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Executive Summary 
To the City Council of Memphis, 
 As global warming intensifies, heat waves are increasingly frequent, severe, 
and prolonged, posing significant risks to urban populations [1]. In Memphis, these 
events strain the electrical grid, leading to power outages that exacerbate the 
dangers of extreme heat, particularly for socioeconomically vulnerable 
communities. In order to address this, our team developed mathematical models to 
predict the indoor temperatures in non-air-conditioned homes, forecast peak 
power demand, and assess neighborhood vulnerability, equipping your city with 
the information to mitigate these risks effectively. 
 For predicting indoor temperatures during a heat wave, we utilized a 
dynamic thermal network model, applying Memphis-specific dwelling data and 
specialized physics principles to account for heat transfer via conduction and solar 
radiation gains, estimating that over 24 hours, indoor temperatures peak around 
36℃ in the evenings, lagging outdoor highs of 39℃ by 2-3 hours. 
 We then applied a Seasonal Auto-Regressive Integrated Moving Average 
(SARIMA) model to electricity consumption data from 1997 to 2024. Incorporating 
gradual temperature rises and stable population trends in accordance with 
historical data, our model predicts a summer peak demand increase from current 
levels to approximately 15-20% higher by 2045 with a 95% confidence interval(e.g., 
from 3,500 MW to 4,200 MW, pending final calibration). This 20-year projection 
highlights the growing strain on your grid, driven by air conditioning reliance. 
 To ensure equitable resource allocation during heat waves and outages, we 
developed a vulnerability score model using six factors: population, elderly and 
child proportions, income, open space, and working population, weighted (from a 
scale of 0-1) at 0.2, 0.25, 0.15, 0.3, 0.05, and 0.05, respectively. Applied to 27 ZIP 
codes, vulnerability scores ranged from 0.209 (e.g., affluent ZIP 38139) to 0.720 
(e.g., low-income ZIP 38127). We propose mapping these scores to prioritize 
cooling centers (i.e. green corridors) and power restoration in high-vulnerability 
areas like the Frayser area (ZIP 38127). 
 We believe these analysis results will enhance your emergency planning, 
ensuring a resilient and equitable response to a warming climate. 
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Q1: Hot to Go 
1.1 Defining the Problem 

The first problem asks us to develop a model to predict the indoor temperature of any 
non-air-conditioned dwelling during a heat wave over a 24-hour period. We have chosen 
Memphis, Tennessee as our city. Our model will take into account previous dwelling and heat 
wave data in our chosen city. 
 
1.2 Assumptions 
1.2-1. Outside conditions such as outdoor air temperature and solar radiation are the 
primary driver of heat gain inside of dwellings and dominate internal heat gains from 
occupants or appliances. 

● Justification: It is difficult to predict usage of appliances across households and the 
amount of time occupants spend within their dwellings. Furthermore, studies confirm 
that in non-air-conditioned settings, outdoor temperature and direct sunlight 
overwhelmingly dominate indoor heat gain, so we will exclude minor variable heat 
outputs like appliances or electricity usagex. 

1.2-2. All dwellings remain closed with negligible ventilation and have the same 
constant uniform thermal properties over time. 

● Justification: To avoid introducing difficult-to-measure infiltration effects, air 
exchange with the outside environment is treated as negligible. Building materials will 
not change significantly over time or region and will be simplified in our model to have a 
single material heat absorption and heat transfer area. 

1.2-3. The outdoor temperature throughout the day during a heat wave can be 
modeled as a smooth, continuous function with a distinct peak around 
mid-afternoon. 

● Justification: Historical meteorological data for Memphis shows a clear daily 
temperature cycle, with temperatures rising steadily in the morning, peaking in the 
afternoon, and gradually declining at night. This pattern justifies a simplified 
continuous function to represent the indoor temperature trend. 

1.2-4. Hourly meteorological data taken on the hottest day of Memphis's July 
2022 heat wave is sufficient to determine the indoor temperature of any 
non-air-conditioned dwelling during a heat wave over a 24-hour period this year 
in Memphis. 

