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Specifically for Team # 16968 —Submitted at the Close of Triage Judging: 

COMMENT 1:  You demonstrated a thorough understanding of the subjects.

COMMENT 2:  I like your work and results for Q1.  I think you may have done a lot of extra work in Q2 for little result.  

COMMENT 3:  Well done; You have lots of fresh and creative ideas; Good job with assumption statements; Highly organized.

COMMENT 4:  Nice summary!

Good job in Q1. Your strengths and weaknesses demonstrate your deep understanding of modeling.

Using random forest analysis in Q2 is good idea. Work on explaining your steps, what logic did you use when writing your code?

Specifically for Team # 16968 —Submitted at the Close of Technical Computing Judging: 

The judges were very impressed with this team’s solution to Part 1. They employed a Bass diffusion model to simulate the adoption 
of electric bikes in the population. To integrate the model with historical e-bikes sales data, the team fine-tuned model parameters to 
minimize its sum-of-squared prediction error. To do so, they wrote an objective function, which was minimized using a gradient descent 
method that was well implemented in Python. Overall, a very creative and effective use of computing! Judges found the team’s solution 
to Part 2 less compelling -- it was difficult to follow the approach at times, and the use of a heavy duty machine learning method like 
Random Forest regression was not well justified given the amount of data available.
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Bikers? I Hardly Know Her!

Executive Summary
Although a bountiful amount of attention and discussion has been attributed to

the growth of electric car use in the United States, the lesser-known but arguably more
significant member of the movement towards electric vehicles is that of electric bikes. In
the vast majority of urban areas in the United States, bike lanes and roads are becoming
increasingly dominated by electric bikes, or e-bikes, becoming a core aspect of American
transportation systems [1]. Due to this significant growth in recent years in the United
States and worldwide [6], activists and policymakers have begun investigating the
phenomenon, both the given motivations to cause recent trends, as well as the
nationwide impacts of the fad. Ultimately, both of these results should be of great
importance to the US Department of Transportation, helping to both promote additional
e-bike sales, as well as alter policy based on the trends of its growth.

First, we developed a model to predict not only the trend of future e-bike sales but
also the concrete values of such in the years 2025 and 2028. Viewing e-bikes as a new
innovation entering the market, we opted to solve and alter the pre-existing
Bass-Diffusion model to predict growth patterns. After solving, we utilized two variable
regressions to calibrate the model to existing historical data. In order to quantify such
values, examine long-term behavior, and minimize error, we then modeled this equation
using a computational model in Python, utilizing both our mathematical expression, as
well as gradient descent. Such resulted in an estimated 1.556 million e-bikes purchased
nationwide in 2025, and 2.808 million e-bikes in 2028.

Next, we utilized random forest regression to determine which factors had the
most significant influence on consumers purchasing e-bikes. Initially, before modeling, a
quantified representation of environmental concern [6] as compared to e-bike sales
quickly deemed that factor insignificant and was thus not considered in our
computational model. Thus, we quantified cost and coolness (meaning an inclination to
purchase due to popularity), with cost using a series of linear regressions to measure the
amount of money saved when switching from other transportation methods to e-bikes,
and coolness as a function of existing e-bikes. Our model yielded 4 cost importance
values, one per each previously-utilized method of transport (19.98%, 19.70%, 20.42%, and
20.05%), as well as an importance of the previously mentioned ‘coolness’ factor (20.05%).
Thus, our model predicted environmental concern to be negligible, but concerns of
cost-efficiency and the coolness factor to be equally factored and both significant factors
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in e-bike sales.

Finally, we widened the scope of the problem to the surrounding effects of
increased e-bikes on the community and environment. Deciding carbon emissions and
health to be the most significant outcomes of e-bike popularity, we created two separate
models to articulate the overall impact on both of these areas. Using a system of multiple
variables and weighted summation, each model output values to indicate either an
improvement or worsening of both categories, with the magnitude indicating the extent
of each. Our model predicted that the growth of electric bikes would increase calories
burnt during travel by 17.45% in 2023, thus having an overall positive impact on health
and wellness. As for emissions, in the year 2023, our model predicts that 3.81 fewer
metric tons of carbon emissions will be produced during transportation.
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Introduction
The adoption of electric bicycles, motivated by a wide variety of factors and

arguably accelerated by the pandemic, has not only seen a rise in recent sales but is
projected to have long-term benefits on national carbon emissions

In the first section of the problem, we were tasked with predicting e-bike sales in
2025 and 2028. Then, in the second section, we modeled the significance of various
factors on the growth of e-bikes, notably money saved and the so-called “coolness
factor”. Finally, the environmental impacts were quantified, presenting the Department of
Transportation with tangible impacts seen from the effects of parts 1 and 2.

As for global assumption, an electric bicycle is continually defined to be a
two-wheeled vehicle with fully operable pedals, and a motor under 750 watts [18]. They
primarily drive on roads or bike lanes of roads and are mainly used in urban areas in the
United States [10].

1. Question 1: The Road Ahead
1.1. Defining the Problem:
In this problem, we were tasked with creating a model to predict the number of e-bikes
sold two and five years from now, in 2025 and 2028, in the United States.

1.2. Assumptions:
1. People only own one e-bike: An individual has no reason to own more than a single
e-bike. Bike rides should always be a round trip, so no benefit is gained by owning
multiple e-bikes.

