque, a
house used to cost 3.67 years of income, but now costs over 5. In Seattle, the median price is
even higher, worth almost 6 years of income.

Thus, the short-term increase in population in any city cannot exponentially, or linearly,
grow forever given these rapid price increases. Therefore, it is expected that at some time, the
rate of population will slow down as it approaches an equilibrium point. Albuquerque is a
real-world example of this equilibrium point, as the population from 2010 to 2022 only increased
by around 30,000 people, a mere 5.66% increase over 13 years. In comparison, Seattle
experienced a growth of 140,000 people, correlating to a 23.5% increase in population in the
same period.

To best handle a wide variety of population growth and predict it over time, a logistical
model was chosen. Often used to model populations, this model also makes sense intuitively, as
it is defined as having the growth (or derivative) increase and then decrease exponentially as the
population gets higher. The equation for the model is

P(t) — L (1)

1_,’_e(—fl"(t—b))
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where P(t) is the population, t is the time in years, M p is the maximum population, and a and b

are constants. Using Matlab’s inbuilt curve-fitter, we found that the maximum populations for
Seattle and Albuquerque are 942,900 and 562,400 respectively. Given Pearson Correlation
Coefticients of 0.9497 and 0.9656, our confidence in these values is high, even if the capacity for
Albuquerque suggests that it has already reached its maximum population

Knowing the maximum population in either city, we can now determine the maximum number of
households. To do so, we divide the population each year by the number of housing units. The
equation for such is shown below,

Populationi (2)

ANPi =

Number of Housing Units,
where AN Pi is the average number of people per household in year i. For Seattle, the AN Pi

values were consistently 2, leading us to a maximum number of housing units in Seattle of

942,900 people
2 people per housing unit

= 471,450 units.

For Albuquerque, the AN Pi values demonstrated a logarithmically decreasing trend after 2015.
Hence, after fitting a logarithmic graph to the data, we determined that the ANP will reach a
minimum of 2.07, leading us maximum number of housing units in Albuquerque of

562,400 people
2 people per housing unit

= 271,691 units.

Given these values, we constructed an alternative carrying capacity model reliant on Equation 3,
aN _N 3
— = kN(1 — ), 3)

where N is the number of housing units, k is the growth constant, and K is the maximum number
of housing units. To solve this equation, we utilized the Matlab ‘ode45’ function, which solves
nonstiff differential equations. This allowed us to manually enter the K-value, and manipulate the
k-value until our Pearson Correlation Coefficient was maximized between 0 and 1. MATLAB is
preferable because the common calculator requires immense computational power to solve such
differential equations. Streamlining the computation saved us a plethora of time in our modeling
process.

1.4 Results

Utilizing the carrying capacity model as determined above, the curve was fitted to both
the Albuquerque and Seattle population data. The two plots, scaled down by 100,000, and their
corresponding predictions, are shown below in Figures 1 and 2.
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Figure 2: Graphed Model of Households In Seattle since 2010

1.5 Discussion

Looking closer at the data, Figure 1 depicts the predicted number of housing units in
Albuquerque, with the maximum number of units proportional to the maximum population. Our
model predicts 260,960 units by 2034, 265,440 units by 2044, and 270,500 units by 2074.

In comparison, Figure 2 illustrates Seattle’s growth. Similar to Figure 1, Figure 2 models
the number of housing units, which continues to rise with Seattle’s population until it reaches the
equilibrium point. Our team predicts Seattle will have 402,300 units by 2034, 426,590 units by
2044, and 460,390 units by 2074.

In summary, a multitude of factors were used to predict changes in the number of housing
units in two unique regions of the United States. Taking into account the distinct influence of
rising housing prices, income level, and population growth in both Albuquerque and Seattle, a
carrying capacity model was made to determine the change in housing units over both the short
and long term. While Albuquerque is predicted to grow 5000 units at each benchmark, Seattle
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grows almost 5 times that, demonstrating how higher population growth leads to more housing
units.

As housing prices continue to rise, and the shortage continues, our model demonstrates
that remedies to this issue must be viable in long-term. Ultimately, the housing supply is
dependent on population growth, which itself is dependent on economic, infrastructural, and
financial factors.

1.6 Sensitivity Analysis

For this question, we performed sensitivity analysis on the housing units carrying capacity model
by changing both K, the maximum number of housing units, and k, the growth constant. For the
maximum number of housing units, we chose two arbitrary numbers: one above the carrying
capacity and one below. For the growth rate, we calculated a new k-value using the following
equation, which estimates the Compound Annual Growth Rate (CAGR) for Seattle and
Albuquerque:

S 1
_ housing units in 2022 (0222010 _ 255178 {12 _
CAG Albuquerque ( housing units in 2010 ) 1= 234891 ) 1 =10.0069
1 1
_ housing units in 2022 \ * 2022-2010 ) _ 372436 N 12 _
¢A Seattle ( housing units in 2010 ) 1= ( 302465 ) 1 = 0.0175.

In addition, we used an arbitrarily high k-value. The results of the sensitivity analysis are shown
below.