● Justification: From the years 2000 to 2023, temperature highs have not risen 
significantly as global warming is a gradual change recorded over a number of 
decades. Therefore, we assume that meteorological data recorded in 2022 are 
sufficient to model this year's outdoor conditions. 
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1.2-5. External temperature is uniform throughout the different neighborhoods 
in Memphis 

● Justification: This simplifies the model by treating outdoor temperature 
variations as a fixed input rather than spatially diverse data.  

1.2-6. The in-door temperature starts at the same temperature as the outdoor 
temperature prior to the start of the heatwave. 

● Justification: Historical weather data for Memphis indicates that pre-heat wave 
nights have minimal temperature gradients between indoors and outdoors. 

1.2-7. The height of an average dwelling is approximately 2.5 meters. 
● Justification: This simplification ensures model applicability across Memphis's 

diverse housing stock. 
 
1.3 The Model 
1.3.1 Model Development 

We chose a dynamic thermal network model to predict the temperature over a 24 
hour period. The thermal network model is a physics-based approach that incorporates 
heat transfer from various nodes over time to determine indoor temperatures. This 
makes it well-suited for capturing the dynamics of indoor temperature in a 
non-air-conditioned dwelling during a heat wave, as temperature changes indoors are 
caused primarily by external conditions such as solar radiation or conduction as stated in 
1.2-1. 

We considered implementing a time-series approach, such as AutoRegressive 
Integrated Moving Average (ARIMA), which would use historical indoor temperature data 
to forecast future values. However, a purely statistical model would have limited 
explanatory power during unusual conditions such as extreme heat waves. 
 

Symbol Variable Unit Values for Memphis 

C Thermal capacitance J/K 1000 

 
𝑑𝑇

𝑖𝑛

𝑑𝑡
Rate of change of 
temperature 

K/s N/A 

U Material heat 
absorption 

W/(m2 * K) 0.4 

A Heat transfer area m2 377.25 

Tout Outside temperature K Provided in dataset 

Tin Inside temperature K N/A 

QSolar 
Solar heat gained via W/m2 125.75*4*0.5*0.6*I(t) 
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windows 

 
Our dynamic thermal network model is as follows:  

 𝐶
𝑑𝑇

𝑖𝑛

𝑑𝑡 = 𝑈𝐴(𝑇
𝑜𝑢𝑡

− 𝑇
𝑖𝑛
) + 𝑄

𝑠𝑜𝑙𝑎𝑟

1.3.2 Model Execution 
We used the provided data on dwellings and heatwave temperatures in Memphis, 

Tennessee to conduct our thermal network model. From the dataset, since we are tasked 
with building a single model for predicting the in-door temperature, we performed a 
calculation on the average floor area of residences/apartments in Memphis, ceiling 
height, total volume, building footprint, and window area: 

● Floor area = 125.75 m² 
● Ceiling height ≈ 2.5 m 
● Total volume ≈ 125.75 m² × 2.5 m = 314.4 m³ 
● Building footprint (for simplicity): ~10 m × 12.6 m 
● Perimeter ≈ 2 × (10 + 12.6) = 45.2 m 
● Wall area ≈ 45.2 m × 2.5 m = 113 m² (rounded) 
● Roof area ≈ 125.75 m² 
● Window area: assume 10% of floor area → 12.6 m² 

Statistics from the Memphis real estate market show that the median age of a home in 
Memphis, Tennessee is 34.7 years old. Using this information and going back 35 years from 
2025, we found that 

● Walls:  

● Roof:   
Hence: 
1.Walls conduction 

 
2.Roof conduction 

 
3.Windows conduction 

 

So total envelope conduction  
We have 12.6 m² of window area. On a sunny summer midday, outside irradiance can be 
~800 W/m². That yields: 

 
If the solar heat‐gain coefficient of the window is ~0.5 (typical older double‐pane), the net is 
~5040 W. If there is some tree shading or overhang (say 0.5 factor), that knocks it down to 