2. Assumes the US population is at a constant 320,000,000: According to the US Census
Bureau, the population only increased by 0.1% in 2021 [2], thus the number of consumers
stays relatively constant. Fluctuations in population also do not create significant
changes in our model.

3. The number of e-bikes in the US before 2012 is 300,000: Given the limited data of
e-bike sales prior to 2012, we found that an estimated 200,000 e-bikes existed in 2009 [5].
We assumed that 100,000 more e-bikes were sold in 2010 and 2011 based on sales in 2012
[3], leaving us with 300,000 e-bikes at the start of 2012.

4. The initial proportion of people in the US with an e-bike is : The𝐹
0

= 370,000
320,000,000

number of e-bikes sold in the US before 2012 is 300,000 by assumption 3, and an

additional 70,000 e-bikes were sold in 2012.

5. Bass diffusion applies for at least 5 years: Although in the long term, the Bass Diffusion
model struggles with accuracy due to new innovation, in the time frame in which our
model applies, we assume the model to hold [7]
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1.3. Variables

Symbol Definition Unit Value

𝐹(𝑡) Proportion of Americans who own an
e-bike at the end of a given year

#

F0 Proportion of Americans who own an
e-bike in 2012 (constant)

n/a 370,000
320,000,000

𝑓(𝑡) , or the change in the proportion of𝑑𝐹(𝑡)
𝑑𝑡

Americans who own an e-bike

n/a

𝑝 Coefficient of innovation (constant) n/a 1. 32 × 10−4

𝑞 Coefficient of imitation (constant) n/a 1. 98 × 10−1

t Number of years after 2012 years

P Population of the US people 320,000,000
Table 1.3.1: Variable symbols, definitions, and units used in the model

1.4. The Model
The adoption of e-bikes in the United States represents a new product being

adopted into a population and thus can be reflected through the Bass-Diffusion model.
The Bass-Diffusion model is helpful in this situation, taking into account repeat or
replacement purchases that contribute towards total purchases.
We employ the Bass-Diffusion model defined as:

𝑓(𝑡)
1−𝐹(𝑡) = 𝑝 + 𝑞𝐹(𝑡)

After substituting in and setting the initial condition of ,𝑓(𝑡) = 𝑑𝐹(𝑡)
𝑑𝑡 (𝑡,  𝐹(𝑡)) =  (0,  𝐹

0
)

solving the differential equation for resulted in:𝐹(𝑡)

.𝐹(𝑡) =  
1−

𝑝(1−𝐹
0
)

𝑞𝐹
0
+𝑝 𝑒−𝑡(𝑝+𝑞)

1+
𝑞(1−𝐹

0
)

𝑞𝐹
0
+𝑝 𝑒−𝑡(𝑝+𝑞)

Employing a multivariate regression in Python with data from 2012 to 2022 [3,4,6], we

utilize pre-existing data to calibrate the model and calculate the values of and . The𝑝 𝑞
values of and are given in table 1.3.1.𝑝 𝑞

Now, with all variables determined in the model of the proportion of citizens with
e-bikes, we scale this to the population. The number of units sold each year is given by:
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.𝑃 · (𝐹(𝑡) − 𝐹(𝑡 − 1))
Recall that is defined as the number of years after 2012, and thus in 2025, , and in𝑡 𝑡 = 13
2028, . Results of such can be found in Table 1.5.1.𝑡 = 16

1.4.1 Technical Computing
Python was used to optimize parameters and . Due to the complex equation𝑝 𝑞

and multiple variables to optimize for, an exact analytical solution is likely not possible.
Instead, an iterative descent gradient algorithm can be used to find a numerical solution.

The algorithm aims to minimize cost, C, which is defined as the sum of squares
between expected and predicted values. Cost is minimized when the partial derivatives

of cost with respect to and are equal to 0.𝑝 𝑞
In addition to performing multivariate regressions and data analysis through

computer programming tools (both of which are not otherwise possible), our model
additionally utilizes gradient descent to minimize error within the model. By following
incremental vectors of greatest decline along the function, gradient descent allows us to
strengthen our model by best-minimizing error, as well as find the best fit between
predicted and exact outputs. Each successive iteration is calculated as:

.𝑞, 𝑝(𝑛 + 1) = 𝑞, 𝑝(𝑛) − 𝐿𝑅 * 𝐶' * 𝐶
LR is the learning rate that controls how far the algorithm skips along the gradient. This
value is kept small to ensure it doesn't jump over the minimum. To ensure as many local
minimums are examined to find a global minimum, the algorithm is run many different

times with different initial guesses of and . The and values found for the lowest𝑝 𝑞 𝑝 𝑞
cost are in table 1.3.1.
Gradient descent, an optimization algorithm, is rather inefficient and hefty when not
performed by computational processes, and thus was best performed through our code.
Our code was validated to be accurate by graphing the Bass Diffusion model with given
data. Fig 1.5.2 shows the similarity between the data and the regression.

1.5. Results

2025 2028

# of e-bikes sold in the US (thousands) 1,556 2,808
Table 1.5.1: Number of predicted e-bikes sold in the United States after 2 and 5 years, i.e. in the year 2025 and in the year 2028.
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Fig 1.5.2: Model 1.4 until 2032, showing known data used to regress p and q specifically. Note that this data is the cumulative number
of bikes sold, not the number of bikes sold per year. Not shown is additional growth past known points, showing points from table
1.5.1, as well as the eventual capping off of growth due to market saturation.