Number of Housing Units
Year K=1260,000; k |[K=300,000;k |K=constant;k |K =constant; k
= constant = constant =0.0069 =0.09
2034 252900 279640 239850 266880
2044 255880 287990 241740 269720
2074 259220 297660 246830 271570

Table 4: Albuquerque Sensitivity Analysis

Number of Housing Units
Year K =400,000; k |[K=500,000;k |K=-constant;k |K =constant; k
= constant = constant =0.0175 =0.09
2034 363890 416320 344870 442950
2044 377100 445230 306410 459460
2074 394510 486290 398780 470670

Table 5: Seattle Sensitivity Analysis
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The sensitivity analysis corroborates our expectations, confirming the validity of our model.
When the carrying capacity is shifted below the calculated carrying capacity, the model is
heavily restricted, causing limited growth in housing. Similarly, using the small compound
annual growth rate limits the change, because the growth rates fail to account for changes in the
second derivative of the data. In contrast, a higher carrying capacity allows the model to grow
more rapidly, resulting in higher predicted values. Changing the carrying capacity appears to
have a larger effect than the k-values, implying that our precise calculations of the carrying
capacities from the general population play a pivotal role in our ultimate model.

1.7 Strengths & Weaknesses

1.7.1 Strengths

e Simplicity. An important strength of our model is the transparency it allows the user, and
the high accessibility and clarity it presents. Having an unambiguous model allows us to
have greater trust in our prediction, as opposed to more complicated equations that we
may not fully understand.

e Multiple Factors. Much of our research in Problem 1 dealt with the individuality of each
region we would model. By taking into consideration relative housing prices, increasing
or stagnant population, and more, our team had a tailored, customized model rather than a
general curve fit.

e Highly Intuitive. By using a logistic model for each set of data, instead of a linear,
exponential, or polynomial, the model allows for a rational short-term prediction and a
long-term equilibrium. This type of model ensures that for any time ¢, the value returned
will align with empirical evidence.

1.7.2 Weaknesses

e Thoroughness of Factors. Given more time, our team could have investigated the
median income’s relationship with housing supply more deeply. Realistically, as prices
continue to rise faster than income, fewer people will be fiscally able to afford a house.
Quantifying this percentage of the population would likely have strengthened our results.

2 1t Was the Worst of Times

2.1 Problem Restatement

Question 2 asks us to predict the homeless population in Albuquerque and Seattle in the next 10,
20, and 50 years.

2.2 Assumptions and Justifications

2-1: The population model created in question 1 appropriately predicts the population of
both cities for the next 50 years.
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e Justification: To understand and predict the homeless population for each city, the
general population trend must be known. Thus, we assume the population model in
Problem 1 is correct, allowing us to narrow our lens to this one specific population.

2-2: A given person who is classified as homeless one year has a 95% of being homeless the
next year.

e Justification: Since 2017, homelessness has been on the rise, with an increase of around
6% [8]. As more people are becoming homeless than leaving homelessness, coupled
with the high mortality rate [9], it is clear that it is hard to escape unstable housing. Thus,
our team decided to assume that 95% of homeless people stay unhoused. This percentage
demonstrates the high stagnation rate, yet accounts for the few that reach stable housing.

2-3: The per-capita homeless population in Seattle and Albuquerque accurately reflects the
percentage of people who become homeless each year.
e Justification: Although more people are not recorded as losing their homes, it is nearly
impossible to find exact data on this percentage. The per-capita statistic quantifies a
general proportion for each state and allows us to derive a rate of homelessness.

2.3 Variables

Symbol Definition Units

h(i) The population of homeless people in a given people
year.
p(i) The predicted population of non-homeless people people
in a given year.
SH The percentage of homeless people that stay %
homeless the next year
CH The percentage of non-homeless people that %
become homeless the next year.

Table 6: Variables for Problem 2

2.4 The Model

For this model, we constructed an asymmetric Markov chain with two absorption states. A
graphic representing the model is shown below:
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Figure 3: Asymmetric Markov Chain for Homelessness

This Markov Chain depends on known values for the population of the non-homeless, which we
derived by subtracting the homeless population from the total population from 2010 to 2022.
Then, we used the logistic model in equation 1 to predict future values for the population of
non-homeless individuals. The values for the extrapolated population of non-homeless are shown
in the Appendix. With this data, we used the following recursive equation to derive our
predictions of the homeless population, shown in Equation 4:

h(i + 1) = SH * h(i) + CH * p(i) 4)

This model is preferable to alternatives because it considers the carrying capacity of various
cities without limiting the homeless population. As housing prices skyrocket, we predict that the
homeless population will increase at a faster rate than the non-homeless population because more
people will not be able to afford housing. To achieve results, we coded the recursive equation
into MATLAB, set the variables as parameters, and iterated over the length of the non-homeless
population array to achieve results for the homeless population. MATLAB helped expedite the
computing process over 50 years, as well as cleanly displayed the results in an accessible format.

2.4 Results

For both Seattle and Albuquerque, we used the 2022 homeless population as the initial, or h(0)
population since it was the most recent available data. The asymmetric Markov Chain produced
the results shown in Table 7 below.

2034 2044 2074
Seattle 31,029 41,297 56,541
Albuquerque 6,874 9,516 12,612

Table 7: Predicted Homeless Populations in Seattle and Albuquerque for 2034, 44, and 74.



2.5 Sensitivity Analysis

Page 11 of 37

To perform sensitivity analysis on the model, we varied the assumptions for SH and CH by 5%
in both directions. The results of our sensitivity analysis are shown in Tables 8 through 11.