~2520 W. Thus, a peak midday  
 

https://www.codecogs.com/eqnedit.php?latex=U_%7B%5Cmathrm%7Bwall%7D%7D%20%5Capprox%200.35%5C%3B%5Cmathrm%7BW%2F(m%5E2%5C%2CK)%7D#0
https://www.codecogs.com/eqnedit.php?latex=U_%7B%5Cmathrm%7Broof%7D%7D%20%5Capprox%200.20%5C%3B%5Cmathrm%7BW%2F(m%5E2%5C%2CK)%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbigl(U%5C!A%5Cbigr)%7B%5Cmathrm%7Bwalls%7D%7D%3D%200.35%20%5Ctimes%20113%5C%3B%5Capprox%5C%3B%2039.6%5C%3B%5Cmathrm%7BW%2FK%7D.#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbigl(U%5C!A%5Cbigr)_%7B%5Cmathrm%7Broof%7D%7D%3D%200.20%20%5Ctimes%20125.75%5C%3B%5Capprox%5C%3B25.2%5C%3B%5Cmathrm%7BW%2FK%7D.#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbigl(U%5C!A%5Cbigr)_%7B%5Cmathrm%7Bwindows%7D%7D%3D%203.0%20%5Ctimes%2012.6%5C%3B%5Capprox%5C%3B37.8%5C%3B%5Cmathrm%7BW%2FK%7D.#0
https://www.codecogs.com/eqnedit.php?latex=%5Capprox%2039.6%20%2B%2025.2%20%2B%2037.8%20%3D%20102.6%5C%3B%5Cmathrm%7BW%2FK%7D.#0
https://www.codecogs.com/eqnedit.php?latex=12.6%5C%2C%5Cmathrm%7Bm%5E2%7D%5Ctimes800%5C%2C%5Cmathrm%7BW%2Fm%5E2%7D%3D10%7B%2C%7D080%5C%2C%5Cmathrm%7BW%7D%5Cquad(%5Ctext%7Braw%20incoming%20sunlight%7D).#0
https://www.codecogs.com/eqnedit.php?latex=Q_%7B%5Cmathrm%7Bsolar%7D%7D%5Capprox%202500%20W.#0


           Team #18076 Page 7 
As a rule of thumb for a lightweight wood‐frame building with furniture, use ~100 kJ/(m²·K) of 
floor area. Then: 

In other words, it takes 

about  to raise the interior by 1 K (or 1 °C). Putting it all together, the 

lumped‐mass ODE in SI units is:  

 

Figure 1: A graph indicating changes in outdoor, indoor temperature, and solar heat gain throughout the 
day 

 

Figure 2: A graph showing the outdoor and indoor temperature in 10 days 

https://www.codecogs.com/eqnedit.php?latex=C%5C%3B%3D%5C%3B%20125.75%5C%2C%5Cmathrm%7Bm%5E2%7D%5Ctimes%20100%7B%2C%7D000%5C%2C%5Cmathrm%7BJ%2F(m%5E2%5Ccdot%20K)%7D%5C%3B%3D%5C%3B%201.2575%5Ctimes10%5E7%5C%2C%5Cmathrm%7BJ%2FK%7D.#0
https://www.codecogs.com/eqnedit.php?latex=1.26%5Ctimes10%5E7%5C%2C%5Cmathrm%7BJ%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboxed%7B%5Cfrac%7BdT_i%7D%7Bdt%7D%20%3D%20%5Cfrac%7B102.6%5C%2C%5Cmathrm%7BW%2FK%7D%5C%2C%5Cbigl(T_o%20-%20T_i%5Cbigr)%5C%3B%2B%5C%3B%20Q_%7B%5Cmathrm%7Bsolar%7D%7D(t)%7D%7B1.26%5Ctimes10%5E7%5C%2C%5Cmathrm%7BJ%2FK%7D%7D.%7D#0


           Team #18076 Page 8 
1.4 Discussion 
 On the first day, the indoor temperature (blue) does not rise or fall quite as rapidly as 
the outdoor temperature (red). The outdoor temperature peaks around mid‐afternoon, while 
the indoor temperature reaches its maximum a bit later and with  
slightly smaller amplitude. This is exactly the “lag” and “dampening” effect you expect from a 
first‐order thermal system: the building’s thermal mass (represented by the parameter C) 
smooths out and slightly delays the temperature swings inside. 