1.6 Discussion

Strengths
● As new data is acquired, it is easy to adjust the constants in our equation to refit

our model. This allows our model to be updated in the future.

● The values of and are consistent with their typical values. , the coefficient of𝑝 𝑞 𝑝
innovation, has an average value of 0.03 but is often less than 0.01 [7]. Our value of

, the coefficient of imitation, is also similar to the average value of 0.38 [7].𝑞

Weakness
● The only factors truly accounted for by the Bass-Diffusion model are innovation,

imitation, and initial condition. The model doesn’t consider the effects of factors
in the population, for example: average income, population density, age, etc. The
values of p and q are an abstraction of many variables in real life, and thus makes
the model difficult to adjust for changes in real life.

● Our model assumes that e-bikes as an idea catch on as a new product and are
readily adopted into the population. However, it is possible for e-bikes to turn into
a fad in the future, but as it is impossible to accurately assess society's opinion of
e-bikes, our model still holds.
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Sensitivity Analysis

Fig 1.6.2: Probabilities of model’s number of e-bike estimations
in 2025 given random fluctuations in p and q. Fig 1.6.2: Probabilities of model’s number of e-bike estimations

in 2028 given random fluctuations in p and q.

We used a randomized Monte Carlo model to analyze the overall sensitivity of our

results. We varied and each by a relative 10% using a normal distribution and𝑝 𝑞
simulated resulting bike sales. We repeated this random process 10,000 times. For 2025

and 2028, a 10% change in and yields a 10.09% and 15.87% standard deviation,𝑝 𝑞
respectively. With 10% changes being rather large in the context of the preciseness of the
model, we deem these values to mark our model as being somewhat sensitive and
resistant to small changes rather than larger changes.

Validation
- Assumption: The growth of electric bikes in France, USA, and Europe are similar

to each other: France, USA, and Europe are most similar to each other in terms of
economy, transportation culture, and development when compared with Asian
countries.

Using the growth in other countries allows us to more accurately predict the
future of the US. A meta-data regression produces a single regression connecting the 3
data sets together. To correct for differences in locations, all 3 sets of data were
normalized to the population, to find electric bikes per capita. To account for the
different stages of growth, all 3 sets of data were lined up to when their respective
thousand bike sales per million persons were equal to 1.5. 1.5 was chosen because it was
a common point. Linear interpolation was used to find a decimal year.

Finally, the meta-data regression was done on Desmos with an exponential

function. This yielded the following regression with an of 0.87:𝑅2
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Fig 1.6.3: values yielded from alternative meta-data regression, echoing those of our model

This resulted in the following values for years 2025 and 2028:

2025 2028

# of e-bikes sold in the US (thousands) 1,661 3,059

These values closely match the values produced by the Bass Diffusion Model,
strongly validating our model’s output results.

2. Question 2: Shifting Gears
2.1. Defining the Problem: Due to the debate surrounding what factors impact

sales trends, we were tasked with analyzing the significance of various factors on
increased e-bike sales.



Team #16968 Page 9

2.2. Assumptions
1. Americans drive 9 miles a day [9] at 25 miles a gallon [14], generalizing these average

values to all Americans. Thus, in one year, an average American will drive 3285 miles.
The average cost of gas per mile [6] times miles per year equals the cost of gas per

year ( ).𝐺
𝑦

2. E-bike owners replace all car trips with e-bikes: When focusing on urban areas, the
most practical option will become e-bikes, allowing e-bikes to replace all car trips.

3. The cost of charging an e-bike can be calculated each year: E-bikes average 1.02 kWh
per 100 miles and 1440 miles of travel per year [8], meaning an e-bike uses 14.688
kWh annually. Also, e-bike chargers consume as much energy as they supply, so the
total electricity used is double [8]. Multiplying the annual cost of one kWh using data
from the US Bureau of Labor [17] by 14.688, then doubling it, results in the annual

cost of electricity for an e-bike ( ).𝐸
𝑦

4. Environmental concern is not a significant factor in motivating consumers to buy
e-bikes: after quantifying survey data regarding environmental concern per year [6],
data was relatively constant over time, as seen in Figure 2.2.1 Because of this, our
simulation disregards environmental concerns, opting to analyze other factors.

5. Only individuals without children will switch to e-bikes: due to the lack of practicality
with transporting children, when looking at ratios of the population as a whole, only
those without children will consider purchasing e-bikes.

6. All e-bikes have a lifespan of ten years and are well maintained at a negligible cost:
E-bikes can have a useful lifespan of up to ten years [15], so we assume all of the
vehicles are properly taken care of at a very low cost compared to that of cars,
allowing every e-bike to reach an age of ten.

7. The price of purchasing an e-bike is assumed to be $182.50 per year: An e-bike costs
$1825 to buy on average [12], thus by distributing the cost across 10 years, $182.50 is
paid per year for the price of the e-bike.

8. Coolness is defined as the number of e-bikes sold already: It makes sense that as the
number of e-bikes sold increases, coolness increases since one sees more e-bikes
around. People see how others are enjoying the product and are more likely to adopt
the product themselves.
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Fig 2.2.1: Lack of relationship between environmental concern in Americans and purchase of e-bikes.