2034 2044 2074
Seattle 22,827.73 26,856.00 31,077.33
Albuquerque 5,257.96 6,312.39 6,874.51
Table 8: Lowering SH by 5%
2034 2044 2074
Seattle 43,423.36 70,277.46 152,487.63
Albuquerque 9,200.93 15,627.34 33,969.16
Table 9: Raising SH by 5%
2034 2044 2074
Seattle 29,836.69 39,448.44 53,760.71
Albuquerque 6,564.73 9,060.79 11,985.90
Table 10: Lowering CH by 5%
2034 2044 2074
Seattle 32,217.02 43,145.64 59,322.02
Albuquerque 7,183.12 9,971.06 13,238.24

Table 11: Raising CH by 5%

The results from the sensitivity analysis confirm our expectations. Increasing either the SH or
CH percentages scales the predictions of homeless individuals up and decreasing either
percentage scales the predictions downward. When the SH percentage is altered, the fluctuations
in the predictions are greater because the h(i+1) depends more heavily on the h(i) state than the
p(i) state. In contrast, variations of the CH percentage deviated far less from the original results
due to the low percentage of people transitioning from the non-homeless state to the homeless

every year.

2.6 Discussion

For question 2, we developed an asymmetric Markov chain to model unhoused populations 10,
20, and 50 years into the future for Seattle and Albuquerque. We first found the population of
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non-homeless people from 2010-2022 and used a recursion function to forecast the unhoused
population. Our results showed that in 2034, 2044, and 2074, Seattle would have 31,029, 41,297,
and 56,541 homeless people while Albuquerque would have 6,874, 9,516, and 12,612,
respectively. Our sensitivity analysis shows that our model is robust when the proportion of
housed people that stay housed fluctuates but less so when the proportion of homeless people
that stay homeless fluctuates.

2.7 Strengths & Weaknesses

2.7.1 Strengths

e Adaptability. Our model that was used to predict homeless populations can be applied to
other sets of data. In addition, it can be easily adapted to a dynamic Markov Chain if the
populations of non-homeless people were not restricted.

e Connection To Question 1. The model used drew upon techniques created and justified
in question 1. Cohesion between models helps to make a more complete understanding of
the problem.

2.7.2 Weaknesses

e Oversimplification. While this model is simple, it oversimplifies the homeless
population by only using the change in the non-homeless population, which does not
account for other factors like costs and median income. With more time, this could be
implemented to strengthen our model.

e Volatility in the “Stay Homeless” Population. As seen in our sensitivity analysis, a
small change in the proportion of unhoused people that remain unhoused drastically
impacts our resulting forecasts. Therefore, this model requires precise data, which may
not always exist.

3 Rising from This Abyss

3.1 Problem Restatement

Question 3 asks us to develop a model that tackles long-term homelessness in at least one of the
cities we explored (we chose Seattle). We are tasked with considering both the results for
questions 1 and 2, as well as our model’s adaptability to unforeseen circumstances such as
natural disasters, economic recessions, or increased migrant populations.

3.2 Assumptions and Justifications

3-1: Participants in Rapid Re-Housing will leave immediately when they find a sustainable
housing unit.
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e Justification: The Rapid Re-Housing program provides short-term housing for up to
three months [10]. However, it makes sense for the US government to end support early
if the participant no longer needs the service, given that other unhoused people are
waiting for a spot.

3.3 Introduction to Two-Part Model

Our model is twofold. Firstly, we evaluate pre-existing homelessness prevention systems and
policies through a new, Multi-Criteria Decision Making (MCDM) metric. Our metric relies on
two MCDM models: Grey Relational Analysis and Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS). This helps us determine the optimal solution for tackling
homelessness. Then, using given homelessness data, we developed a queuing network to
evaluate the efficacy of our model based on a set of criteria. The pre-existing homelessness
prevention systems we considered were Permanent Stable Housing, Section 8 Vouchers, Rapid
Rehabilitation Housing, as well as the combinations of Permanent Stable Housing and Section 8,
as well as Rapid Rehabilitation and Section 8. We chose these solutions because they have an
empirical track record of success in Seattle, our chosen city for question 3, and have readily
available data.

3.4 MCDM Model

3.4.1 Grey Relational Analysis Model

The first part of the metric we used to evaluate pre-existing solutions was a Grey Relational
Analysis (GRA) Model. GRA is a Multi-Criteria Decision Making (MCDM) technique designed
to evaluate correlations and similarities between given options and an ideal alternative. It outputs
a Grey Relational Grade (GRG), which is a statistical measure from 0 to 1 that determines the
similarity between a given alternative with the ideal solution. To perform GRA, a set of given
criteria is necessary, for which we used the following 6 criteria in Table 12.

Criteria Variable Beneficial or Explanation
Non-Beneficial
Attribute
Minimum Cost MC Non-Beneficial | The minimum estimated cost to

implement the solution.

Maximum Cost MaC Non-Beneficial | The maximum estimated cost to
implement the solution.

Emotional Benefit EB Beneficial The emotional benefit derived from each
option, relative to the other options.

Success in SPH Beneficial The percentage of people obtaining
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Preventing stable homes through the solution.

Homelessness

Wait Time wT Non-Beneficial | The time it takes for a homeless person
to obtain the solution after applying.

Table 12: Criteria used in GRA, Classified as Beneficial and Non-Beneficial

Using these criteria, we created the following evaluation matrix Yy with m rows and n

columns, based on the solutions and the number of criteria, respectively.