Indoor vs. Outdoor: Another notable effect is that at night, the indoor temperature 
remains somewhat higher than outside. Since there is no (or very little) solar gain after sunset, 
heat is lost through the envelope to the cooler outdoors—but the rate is governed by the 
building’s conductance  Because the building can only release heat gradually (again 
thanks to its thermal mass), indoor temperature stays above outdoor levels until enough time 
passes for the indoor space to equilibrate. 

Daily Cycling With Reduced Amplitude Indoors: Each day’s temperature waveform 
outdoors has a sharper peak (nearing 39 °C) and dips lower at night (around 28 °C), whereas the 
indoor temperature’s daily peak is a bit less extreme and the nighttime minimum is higher. This 
reduced temperature swing is a hallmark of the first‐order RC model, where the building’s 
thermal capacitance dampens rapid changes. 

Phase Shift: The warmest indoor temperature occurs after the outdoor peak. This time 
delay (phase shift) is visible in each daily cycle. In reality, the building “stores” some heat in its 
walls, floors, and air, releasing it later, which explains why the indoor temperature keeps rising 
briefly even as the outdoor temperature has started to drop. 

Potential Gradual Drift: Over multiple days, if the average daily outdoor temperature 
plus solar gains exceeds the rate at which the building can shed heat overnight, you may see a 
slow upward “creep” in the indoor baseline. In the plot, the indoor temperature’s overnight 
minimum is a bit higher than the outdoor minimum. This suggests that the building never fully 
cools to the same low point as outdoors, especially under repeated hot days and strong solar 
loading. 

 
1.5 Sensitivity Analysis 

Thermal Mass Dominates Peak Damping: The results clearly show that increasing the 
effective thermal mass has a pronounced effect on reducing and delaying peak indoor 
temperatures. For hot climates or daily heat‐wave scenarios, this is a desirable trait, as it 
reduces the need for active cooling during peak hours. 
Conduction & Insulation Effects: Adjusting U A changes how easily heat flows through the 
building envelope. Improving insulation (lower U A) helps keep the building warmer at night 
and slows heat gain during the day—but the net effect on peak temperature is less than that of 
changing C. In real buildings, both insulation and mass interact: low U A and high C together 
can provide significant comfort benefits. 

 

https://www.codecogs.com/eqnedit.php?latex=U%5C%2CA.#0
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Trade‐Offs 
With lower U A, once heat gets inside (via solar gains or internal loads), it leaves more 
slowly—potentially leading to warmer indoor nights. Meanwhile, a higher‐capacity building is 
slower to respond, for better or worse: if the outside temperature is consistently hot, the 
building can “store” that heat. In practice, proper night‐time ventilation or mechanical cooling 
can mitigate these drawbacks. 

 
Figure 3: Sensitivity Analysis on the Effect of Thermal Capacity of Indoor Temperature 

 
Figure 4: Sensitivity Analysis on the Effect of UA Coefficient on Indoor Temperature 

1.6 Strength and Weaknesses 
One of the strengths of our model is that the single‐zone, first‐order ODE (the so‐called 

lumped RC model) is computationally very light. It is well suited for quick “what‐if” 
explorations and for capturing the essential physics of conduction through an envelope plus the 
buffering effect of thermal mass. Because the model uses just a few parameters  

( ), it is straightforward to interpret how each parameter affects the indoor 
temperature. This makes it useful for sensitivity studies, as illustrated here. 

However, one limitation is that by lumping the entire building into one node, the model 
does not distinguish between different zones (e.g., sun‐exposed vs. shaded rooms) or account 

https://www.codecogs.com/eqnedit.php?latex=U%20A%2C%20C%2C%20Q_%5Cmathrm%7Bsolar%7D%2C%20%5Cdots#0
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for thermal gradients through walls and floors. Furthermore, the model does not explicitly 
include infiltration/ventilation, occupant heat loads, or appliance loads. 
 