2.3. Variables

Symbol Definition Unit Value

𝐺
𝑦

Price of gas per year $

𝐸
𝑦

Price of charging e-bike per year $

𝑃
𝑦

Price paid for e-bike per year (constant) $ 182.50

𝑇
𝑦

Cost saved through saving time $

𝐹
𝑦

Cost saved through public transports fees
(only applicable for those currently using
public transportation constant)

$ 1398 [24]

𝐷
𝑦

Disposable income per year $

𝑓
𝑐𝑜𝑠𝑡

Cost input for switching from a certain
form of transportation to using an e-bike

n/a

𝑓
𝑐𝑜𝑜𝑙𝑛𝑒𝑠𝑠

“Coolness” input n/a

𝑁 Number of cumulative e-bikes sold e-bikes

Table 2.3.1: Variable symbols, definitions, and units used in the model

2.4. The Model
2.4.1 Factor Quantification

Ultimately, we investigated the effects of cost and “coolness” (increased
popularity increases demand [6]) on the predicted number of people that will switch to
electric bikes in the future. We fed data starting from 2018 into a random forest model
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that identified the most important factor.

Cost:
First, we defined cost. We split the population who could possibly transition into

e-bikes into four groups: those currently with a car, those currently with a regular bike,
those currently taking public transportation, and those currently walking.

The cost input for each of the four situations is defined as the ratio of cost saved
from switching to an electric car per year over the total disposable income per year. This
is because it is the fraction of the disposable income each year that ultimately dictates
the effect of cost on an individual. Ultimately, this value gets plugged into the random
forest model.

𝑓
𝑐𝑜𝑠𝑡

=  
𝑇

𝑦
+𝐺

𝑦
+𝐹

𝑦
−𝐸

𝑦
−𝑃

𝑦

𝐷
𝑦

The projected values of (assumption 2.2.3), (assumption 2.2.7), and [6]𝐸
𝑦

𝑃
𝑦

𝐷
𝑦

are given in table 2.4.1, performed via linear regressions. These values are the same
regardless of the form of transportation used.

Year 𝐸
𝑦

𝑃
𝑦

𝐷
𝑦

2023 4.94 182.50 46,903

2024 4.59 182.50 47,493

2025 4.67 182.50 48,083

2026 4.74 182.50 48,673

2027 4.81 182.50 49,263

2028 4.89 182.50 49,853

Table 2.4.1: Projected values of , , and to 2028𝐸
𝑦

𝑃
𝑦

𝐷
𝑦

Now, we apply this model to each of the 4 situations described.

Situation 1: Currently using car

Year 𝑇
𝑦

𝐺
𝑦

𝐹
𝑦

 𝑓
𝑐𝑜𝑠𝑡

2023 0 457.92 0 0.00577

2024 0 468.51 0 0.00593
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2025 0 479.10 0 0.00607

2026 0 489.69 0 0.00621

2027 0 500.28 0 0.00635

2028 0 510.87 0 0.00649

Table 2.4.2: Projected values of , , and for those currently using cars from 2023 to 2028𝑇
𝑦

𝐺
𝑦

𝐹
𝑦

𝑓
𝑐𝑜𝑠𝑡

In this case, is assumed to be zero since traveling in a car is presumed to take the𝑇
𝑦

same amount of time as traveling via e-bike and is zero since there is no public𝐹
𝑦

transportation fee for using a car. was calculated via a linear regression (assumption𝐺
𝑦

2.2.1).

Situation 2: Currently with regular bike

Year 𝑇
𝑦

𝐺
𝑦

𝐹
𝑦

 𝑓
𝑐𝑜𝑠𝑡

2023 5,167 0 0 0.106

2024 5,412 0 0 0.110

2025 5,573 0 0 0.112

2026 5,733 0 0 0.114

2027 5,893 0 0 0.116

2028 6,054 0 0 0.118
Table 2.4.3: Projected values of , , , and for those currently using regular bikes from 2023 to 2028𝑇

𝑦
𝐺

𝑦
𝐹

𝑦
 𝑓

𝑐𝑜𝑠𝑡

In this situation, is zero since a regular bike does not use gas. is zero since a regular𝐺
𝑦

𝐹
𝑦

bike does not require a public transportation fine. was calculated by multiplying𝑇
𝑦

average distance traveled per year [8] with regression-based US hourly wage [20] and
dividing by the average difference in speed of an e-bike and a normal bike [19] and
subtracting the two.

Situation 3: Currently taking public transportation

Year 𝑇
𝑦

𝐺
𝑦

𝐹
𝑦

𝑓
𝑐𝑜𝑠𝑡
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2023 3,217 0 1,398 0.0944

2024 3,370 0 1,398 0.0964

2025 3,469 0 1,398 0.0973

2026 3,569 0 1,398 0.0982

2027 3,669 0 1,398 0.0991

2028 3,769 0 1,398 0.0999
Table 2.4.4: Projected values of , , and for those currently taking public transportation from 2023 to 2028𝑇

𝑦
𝐺

𝑦
𝐹

𝑦
𝑓

𝑐𝑜𝑠𝑡

In this situation, is assumed to be zero because the customer does not pay for the gas𝐺
𝑦

of public transportation. was assumed to be a constant $1,398 dollars per year [24].𝐹
𝑦

𝑇
𝑦

was calculated via multiplying the average distance traveled per year [8] with
regression-based US hourly wage [20] and dividing by the average difference in speed of
the e-bike and normal bike [19][21] and subtracting the two.