'Mcl MaC, . . . D,
MmcC,

Yi=
MC .. . . Wr
| m m_

With the matrix, GRA can now be performed using the detailed, step-by-step instructions shown
in the Appendix.

3.4.2 TOPSIS Decision Model

The second method we used to rank the program options was the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) Model, which utilizes Euclidean distances.
TOPSIS is based on the concept that the best choice will have the shortest geometric distance
from the positive ideal solution (PIS) and the longest geometric distance from the negative ideal
solution (NIS). The result of the TOPSIS method is a performance score from 0 to 1 that
demonstrates its distance from the NIS. The closer the value is to 0, the less optimal that choice
is.

The same 5 criteria used in the GRA model above are used in this model. To determine
the weights that each of these criteria should receive, we performed entropy, which is an
algorithmic procedure to determine the relative weights of criteria based on their distributions. In

entropy, the evaluation matrix is represented by the variable X " where i and j represent an

intersection in the matrix. The steps to calculate the weights based on entropy and perform
TOPSIS are shown in detail in the Appendix.

3.4.3 Combined Model

Both GRA and TOPSIS have benefits and downsides. For example, GRA tends to be
better at handling data with uncertain information (fuzzy data) and can deal with complex
relationships between the data, but it assumes the criteria have a linear relationship with the
alternatives. In contrast, TOPSIS remains unaffected by outliers and can accommodate a variety
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of alternatives, but it assumes independence and fixed weights. As such, our metric combines
both MCDM models into a system that weights them equally. Using Y, and Pi,which represents

the GRG from GRA and performance score from TOPSIS respectively, our metric, A, is
calculated as

A= () + )
P 2 m m
; R (5)

where m is the number of solutions. Using this metric, each of the solutions can be ranked.

3.4.4 Applying the Metric

To apply the combined GRA and TOPSIS metric, we used the following data shown below for
the city of Seattle.

MC () MacC ($) EB SPH (%) WT (years)

Permanent 16,000 [7] 22,000 [7] 4 96 [7] 0.25 [11]
Section 8 4,831 [12,13]| 5,797 [12,13] 1 69 [14] 2.5[15]
Rapid 7,531 [16] 10,560 [10] 2 70 [10] 0.083 [17]
Permanent +

Section 8 20831 27797 5 98.76 2.5
Rapid +

Section 8 12182 16357 3 90.7 2.5

Table 13: Data used in the Combined Metric Calculation

For emotional benefits, we ranked the plans from 1 (worst) to 5 (best) based on how much
stability the plan would give recipients. While emotional help services are important, we ranked
housing as the most important factor since it would fully provide for physical needs (which take
priority over emotional needs), followed by money, which partially covers physical needs.
Therefore, permanent housing and section 8 funds would provide the most benefit, followed by
permanent housing alone, funds and rapid re-housing (since re-housing only provides temporary
housing), rapid re-housing, and section § funds. For combinations of plans, the costs were added
together since receiving both benefits means both must be paid for. For the success rate at
preventing homelessness, the combined percentage was calculated as the probability of either
plan succeeding, or the union of the two. Finally, the combined wait time was calculated as the
maximum wait time for either program, since an unhoused person could wait for both at the
same time. The results of the metric calculation are shown below.

GRG TOPSIS Score | Calculated Metric (A) Rank

Permanent 0.6421002697 0.74184 0.5392078539 2
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Section 8 0.6 0.29787 0.3312530388 3
Rapid 0.6372943687 0.80553 0.5654032549 1
Permanent + 4
Section 8 0.6 0.22831 0.3008831956

Rapid + Section 8 [ 0.5026649503 0.21688 0.2632526568 5

Table 14: Results of the Combined Metric Calculation

Using our metric, we determined that Rapid Rehabilitation Housing is the most effective solution
to homelessness, with permanent stable housing falling behind as a close second. Both GRA and
TOPSIS put a heavy weight on the wait time category, which agrees with our expectations
because the accessibility to homeless shelters or financial assistance is often the largest barrier to
solving homelessness.

3.5 Queuing Model

Given that Rapid Rehabilitation Housing proved to be the most effective, pre-existing solution to
homelessness, we developed a simple queuing model to predict its effect on the homeless
population in Seattle.

3.5.1 Developing the Model

Ordinarily, RRH’s success rate of approximately 70% [10] and maximum duration of 3 months
[10] would permit a simple model that assumes a constant number of successful participants each
3-month time frame. However, entering and leaving RRH locations is a continuous process and
there is a wait time of approximately one month to get RRH [17]. Additionally, the unhoused
population forms a line (or queue) that updates each time someone in the program finds stable
housing and leaves early or is forced to leave. Furthermore, the number of people finding
sustainable housing each month is not set given the inherently inconsistent process. Therefore, a
queueing model with fixed arrival times (meaning that once someone leaves another takes the
same spot in a negligible amount of time) and repeated random iterations best represent the
situation. To code this network, we used nested for-loops in MATLAB to go through 3-month
chunks of time. Within each iteration, the states of homeless people and homeless people who
found stable housing were tracked and consistently updated. This process was preferable to
simple calculations because it allowed us to run numerous iterations and perform quick
sensitivity analyses. In addition, similar to the carrying capacity model, defining our variables
parameters makes the code easy to update in the event we want to track another population, such
as not homeless but qualified for RRH

3.5.2 Executing the Model
To simulate the optimal impact of the RRH queue over several years, each year was broken into
12 months to account for early departures. Then, since the program’s success rate at preventing
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future homelessness is 70% for 3 months, the probability of failing to find sustainable housing 3
months in a row would equal the program’s overall failure rate, or

a-pPyY=1-p_ (6)

where P3m is the program’s overall success of 70% and Pm is the success rate for one month,

which was calculated to be about 33%.