Q2: Power Hungry 
2.1 Defining the Problem  

The second problem asks us to develop a model that predicts the peak demand that our 
city’s power grid should be prepared to handle during the summer months. We predicted our 
city’s power demand by generating a SARIMA model. This was done by collecting the average 
monthly electricity consumption of Memphis from the years of 1997 to 2024.  

 

2.2 Assumptions 
2.2-1. Temperature Rise is Gradual and can be approximated with 
historical/projected trends. 

● Justification: Both Memphis and Birmingham have experienced incremental—but 
noticeable—increases in annual summer temperatures. Relying on Climatological data 
(e.g. NOAA Projections IPCC models) allows us to assume a relatively smooth 
temperature trajectory rather than abrupt, unpredictable shifts. This makes long-term 
demand forecasting more tractable. 

2.2-2. Populations and Economic and national statistics agencies publish expected 
population and economic growth rates 

● Justification: Municipal and national statistics agencies publish expected 
population and economic growth rates. Assuming these forecasts hold lets us 
incorporate changing energy consumption patterns without needing to model 
migration anomalies or severe economic recessions 

2.2-3. Air Conditioning Usage is Strongly correlated with Peak Temperature 
● Justification: Numerous power-demand studies show that air conditioning is one of the 

dominant residential loads on the grid in heatwave conditions. Assuming a near-linear 
relationship between daily maximum temperature and A/C-driven peak demand 
simplifies the model while retaining accuracy for extremely hot days.  

2.2-4 Improvements in Energy Efficiency Proceed at a Modest Steady Rate 
● Justification: While HVAC technologies continue to evolve, large, disruptive leaps in 

efficiency of destructive adoption rates (e.g., widespread super-efficient A/C units) are 
uncommon in short- to medium-term horizons. Assuming gradual gains avoid 
overestimating or underestimating future demand reductions.  
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2.2-6 No Major Grid-Scale Behavioral Shifts Exist in Summer Consumption 

● Justification: Although public demand-reduction campaigns and dynamic pricing can 
moderate peaks, historical evidence suggests paramount. We can thus assume that no 
large-scale, sustained behavioral changes would drastically reduce peak loads.  

2.2-7. Grid Infrastructure Constraints Remain Comparable  
● Justification: It is unreasonable to predict infrastructural projects/modifications on a 

grid-to-grid basis—especially in a city like Memphis; with significant urban sprawl, 
unkempt repair, and poor public transport, infrastructural projects cannot be predicted 
in an accurate manner. This assumption additionally keeps the modeling focus on peak 
load growth greater than major structural changes to the power supply system. 

2.2-8 Limitations on Extreme Events are Acknowledged 
● Justification: During 2020-2022, the COVID-19 global pandemic proved to be a 

significant anomaly regarding energy consumption in Memphis—Data from years 
affected (2020-2022) will be discounted and we will instead assume that trends align 
with historical patterns [as mentioned in assumption 1]. 

2.2-9 Population Growth will Continue Growing in a Manner Closely Following Historical 
Trends. 

● Justification: There is not a significant amount of data regarding population growth in 
central Tennessee to accurately include in the construction of a mathematical model. 
Including such a factor will also inhibit the accuracy and validity of the model. 

 

2.3 The Model 
2.3.1 Model Development 

In order to forecast monthly electricity consumption, we utilized a Seasonal 
Auto-Regressive Integrated Moving Average (SARIMA) model. SARIMA models are well 
suited for time series that display both autocorrelation (trends in past values) and 
seasonality. Specifically, we anticipate electricity consumption to repeat seasonal 
patterns each year as weather changes, demand peaks, and other yearly factors recur. 
 