Situation 4: Currently walking

Year 𝑇
𝑦

𝐺
𝑦

𝐹
𝑦

 𝑓
𝑐𝑜𝑠𝑡

2023 32,293 0 0 0.685

2024 33,828 0 0 0.708

2025 34,830 0 0 0.720

2026 35,832 0 0 0.732

2027 36,834 0 0 0.744

2028 37,836 0 0 0.755

Table 2.4.5: Projected values of , , , and for those currently walking from 2023 to 2028.𝑇
𝑦

𝐺
𝑦

𝐹
𝑦

𝑓
𝑐𝑜𝑠𝑡

In this situation is zero since walking does not require gas and is zero since walking𝐺
𝑦

𝐹
𝑦

does not require a public transportation fee. was calculated by multiplying average𝑇
𝑦

distance traveled per year [8] with regression-based US hourly wage [20] and dividing by
the average difference in speed of an e-bike and a normal bike [19][22] and subtracting
the two.
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“Coolness”

For simplicity, we defined coolness as the number of e-bikes that have already been sold
(assumption 2.2.8).

𝑓
𝑐

= 𝑁

2.4.2 Technical Computing
After determining contributing factors and quantifying them (as seen above), we

utilized a random forest model to compare these outputs, and determine which had the
most significant impact on projected e-bike sales. In short, via bootstrapping we taught
each of the ‘trees’ a random section of our predicted data from 2.4.1 and projected
growth from model #1. Input data for each of the cost methods were determined from a
series of regressions as shown above, while coolness was determined from the number
of cumulative e-bikes sold. Following input, 10,000 decision trees ensembled outputs
from the 5 inputs and their significance towards contributing to e-bike sales. Clearly, the
breadth of the number of computations performed and the sheer number of
computations required the use of a computer.

The scikit-learn package was used for the random forest regression. The package
hugely simplifies the process, saving time for coding and debugging. It takes the 5 inputs
and 1 output across 10 years and generates the model. 80% of models were used for
training. The model was verified for accuracy in table 2.6.1, yielding consistent
predictions. Additionally, Scikit has a built-in function to examine feature importance.
This essentially looks at each node in each decision tree and how well each factor is able
to separate the data. The output of the feature importance function is as follows.

2.5. Results

Contributing element Feature Importance

Saving cost from walking 19.98%

Saving cost from biking 19.70%

Saving cost from public transport 20.42%

Saving cost from car 20.05%

“Coolness” factor 19.85%
Table 2.5.1: Relative importance of each element contributing to e-bike sales.

Of the environment, cost, and coolness factors, we deemed that only
environmental concerns had a negligible impact on e-bike sales, as determined in
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assumption 2.2.4. As a result, our model determined cost efficiency and coolness factor
to both have an approximately equal impact on e-bike sales.

2.6. Discussion
Strengths

● Of those who work non-remotely and must commute regularly, our model
accounts for the vast majority of them through our four scenarios. And in addition
to this, the breadth of angles viewed and specific factors considered makes the
model more encompassing of real-life externalities and impacting variables.

● The nature of the model itself, that being of randomness attributable to the
computational model utilized, the model is rather robust and resistant to
significant sway.

● Finally, also given the ensembling nature of the random forest model, our model
prevents overfitting. As a result, not only does our regression fit the fewer
parameters provided, but also serves as a more sound projective model.

Weaknesses
● Rather than determining some sort of statistical significance in relation to e-bike

sales as a whole, our model instead compares modes to one another, finding a
comparative significance. This falls a bit short of determining some sort of causal
relationship, not providing a definitive correlation.

● Although we do agree that all of our tested nodes do, in fact, have significant
impacts on e-bike sales, we acknowledge that the differences between such
factors are not as significant as we would have desired, nor as what is most likely
in a realistic setting.

● Our model only accounts for reasons why an individual would want to switch to
an e-bike, rather than also considering reasons why an individual would be
inclined to remain with their current method of travel, such as through some sort
of attachment factor (that is, a quantified representation of any mode of travel’s
given likelihood of remaining with such).

Validation
In addition to providing values for feature importance, our model additionally utilized a
regression that predicted e-bike sales for a given year, which can be compared to results
from our diffusion model in 1.4.

Year Bass diffusion result (1.4)
(thousands of e-bikes)

Model 2 value (thousands
of e-bikes)
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2019 423 416

2021 1,090 928

2023 1,600 1,320
Table 2.6.1: Model #2’s output values, as compared to outputs from model #1

Although the values vary slightly, given the same general trend and end behavior between
the two models, as well as the relatively close values given the scale of the model as a
whole, we find the similarity between the two to verify and validate our results in 2.5.

2.7 Model Refinement
Focusing on the weaknesses of the model, given additional time, drastic

improvements can be noted, and potentially applied. One possible way to improve the
model would be the addition of the attachment variable.

It is known that many individuals are attached to their vehicles and have
established emotional connections to them. This could be a relevant factor in
determining the proportion of people who decide to switch to e-bikes. In this case, we
would have chosen to use a probability model instead of a random forest model, and
calculated the probability each year that an individual would switch by weighing the
benefits against the cons. In fact, this is the first model that we tried, but it was difficult
to avoid overfitting the data in this case.