To account for the participants leaving earlier than expected, the participants were
grouped into stages based on whether they were in Month 1, Month 2, or Month 3 of the
program. Each month, since each participant has a random (since the city is an uncontrolled
environment) 33% chance to leave on average, a Monte Carlo simulation was performed to
determine the number of successful participants. Those with more months were transferred to the
next month's group and those unable to find sustainable housing would return to being unhoused,
as visually shown below in Figure 4.

Permanently
Housed

? P = 33%

P =339 _p = 33%

Unhoused —» Month 1 P=67% Month 2 P = 67% Month 3

30%

Figure 4: Queueing Model Diagram
3.5.3 Results

Using the model above, the average number of successful participants over 1 year and 5 years
was calculated using 100 simulations. The results are shown in Table 15 below.

Number of Years People in Stable Housing Standard Deviation
1 1687.57 33.40
5 8431.83 63.55

Table 15: Results of Queuing Model

Therefore, the current number of RHH units can optimally help an average of about 1680 people
per year.
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3.6  Sensitivity Analysis

To test the model’s robustness, the RHH units’ capacity and the rate of finding sustainable
housing were varied by 10% in separate trials. The results of the Monte Carlo simulation of 100
5-year-long trials are shown below in Table 16.

Capacity Capacity Success Rate Success Rate
+10% - 10% + 10% - 10%
Number Moved to | 9,252.97 7,570.28 9,278.38 7,578.44
Stable Housing
Standard 81.87 77.60 65.69 62.00
Deviation

Table 16: Sensitivity Analysis based on raising and lowering Capacity and Success Rate

Therefore, the model is somewhat robust, as a 10% change in either variable leads to an
approximately proportional change in the number of people moved to stable housing. However,
the success rate appears to preserve the standard deviation of the original model, which contrasts
with the standard deviations in the capacity systemically. Therefore, the model overall is more
robust when dealing with a change in success rate than a change in capacity.

3.7 Discussion & Adaptation

For question 3, we developed a metric that combined Grey Relational Analysis and
TOPSIS, two Multi-Criterion Decision Making Models, to rank the best response program for
homelessness in Seattle. For both MCDM techniques, we considered 5 independent criteria,
which were minimum cost, maximum cost, emotional benefit, success rate, and wait time. After
applying our metric to data we found from research, the decision models returned Rapid
Rehabilitation Housing to be the most optimal, with Permanent Stable Housing coming in a close
second.

Next, our team developed a queuing model to predict its effectiveness. By simulating the
entering and exiting of unhoused people in the program, we could quantify its success. Its ability
to optimally move around 1680 unhoused people each year is, at least in the short term, a viable
strategy for reducing homelessness in Seattle, which corroborates results from our earlier metric.

We believe our model is highly adaptable to unforeseen circumstances. At the bare
minimum, each of the solutions presented can be qualitatively evaluated. For example, Section 8
Vouchers would be poor in the face of economic recession, as the value of the dollar would
decrease. However, they can be very useful during natural disasters, when the money can be used
to find shelter and protection from storms, hurricanes, etc. In contrast, Permanent Stable Housing
would fare poorly during natural disasters due to its susceptibility to destruction, but would
likely retain its property value during economic recession. To account for these factors, we



Page 19 of 37

would add a “resistance” criteria in our matrix that ranks and/or quantitatively justifies scores for
each of the options. Then, when our top option is identified, we would add noise to the Queuing
Model to disrupt the natural flow of homeless populations between sheltered states.

3.8 Strengths & Weaknesses

3.8.1 Strengths

e Multiple Methods. By using both the GRA and TOPSIS decision models, we could
compare and contrast our results from two differing methods. This was especially strong
because our results correlated with each other, reflecting the breadth and depth of our
considerations. In addition, attaching a queuing network model enabled both a
cause-and-effect investigation of the question.

e Modeling Depth. We took into account multiple societal factors that the programs
impact. Our model can therefore better represent the situation and not oversimplify it. We
also did not include excessive factors that would overly complicate the evaluation metric.

e Objectivity. Since TOPSIS and Grey Relational Analysis, both determine weights based
on the data and not from subjective input, the metric will not be biased.

3.8.2 Weaknesses

e Limited Data Considerations. In addition to not considering solutions to homelessness
in Albuquerque, NM, we also lacked important parameters in our queuing network (ie.
wait time) which reduced its complexity.

e Non-Standardized Metric. Since TOPSIS and Grey Relational Analysis produce results
based on the differences in data and the number of options, the metric is not standardized.
That means that even if one option has the same data in two different tests, its metric
value will be different based on the data of other options.

4 Conclusion

In this paper, we began by predicting the number of housing units in 2034, 2044, and
2074 in Seattle, Washington, and Albuquerque, New Mexico. We explored both a logistic growth
model and a carrying capacity model, analyzing the effect that population growth would have on
the demand, and therefore supply, of housing units. Then, we transitioned to predicting the
homeless population in 2034, 2044, and 2074 in Seattle and Albuquerque. For this section, we
drew upon techniques from the first question 1 and used an asymmetric Markov chain to model
future homeless populations in both cities. Finally, we evaluated solutions to homelessness in
Seattle by a) determining the best solution using MCDM models and b) evaluating the best
solution by discovering its impact on Seattle's homeless population through a queuing model.