The first step in our approach to developing this model was to verify that the time 
series was sufficiently stationary—that is, that its statistical properties (mean, variance) 
did not change drastically over time. We conducted an Augmented Dickey–Fuller (ADF) 
test, which yielded a p-value below 0.05. This result suggests that the series is likely 
stationary and appropriate for SARIMA modeling without further differencing. 
Subsequently, we performed a grid search over candidate SARIMA parameters, 
systematically checking different combinations of: 

1. (p, d, q) for the non-seasonal component (autoregressive order, differencing 
order, moving average order). 
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2. (P, D, Q, m) for the seasonal component, where m = 12 to capture yearly 

seasonality in monthly data. 
Each candidate model was fitted on the training portion of the data, and we chose the 
parameter set that minimized the Akaike Information Criterion (AIC). The model 
achieving the lowest AIC was: 
 

 
 
This choice allows us to balance model fit (accuracy) with complexity in order to 
penalize models that include too many parameters. Consequently, our final SARIMA 
specification is: 
 

 
 

2.3.2 Model Execution 
We tested this SARIMA model by splitting the dataset into a training set from 

January 1997 through December 2022 and reserving data from December 2022 through 
December 2024 for testing. After fitting the model to the training set, we generated a 
forecast for the test period. We then compared these predicted values with the actual 
monthly consumption in the test data. One of the metrics we used to assess forecast 
performance was the Mean Absolute Percentage Error (MAPE). The MAPE on our test 
set was approximately 7.94%, indicating reasonably accurate out-of-sample predictions. 

Having validated the model on recent data, we then refit it using all available 
historical observations ranging from the late 1990s through the end of 2024 with an 
exception of years 2020-2022 (for reasons discussed in the 2.1 “assumptions” section). 
Using this final, all-inclusive fit, we generated a 20-year forecast (240 months) into the 
future. Figure 5 displays the model’s fitted values on the training set (blue), the test 
values (dashed orange line), and the forecast (red line) with its 95% confidence interval 
(shaded in pink) for the short test horizon.  

Figure 6 shows the extended forecast (red) through the 2040s, along with the 
complete historical data (blue). The confidence intervals widen over time, reflecting 
greater uncertainty as the forecast extends further. 

https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7B(p%2C%20d%2C%20q)%7D%20%3D%20(2%2C%200%2C%202)%2C%5Cquad%5Ctext%7B(P%2C%20D%2C%20Q%2C%20m)%7D%20%3D%20(1%2C%200%2C%201%2C%2012).#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BSARIMA%7D(2%2C%200%2C%202)%5Ctimes(1%2C%200%2C%201)_%7B12%7D.#0
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Figure 5: Historical (1997-2024) Electricity consumption (Billion kWh) in Memphis Tennessee with 5 year 

prediction 

 
 

Figure 6: Historical (1997-2024) Electricity consumption (Billion kWh) in Memphis Tennessee with 20 
year prediction 

From the SARIMA models, an annual peak in electricity consumption is noticed in the 
months of June, July, and August (with variations depending on yearly anomaly). As seen in 
Figure 7, energy consumption in 2000 displays peaks in mid-late year as previously stated. 

Through our modeling, our findings indicate that there will be no significant change in 
Memphis’ population’s energy consumption in the upcoming 20 years. This prediction is 
supported by an analysis of our produced SARIMA graph (provided above). In red, our 
prediction of the next twenty years, only a slight upwards trend can be visualized. Even while 
examining a prediction-exclusive variation (found below) of our SARIMA model, only a 
marginal growth trend can be seen. 
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Figure 7: Amplified prediction-exclusive SARINA model 

 
2.4 Results 

Our team utilized a SARIMA model to accurately predict the electricity consumption 
of Memphis, Tennessee’s residents for the next 20 years. We were able to model our graph by 
inputting data (Memphis Pop. / East South Central Pop.’s electricity consumption) and 
employed Python to create a graph in VS code.  Our results are included below 

Through this process, we found that the SARIMA model   offers a 
strong balance of interpretability and forecast accuracy. It captures both the longer-term trends 
and the seasonal fluctuations, enabling us to project monthly electricity consumption up to 
twenty years into the future with statistically grounded confidence intervals 

 

2.5 Discussion 
In Memphis, the electricity consumption of the city’s population will slowly but steadily 

follow an upwards trend in the upcoming twenty years. Although electricity consumption will 
remain relative to present-day and historical patterns, presumptive measures should be taken 
in order to prepare for any anomalies. Even modest warming can lead to higher penetrations of 
air-conditioning use, intensifying peak loads. This warrants moderate planning on the behalf 
of Memphis’ city government in electrical grid-capacity planning.  