3. Question 3: Off The Chain
3.1. Defining the Problem: Scaling back out to the population as a whole, we were
tasked with modeling the impact of e-bike growth on carbon emissions, as well as
health and wellness.

3.2. Assumptions
1. Traffic congestion will not be significantly altered by e-bike usage: in the vast majority
of US States, e-bike usage operations must occur on roadways [10], not detracting from
traffic congestion.

2. An individual riding an e-bike, riding a traditional bike, and taking public transport will
have no impact on carbon emissions. Neither of the biking options directly burns a fuel
that contributes to carbon emissions. For public transportation, the public transportation
will generally run regardless of if an individual stops riding, so when an individual
switches to an e-bike, they don’t decrease the emissions coming from public transport.

3. An individual will only use a single mode of transportation: We are modeling the



Team #16968 Page 17

primary mode of transportation for individuals, so it is safe to assume that for the
purposes of transportation, only one mode is used.

4. An individual should burn 500 calories a day through exercise. This is the
recommended value given by [26].

5. The calories burnt per hour for walking is 100, for biking is 500, and for e-biking is 300.
These are the values given by [25, 27, 28].

6. Driving burns 0 calories. The act of driving is generally not a form of exercise and
contributes 0 calories to the 500-calorie goal.

7. A person is equally likely to switch to riding e-bikes. Based on the results of our
previous model, many factors are equally important in determining if someone will
switch to e-bikes, meaning that on average, any person is equally likely to switch to
e-bikes.

3.3. Variables

Symbol Definition Unit Value

𝑀 Miles traveled per day mi/day 9

𝐻
𝑒

Hours per mile by e-bike (constant) hr/mi 1
28

𝐶
𝑒

Calories burned per hour by e-bike
(constant)

cal/hr 300

𝐻
0

Hours per mile by initial transportation hr/mi

𝐶
0

Calories burned per hour by initial
transportation

cal/hr

𝑐 Change in calories burned per day cal

𝑃 % contribution to daily calorie goal %

𝑤 Weight of change in calories %

%
𝑛 

Net percent change in calories burned %

𝐵
𝑠

E-bikes sold in 2023 (constant) # 1. 09 × 106

𝑝
𝑐

Proportion of e-bikes sold converted
from car (constant)

% 75.6%
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𝐸
𝑐

CO2 emissions per car per year (constant) metric
tons/yr

4.6

𝐸
𝑟

CO2 removed per year metric
tons/yr

Table 3.3.1: Variable symbols, definitions, and units used in the model

3.4. The Model
The factors we analyzed in this model are exercise and carbon emissions. One model
calculates the average percent change in exercise as a result of the adoption of e-bikes,
while another model determines the change in carbon emissions as a result of adopting
e-bikes.

To calculate the effect of switching to e-bikes on exercise, the difference per day in the
number of calories yielded by changing mode of transportation is calculated by:

.𝑀(𝐻
𝑒
𝐶

𝑒
− 𝐻

0
𝐶

0
) = 𝑐

This amount is then converted into a percentage towards the 500 calories daily goal:

.𝑐
500 * 100% = 𝑃

Finally, the percentages are multiplied with the proportion of e-bike converters that
come from driving, biking, public transit, and walking, in order to weigh the factors out
and get a total % change on daily caloric goal:

𝑛=1

4

∑ 𝑤𝑃 = %
𝑛

The method for finding the change in carbon emissions was straightforward: since cars
are the only source of carbon emissions considered, the total change in carbon emissions
from switching to e-bikes is as follows:

.𝐵
𝑠

· 𝑝
𝑐

· 𝐸
𝑐

= 𝐸
𝑟

3.5. Results

Change in
calories per
day (kcal)

% on daily goal Weighted % on
daily goal

CO2 removed in
2023(metric
tons)

Car +96.43 +19.29% +18.07% 3. 81 · 106

Biking -278.57 -55.71% -0.28% 0
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Walking -203.57 -40.71% -0.94% 0

Public
Transport

+96.43 +19.29% +0.60% 0

Total +17.45% 3. 81 · 106

Table 3.5.1: The results of the model

Table 3.5.2: A graphical representation of the contribution of each mode of transportation to the change in percent daily caloric goal

3.6. Discussion:
Strengths

● Our model is strong in simplicity, with only multiplication and addition. This
makes it easy to understand and able to be adapted to many other situations. The
premise of our model is rooted in the fundamental relationships between
variables, which can be adjusted and applied to other different situations.

Weakness

● The major weakness of our model is that the model as a whole is strongly based
on our assumptions, especially assumption 3.2.2. It is improbable for an individual
to only own an e-bike and not a car, or to commute 9 miles a day by walking.
However, there are many possible exceptions to our general assumptions which
could have significant impacts on results.
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Conclusion
The e-bike trend has been increasing recently, and it seems as if the trend will

continue in the future. The state of transportation has never been more important than
right now. The cost of infrastructure is at the forefront of public media, and while the
global warming effects of automobiles become more noticeable, it becomes more
important than ever for us as a society to develop alternatives and solutions to our
problems. Bicycles and e-bikes represent the first step into the future of transportation
and infrastructure.