We believe that the housing crisis and homelessness is a rapidly evolving issue that
requires careful consideration by policymakers, mathematicians, and economists to fix. Our
paper takes the first step in doing so by demonstrating the power of mathematical models to
understand the danger of leaving these problems unattended.
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6 Appendix

6.1 Question 1

6.1.1 Graphs

MATLAB Logistic Model for Seattle Population
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MATLAB Logistical Model for Albuquerque Population
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6.1.2 MATLAB Code

Carrying Capacity Model for Seattle Housing Units

% Coefficient for Growth Rate
k = .0491;

% Maximum number of Houses

K = 4.715;

% Time to run the code through

T =20:1:70;

3R

Defining the differential Equation

h = @(t,y)[k.*y(1).*(1-(y(1)/K))]

% Utitilize the ode45 function to solve
[T za] = ode45(h,T,[3.02465])

% Graphing the Logistics Function

plot(T,za(:,1),"'*")
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hold on

% Data for the Seattle Housing Units

X

[0123456789 10 11 12];

[3.02465, 3.04164, 3.06694, 3.09205, 3.11286, 3.15950, 3.22795, 3.34739,
3.44503, 3.54475, 3.67337, 3.62809, 3.72436];

<
1l

% Graphing Original Data on the same plot
plot(x,y,'o")

hold off

% Graph labels

xlabel('Years Since 2010');

ylabel( 'Number of Housing Units');
legend('Carrying Capacity Model', 'Original Data');
legend("Position", [©.15191,0.80076,0.36272,0.088462])
% Calculating values for specific years

% Values for years 24, 34, and 64

years = [24, 34, 64];

values = interpl(T, za(:,1), years);

% Displaying the values

disp('Values for specific years:');

disp(['Year 24: ', num2str(values(1))]);
disp(['Year 34: ', num2str(values(2))]);

disp(['Year 64: ', num2str(values(3))]);

Carrying Capacity Model for Albuquerque Housing Units

% Coefficient for Growth Rate
k = .0557;
% Maximum number of Houses

K = 2.717;
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% Time to run the code through

T =0:1:70;

3R

Defining the differential Equation

h = @(t,y) [k.*y(1).*(1-(y(1)/K))1;

% Utitilize the ode45 function to solve
[T za] = ode45(h,T,[2.34891])

% Graphing the Logistics Function
plot(T,za(:,1),"'*")

hold on

% Data for the Albuquerque Housing Units

X

[0123456789 10 11 12];

[2.34891, 2.37735, 2.39718, 2.40277, 2.40961, 2.41326, 2.42070, 2.43402,
2.44382, 2.45476,2.47926, 2.52924, 2.55178];

<
1}

% Graphing Original Data on the same plot
plot(x,y,'o")

hold off

% Graph labels

xlabel('Years Since 2010');

ylabel( 'Number of Housing Units');
legend([ 'Carrying Capacity Model'’

‘'], 'Original Data');
legend("Position", [0.14631,0.80162,0.36272,0.088462])
% Calculating values for specific years
% Values for years 24, 34, and 64
years = [24, 34, 64];
values = interpl(T, za(:,1), years);

% Displaying the values

disp('Values for specific years:');
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disp(['Year 24: ', num2str(values(1))]);

disp(['Year 34: ', num2str(values(2))]);

disp(['Year 64: ', num2str(values(3))]);

6.2 Question 2

6.2.1 Data Tables

2010 586218
2011 594202
2012 604017
2013 615575
2014 628901
2015 642895
2016 658119
2017 676602
2018 696711
2019 713106
2020 729500
2021 720871
2022 736330
2023 747200
2024 757670
2025 767740
2026 777410
2027 786690
2028 795580
2029 3804090
2030 812220
2031 819980
2032 827380
2033 834430
2034 841140
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2035 847510
2036 853570
2037 859330
2038 864780
2039 869950
2040 874850
2041 879480
2042 883860
2043 888010
2044 891920
2045 895610
2046 899100
2047 902390
2048 905490
2049 008410
2050 011160
2051 913750
2052 916190
2053 018490
2054 920650
2055 022680
2056 924590
2057 926380
2058 028070
2059 929650
2060 031140
2061 032530
2062 933850
2063 035080
2064 936230
2065 937320




Page 27 of 37

2066 938330
2067 039290
2068 040180
2069 941020
2070 041810
2071 042550
2072 043240
2073 043890
2074 044500
Extrapolated Non-Homeless Population in Seattle
2010 529401
2011 537361
2012 543652
2013 548641
2014 552322
2015 554805
2016 555637
2017 555400
2018 557862
2019 557850
2020 558861
2021 560769
2022 560020
2023 560220
2024 560370
2025 560480
2026 560550
2027 560610
2028 560650
2029 560680
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2030 560700
2031 560720
2032 560730
2033 560740
2034 560740
2035 560750
2036 560750
2037 560750
2038 560760
2039 560760
2040 560760
2041 560760
2042 560760
2043 560760
2044 560760
2045 560760
2046 560760
2047 560760
2048 560760
2049 560760
2050 560760
2051 560760
2052 560760
2053 560760
2054 560760
2055 560760
2056 560760
2057 560760
2058 560760
2059 560760
2060 560760
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2061 560760
2062 560760
2063 560760
2064 560760
2065 560760
2066 560760
2067 560760
2068 560760
2069 560760
2070 560760
2071 560760
2072 560760
2073 560760
2074 560760