 

2.6 Sensitivity Analysis 
We tested how using only the last 5 years of data vs. 15 years or the full dataset affects 

the forecast. The MAPE differences from the baseline can reach around 1.5% up to 11.6% in 
monthly forecasts. For peak demand, smaller training sets (especially in very hot or very cold 
prior years) might under‐capture the true extremes, yielding either under‐ or over‐estimates of 
peak months in the future. 

● Shorter Training (3–5 Years): Tends to produce higher forecast uncertainty, so the 
predicted maximum demand might swing more drastically. 

https://www.codecogs.com/eqnedit.php?latex=(2%2C0%2C2)%5Ctimes(1%2C0%2C1)_%7B12%7D#0
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● Longer Training (>10 Years): Smoother forecasts with narrower differences, though 

possible that older data might not fully capture recent usage trends or new efficiency 
measures. 

Training Data Size Sensitivity: 
● Training with data from 2009-01 to 2024-12 
● Training with data from 2014-01 to 2024-12 
● Training with data from 2019-01 to 2024-12 
● Training with data from 2021-01 to 2024-12 

 
Mean Absolute Percent Difference from Baseline for Training Size: 

●   15 years (192 months): 5.49% 
●   10 years (132 months): 3.69% 
●   5 years (72 months): 1.55% 
●   3 years (48 months): 11.64% 

 

2.7 Strengths & Weaknesses 
A major strength of our SARIMA (Seasonal Auto-Regressive Integrated Moving 

Average) model was its ability to showcase change in monthly electricity consumption 
over the span of 25+ years—encompassing a large variety of situations and historical 
precedent.  

A weakness our model faced was the principle that the historical data available 
for us to use only met the minimum threshold to generate an accurate SARIMA model 
for this problem. Additionally, the model does not definitively account for population 
dynamics during the specified predictive period of twenty years; it primarily utilizes 
historical population-related data associated with electrical consumption rates in 
Memphis. 

 
Q3: Beat the Heat 
3.1 Defining the Problem 
The third problem asks us to assign a vulnerability score for various neighborhoods to 
equitably allocate resources in minimizing the effects of a heat wave or a power grid 
failure. 

 

3.2 Assumptions 
3.2-1. All ZIP codes experience similar heat wave intensity, but the ability to cope 
varies based on demographic, socioeconomic, and environmental factors. 
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● Justification: Heat waves pose risks primarily through their effects on people. 
Therefore, health issues like heat stroke, dehydration, and lack of cooling are the core 
concerns. Variations in urban infrastructure and green space availability also contribute 
to differing levels of resilience. 

3.2-2. Power grid failures affect all equally, as they affect ZIP codes uniformly in 
terms of occurrence, with differences arising from how residents can respond. 

● Justification: Heat waves are regional events, and while microclimates exist, the 
primary differentiator will still be factors that influence a neighborhood's resilience. 
Power outages are typically citywide events, not localized failures. 

3.2-3. The contribution of each factor to a ZIP code's vulnerability score can be modeled 
as linearly weighted. 

● Justification: While there may be correlation between different factors (e.g., income 
level and number of vehicles), there is no evidence to suggest that one factor amplifies 
the risk of another in a nonlinear fashion. 

3.2-4. Workers are not subject to unsafe work conditions such as being outside in 
extreme heat for long periods of time, with the majority working indoors in which AC is 
available under normal conditions. 

● Justification: Across the Memphis metropolitan area, a significant proportion of the 
workforce is employed in indoor, climate-controlled environments like offices or retail 
spaces. 

3.2-5. All neighborhoods respond the same way to high temperatures in terms of energy 
usage.  