Based on our models, we conclude that cost efficiency and the coolness factors
have a similar importance in determining the future trends of e-bike sales. This reflects
the complex dynamic we see in the sales industry and in much of society, as no trends
are ever dependent or reliant on a single, identifiable factor. Then, when looking
outwards, we also see that although the shift towards e-bikes is beneficial for health and
wellness as well as for the environment, interestingly enough, this is not a major factor in
determining trends in e-bike sales.

Looking analytically, our models serve to verify and validate one another,
additionally supported by outside data. Thus, from an accuracy perspective, models 1-3
seem to accurately echo that of real life, which can be confirmed in each section’s
validation section above. However, most of the models fall short of reaching the full
scope of contributing variables, instead prioritizing including the specific factors of
considered variables. This is one continuous weakness across models, which, given
additional time, could be addressed with the addition of parameters and terms.

Nevertheless, given the strategic avoidance of over-fitting and consistent usage of
given data to verify, our models serve to successfully predict future trends, as well as
analyze contributing factors and overarching societal benefits. All in all, e-bikes stand at
the forefront of the development of American transportation, and seem as though they
will continue to be such.
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Code Appendices

Model 1: The Road Ahead
Gradient Descent Algorithm

#requires the exponential function from math module

from math import exp

#Learn rate of the gradient descent machine learning

learnRate = 10**-34

#Data we are given about bikes, as well as the calculated F0

bikeData =

[370000,529000,722000,872000,1004000,1267000,1636000,2059000,2475000,3225000,4153000]

F0 = 370000 / 320000000

#This is the bass diffusion equation.Given values of p, q and the year, this function

returns the expected number of bike sales

def func(q,p,t):

likeTerm = ( 1 - F0 ) * exp( -t * ( p + q ) ) / (q * F0 + p)

return( 320000000 * ( 1 - p * likeTerm) / (1 + q * likeTerm) )

#This is the cost function. Given the list of years, q, and p parameter, it calls the func

function to calculate the expected number of bike sales. It then compares that to the given

number of bike sales to calculate the square of the differences. The function finally

returns the sum of all the squared differences.

def cost(input,outputExpected,q,p):

cost = 0

for year in range(len(outputExpected)):

cost += ( func(q,p,input[year]) - outputExpected[year] ) ** 2

return(cost)

#Given an initial value of p, q, and the expected bike data, the function returns the

converged values of p and q.

def optimize(bikeData,p0,q0):

#Initializes variables. The increment is used during numeric differentiation.

increment = 10**-12

#Initializes value of changes in cost, to be above the while loop threshold.

changeCostp = 99999

changeCostq = 99999

#Intializes the values of p and q that will be iterated through.

p = p0

q = q0

#Sets a counter for iterations done to avoid a large runtime

iterations = 0

#The while loop continues when the change in costs is above 10^-9, to a maximum of 1000

iterations. If the change in costs with respect to p and q is below 10^-9, the program has
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converged and returns p, q, and cost of the model.

while (abs(changeCostp) > 10**-9 and abs(changeCostq) > 10**-9) and (iterations < 1000):

#Numeric partial differentiation with respect to p and q.

changeCostp = ( cost(range(len(bikeData)),bikeData,q,p + increment) -

cost(range(len(bikeData)),bikeData,q,p) )  / increment

changeCostq = ( cost(range(len(bikeData)),bikeData,q + increment,p) -

cost(range(len(bikeData)),bikeData,q,p) ) / increment

#Calculates the current cost of the function based off of current p and q

currentCost = cost(range(len(bikeData)),bikeData,q,p)

#Iterates p and q as part of gradient descent model

p = p - learnRate * changeCostp * currentCost

q = q - learnRate * changeCostq * currentCost

iterations += 1

return(p,q,currentCost)

#defines initial starting point for p0 and q0

p0 = 1*10**-5

q0 = 1*10**-1

#initializes running cost counter, p tracker, and q tracker

runningCostCounter = 99999999999999

runningpqCounter = (0,0)

testq = q0

testp = p0

#Iterates through many starting values of p0 and q0 to assure many local minimums have been

checked for, to find a better guess for the absolute minimum of the cost function. It

iterates from p0 to 2p0, and q0 to 2q0, with 50 equal intervals.

for i in range(50):

testq = q0

for j in range(50):

try:

testResults = optimize(bikeData,testp,testq)

#Updates p,q,and best cost, if the cost from the optimization function is better

than the current best cost.

if testResults[2] < runningCostCounter:

runningCostCounter = testResults[2]

runningpqCounter = (testResults[0],testResults[1])

testq += q0/50

except:

pass

testp += p0/50

#prints results

print(runningpqCounter)

Monte Carlo for Sensitivity Analysis
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#Imports necessary packages. Pyplot for generating graphs, numpy for normal distributions,

and math for the exp function.

from matplotlib import pyplot as plt

import numpy as np

from math import exp

#p0 and q0 determined from gradient descent model

p0 = 0.00013258321395629718

q0 = 0.19800034599222005

#data/constants

bikeData =

[370000,529000,722000,872000,1004000,1267000,1636000,2059000,2475000,3225000,4153000]

F0 = 370000 / 320000000

#Same function as gradient descent model for outputting predicted number of bikes

def func(q,p,t):

likeTerm = ( 1 - F0 ) * exp( -t * ( p + q ) ) / (q * F0 + p)

return( 320000000 * ( 1 - p * likeTerm) / (1 + q * likeTerm) )