Extrapolated Non-Homeless Population in Albuquerque

6.2.2 Code For Question 2

% Define constants
SH = 0.95; % Value of SH constant

CH

0.00326; % Value of CH constant

% Example values of p(i) (replace with your own data)

p = [736330, 747200]; % Sample values of p(i)

% Initial value of h

h_initial = 13368; % Initial value of h

% Compute h(i+l) using the model

h = zeros(size(p)); % Initialize h array

h(1) = SH * h_initial + CH * p(1) % Compute h(2) based on the initial value

% Compute h(i+l) for i > 1
for i = 2:numel(p)

h(i) = SH * h(i-1) + CH * p(i);




end
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% Display the results

disp('Values of h(i+1):');

disp(h);

6.3 Question 3

6.3.1 Explanation of GRA

To perform GRA, we can follow the following steps:

1.

Use these categorizations to process the data using the following equations:

Beneficial Attribute:

Y, (k) = min y’ (k)
max y:)(k) — min yf(k) (7)

y (k) =

Non-Beneficial Attribute:

max y; (k) =y, (k)
max y?(k) — min y?(k) (8)

y (k) =

where k represents the criteria, y?(k) represents the data value of the program option for
the kth criteria, max y?(k) is the largest value of yf(k) for the kth criteria, and

min y? (k) is the smallest value of the y[,)(k) for the kth criteria. The result of this step is
l l

an equal-sized matrix as y; with normalized values between 0 and 1, known as the
normalized matrix.
Calculate the grey relational coefficient, Ei(k), using the following equation

El(k) - Aoi(k) +gAmax (9)
where Aoi(k) represents the deviation sequence for each of the criteria and g represents

the distinguished coefficient. In GRA, the distinguished coefficient is a parameter that is
used to adjust the weight of the deviation sequence. A value of 0.5 for the distinguished
coefficient is commonly used, although it can be adjusted. The equations for the deviation
sequence, Amin, and Amax are shown below.

8,00 = [y, =y, | (10)
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A = max max ”y:,(k) - J’;(k) ” (11)
A, = minmin |y;(k) - y;(k) H (12)

In this set of equations, the deviation sequence can be explained as the absolute value of the
difference between the maximum value in the normalized matrix (the ideal value of 1) and each
of the values in the normalized matrix. The delta minimum and maximum are the smallest and
largest values of the entire deviation sequence, respectively. The output of this step is another
matrix of the same size as Yy that has the grey relational coefficient in each of its elements.

3. Calculate the Grey Relational Grade (GRG), \Z using the following equation

v, = =X &k (13)
k=1

where 7 is the number of criteria (in this case 5). The result of this step is a single column
with individual GRGs for each option.

6.3.2 Explanation of Entropy Weighting and TOPSIS

To derive entropic weights, we can follow the following steps:

1. Normalize the evaluation matrix to create the project outcomes P where

X

p = —i-
j Sx (14)
i=1 Y
2. Compute the entropy measure, E . of the project outcomes.
1 m
E = Zom El ®,)(n,)) (15)
3. Define the objective weight, W based on the entropy measure.
1-E,
W=
g (1-E) (16)
=t

Note that entropy requires values greater than zero because the natural log of zero does not exist.
Hence, we replaced zeros with ones when performing entropy, which will have a negligible
impact on the data. TOPSIS can now be performed with the following steps:
1. The same evaluation matrix as in entropy was reconstructed with m rows and n columns,
based on the number of programs and the number of criteria, respectively. This matrix is
represented by the variable (X ij)mxn, where each 1 and j represent an intersection in the

matrix.
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2. Next, the matrix was normalized through Normalization Under Root Summation, as
shown in the equation below

X = —i—

ij — (17)
~Alzx
j=1

where each of the values in the matrix is normalized to a value between 0 and 1. This is
done by dividing each value by the square root of the sum of the squares of all values in
each column. This is crucial as many of the criteria are not measured on the same scale. If
the matrix was not normalized, values such as MV and F would be considered far more
important than factors like CC or WA, which are on a much smaller numerical scale. The
bigger a normalized value is, the bigger it is relative to all the other values in that criteria.

3. The normalized matrix is then properly weighted, using the entropic weights explained

above. The normalized matrix, X i is multiplied by the weight matrix w, creating the

weighted normalized matrix Vi/"

Vo—w X (18)

ij o
4. The best and worst values for each criterion can then be determined by picking the lowest
and highest values from each column. Since there is a multitude of factors in play, each
program may have drawbacks. Finding the worst and best of all the choices in each
criterion constructs a metric to compare the rest of the options. These “best” and “worst”

. . + - .
values are expressed in row matrices V ; and V ; respectively, each the same length as

the weighted matrix Vl_j.

5. After finding the best and worst values for each criterion, the total Euclidian distance
from the PIS and NIS to each of the programs be calculated using the equations below

n
st = \/ WV —vy (19)
L ]:1 Yy ]
a— n a—
s = \/j:1(vij -V

where S +L_ and S _l_ are the distances from the PIS and NIS for each program. Essentially, using

2 (20)

the standard distance formula for a geometrically Euclidean plane, the total distance from the

optimal PIS and NIS for each criterion is determined and added together for each land use.