#Creates a scatterplot for bike data, and graphs the predicted bass diffiusion curve

fig = plt.scatter(range(len(bikeData)), bikeData)

x = range(len(bikeData)+3)

y = []

for value in x:

print (value)

y.append(func(q0,p0,value))

fig = plt.plot(x,y)

plt.xlabel("Years After 2012")

plt.ylabel("Number of Bikes")

plt.legend()

plt.show()

#Monte Carlo sensitivity analysis. Iterates 10000 trials, where q and p are picked from a

normal distribution with a mean of q or p, and a standard deviation of 10%.

yearTwo = []

yearFive = []

for i in range(10000):

q = np.random.normal(q0,q0/10)

p = np.random.normal(p0,p0/10)

yearTwo.append(func(q,p,2)-func(q,p,1))

yearFive.append(func(q,p,5)-func(q,p,4))

#Plots histogram to show spread of bike sales after varying p and q.

plt.hist(yearTwo,density=True,bins = 50)

plt.xlabel("Thousands of E-bikes 2025")

plt.ylabel("Relative probability")

plt.show()

plt.hist(yearFive,density=True, bins = 50)

plt.xlabel("Thousands of E-bikes 2028")
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plt.ylabel("Relative probability")

plt.show()

#Outputs standard deviations of outputs after varying p and q.

stdv2years = np.std(yearTwo) / np.mean(yearTwo)

stdv5years = np.std(yearFive) / np.mean(yearFive)

print(stdv2years,stdv5years)

Model 2: Shifting Gears
Random Forest Algorithm

#Imports necessary packages for the random forest model. Data will be stored and manipulated

in a Pandas dataframe. The scikit ensemble package will be used to make the random forest

model.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

#Constants defined in the mode

MMG = 25

MILESPERDAY = 9

BIKECOST = 182.5

PUBLICTRANSPORTCOST = 1398

#Data from regressions

YEARS = [2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028]

DOLLARSKWHR = [4.00,4.00,3.97,4.14,4.67,4.94,4.59,4.67,4.74,4.81,4.89]

DOLLARSGAL =

[2.72,2.6,2.17,3.01,3.95,3.4849401,3.5655288,3.6461175,3.7267062,3.8072949,3.8878836]

DISPINC =

[43886,44644,47241,48219,46312.53,46902.645,47492.76,48082.875,48672.99,49263.105,49853.22]

EBIKES =

[1636000,2059000,2475000,3225000,4153000,4878754.786687736,5973197.687153384,7297219.6978950

55,8896341.865764502,10823883.981983375,13141730.250541717]

EBIKESALES =

[369000,423000,416000,750000,928000,1094442.9004656477,1324022.0107416706,1599122.1678694477

,1927542.1162188724,2317846.268558342,2779158.499445403]

WAGE = [26.71,27.59,28.43,29.92,31.63,33.03,34.6,35.625,36.65,37.675,38.7]

#Initializes dataframe to be used. Inputs all relevant lists into dataframe.

df = pd.DataFrame()

df['Years'] = YEARS

df['Dollars per kwhr'] = DOLLARSKWHR

df['Dollars per gal'] = DOLLARSGAL

df['Disposable Income'] = DISPINC

df['Ebikes'] = EBIKES

df['Sales'] = EBIKESALES

df['Wage'] = WAGE
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#Converts Ebikes and Sales from regression into an integer. Random forest models require

integers for output training.

df['Ebikes'] = df['Ebikes'].astype(int)

df['Sales'] = df['Sales'].astype(int)

#Calculates the net cost saved from switching from each method

df['gas cost'] = df['Dollars per gal'] * MILESPERDAY * 365 / MMG

df['Bike Cost'] =  df['Dollars per kwhr'] + BIKECOST

df['Net Save per Income Car'] = (df['gas cost'] - df['Bike Cost'])/ df['Disposable Income']

df['Walk Save'] = ( (- MILESPERDAY * 365 / 28 + MILESPERDAY * 365 / 3) * df['Wage'] -

df['Bike Cost'] ) / df['Disposable Income']

df['Bike Save'] = ( (- MILESPERDAY * 365 / 28 + MILESPERDAY * 365 / 12) * df['Wage'] -

df['Bike Cost'] ) / df['Disposable Income']

df['Public Save'] = ( (- MILESPERDAY * 365 / 28 + MILESPERDAY * 365 / 15.3) * df['Wage'] -

df['Bike Cost'] + PUBLICTRANSPORTCOST ) / df['Disposable Income']

#Sets the 5 variables into the inputs

inputs = df.filter(['Walk Save','Bike Save','Public Save','Net Save per Income

Car','Ebikes'])

#Sets sales as output

output = df['Sales']

#Starts the random forest model with 10,000 trees.

randomForest = RandomForestClassifier(n_estimators = 10000)

#Trains the data on 80% of the given inputs.

Xtrain,Xtest,Ytrain,Ytest = train_test_split(inputs,output,test_size=.2)

randomForest.fit(Xtrain,Ytrain)

#Uses the remaining 20% of inputs to test validity, feature importances, and accuracy

Ypred = randomForest.predict(Xtest)

print(Ypred,Ytest)

print(randomForest.feature_importances_)
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