Graphically, the coordinate point (V+1, s A V+n_ v V+n) and

(V_l, V_Z, S V_n_l, V_n) represents the most and least ideal points in the nth dimensional

plane since each criterion adds another plane in which distance is measured. We then measure
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the distance from each of the two points to the m number of choices listed, each represented by
its own coordinate point.
The higher the S value, the farther it is away from the respective point. To find the most

optimal of all choices given to us, we look for the smallest S +i value and the largest S _i.

If there was one option that had the PIS for all of its criteria, its S +l, would equal zero,
showing that it contains all the best values from all rows, and therefore has a distance of
zero to the PIS. Inversely, a point that shows a § _l, of zero shows that it contains all the

NIS values in all criteria, making it the worst choice possible.
6. However, these S values almost always return a number between 0 and 1. To find the

: + : - .
choice close to S ; but still far from S s we determine the performance score P,

represented by the equation

s (21

resulting in a normalized value between 0 and 1. This expression is unique as it takes into
account not only the proximity to the best choice but also the distance from the worst. As
we want the distance to the NIS to be large, the larger the performance score is, the better
it performs.

6.3.3 TOPSIS and Entropy Weighting

%Shannon Entropy: Define Data: Each row is an option, each column is a criteria

X = [16000 22000 4 96 0.25
48315797 1 69 2.5
735110560 2 70 0.083

20831 27797 5 98.76 2.5
12182 16357 3 90.7 2.5];

% Normalize the Values in Matrix
[n, m] = size(X);
normalized _data = zeros(n, m);
for i = 1:m

column_sum = sum(X(:,i));

normalized data(:,i) = X(:,i) ./ column_sum;
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end

% Calculate sum of X*1nX

log normalized = normalized data .* log(normalized_data);
new_sum = sum(log _normalized);

%Finding Ej: Normalizing Log Values

Ej = -1/log(n) .* new_sum;

%Finding Objective Weight for data

Ej comp =1 - Ej;

Ej_sum = sum(Ej_comp);

W = Ej_comp ./ Ej_sum

% TOPSIS Method
Wcriteria = [0,0,1,1,0];

% @ means non-beneficial (i.e. smaller is better), 1 is beneficial (larger is
better)

% Different normalization technique
Xval=length(X(:,1));
Y = zeros([Xval,length(W)]);
for j=1:length(W)
for i=1:Xval
Y(1,3)=X(1,3)/sart(sum((X(:,3)."2)));
end
end
Normalized Matrix = num2str([Y]);
% calculating the weighted normalized matrix
for j=1:length(W)
for i=1:Xval

Yw(i,3)=Y(i,3).*W(J);
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end
end
Weighted Normalized Matrix = num2str([Yw]);
% calculating the positive and negative best
for j=1:length(W)
if Wcriteria(1,j)== 0
Vp(1,3)= min(Yw(:,3));
vn(1,3)= max(Yw(:,3));
else
Vp(1,3)= max(Yw(:,3));
Vn(1,j)= min(Yw(:,3));
end

end

Positive_best = num2str([Vp])
Negative best = num2str([Vn])
% Euclidean distance from Ideal Best and Worst
for j=1:length(W)
for i=1:Xval
Sp(i,3)=((Yw(i,3)-Vp(3))."2);
Sn(i,3)=((Yw(i,3)-Vn(3))."2);
end
end
for i=1:Xval
Splus(i)=sqrt(sum(Sp(i,:)));
Snegative(i)=sqrt(sum(Sn(i,:)));
end

% calculating the performance score
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P=zeros(Xval,1);

for i=1:Xval
P(i)=Snegative(i)/(Splus(i)+Snegative(i));

end

Performance_Score = num2str([P])

6.3.4 Queuing Code

% Set variables for current homeless population (useful in case of simulating
many years), duration of RRH, success probability, capacity of RRH units, and
number of years

num_homeless = 13368;

rehab_duration = 3; % in months
prob_leaving each month = 1 - (0.3)"(1/3)
rehab_capacity = 425;
simulation_duration_years = 1;

% Initialize variables for initial state (proportional distribution of month 1
to month 2, meaning month 2 has 67% of month 1, and so on...)

num_stable housing = 0;

month_1_rehab = 201;
month_2_rehab = 134;
month_3 rehab = 90;

% Simulation loop
for year = l:simulation_duration_years
% For each year and month
for month = 1:12
% Track individuals exiting rehab using Monte Carlo simulation

num_out_of_rehab = round(prob_leaving_each_month * (month_1 rehab +
month 2 rehab + month_3 rehab));
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num_stable _housing = num_stable housing + num_out_of rehab;

num_homeless = num_homeless + (1 - prob_leaving each_month) *
month_3 rehab;

num_out_of rehab
% Update non-successful individuals as progressing to next month

month_3_rehab

month_2 rehab * (1 - prob_leaving_each_month);

month_2 rehab = month_1 rehab * (1 - prob_leaving each_month);

% Getting new rehab participants
month_1 rehab = rehab _capacity - month_2 rehab - month 3 rehab;
num_homeless = num_homeless - month_1_rehab;
end
end

fprintf('Number of homeless after %d years: %d\n', simulation_duration_years,
num_homeless);

fprintf('Number in stable housing after %d years: %d\n',
simulation_duration_years, num_stable_housing);
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