● Justification: We assume that consumers respond similarly to temperature rises by 
running cooling devices if possible.  

 

3.3 The Model 
3.3.1 Model Development 
To model the impacts of various factors on the vulnerability of a ZIP code, we chose to use a 
weighted sum of normalized factors. Our vulnerability scores have a range from 0 to 1, with 1 
being the most vulnerable. 
 
The most important factors (ranked by importance) that we took into account were: 

1. Median household income: Lower-income households lack resources like generators 
and poverty exacerbates heat exposure. Wealthier areas generally cope better. 

2. Amount of households 1 or more elderly (over 65): Older adults are more 
physiologically vulnerable to heat (e.g., heat stroke) and may rely on power for medical 
devices. Protecting this at-risk group is central to equitable resource distribution 

3. Population: Larger populations mean more people are potentially exposed to heat and 
outages, amplifying the scale of impact. More residents demand greater city resources. 

4. Amount of households with 1 or more children (under 18): Young children are less 
efficient at regulating temperature, increasing heat-related risks. 
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5. Proportion of developed, open space: The Urban Heat Island Effect refers to the 
phenomenon where cities experience higher temperatures than surrounding rural areas 
due to human activity and land use patterns. The more developed open space, the better 
ZIP codes cope due to green spaces acting as localized cooling zones. 

6. Working population (over 16): While the working population somewhat overlaps with 
household income, it adds a small, distinct demographic layer (e.g., high-income retiree 
ZIP codes vs. low-income jobless ones). 

 
3.3.1 Model Execution 

In our model, we calculated a weighted sum where a higher score indicates greater 
vulnerability. The first 3 factors above were treated normally as each contributed to greater 
vulnerability, while the last 3 factors were treated as negative factors which utilized inverse 
proportions. 

To execute our vulnerability score model, we applied the weighted sum formula to 
normalized factors for the provided dataset of 27 ZIP codes. Weights were assigned based on 
relative importance. Using Excel, we calculated the vulnerability score for each ZIP code, 
reflecting its susceptibility to heat waves and power outages based on the following six factors. 

Symbol Variable Unit 

P 
Total population Persons 

E Amount of households 1 or 
more elderly (over 65) 

Households with elderly people 

C Amount of households with 1 or 
more children (under 18) 

Households with children 

I 
Median household income Dollars/per household 

O Proportion of developed, open 
space 

unitless 

W Working population (over 16) Persons 

The vulnerability score is calculated as: 

   𝑉𝑆 = 0. 2𝑃 + 0. 25𝐸 + 0. 15𝐶 + 0. 3(1 − 𝐼
𝐼
𝑚𝑎𝑥

) + 0. 05(1 − 𝑂
𝑂
𝑚𝑎𝑥

) + 0. 05(1 − 𝑊
𝑊

𝑚𝑎𝑥
)

3.4 Results 
Our dynamic heatmap is as follows: 
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Figure 7: A Heatmap showing  

 
Our approach to the “Beat the Heat” incorporated an urban heatmap model. Through initially 
selecting the provided data, we cleaned and optimized the dataset into one applicable to 
showcase the vulnerability of neighborhoods in Memphis during a heat wave or power grid 
failure. Following this, we determined equational factors by normalizing the data and weighting 
it based on its significance. With these factors, we input the values into R Studio to generate an 
urban heat map relating each zip code from the provided dataset to its vulnerability score.  
 
Through this procedure, we were able to clearly identify the zip-code specific vulnerability 
scores of neighborhoods in Memphis. The heat map approach provided a substantial visual 
representation of Memphis’ wealth inequality and how factors as such correlate to the 
vulnerability of underprivileged neighborhoods. 

 

3.5 Discussion  
 Through this investigative analysis of Memphis, Tennessee’s urban heat islands, two 

main vulnerability factors have become apparent. Income inequality and the lack of elderly 
support networks for excessively warm months. The one-solution approach that we propose is 
the implementation of green corridors in underprivileged and vulnerable Memphis 
neighborhoods—a tactic that mitigates income inequalities and the elderly population’s 
elevated risk of heatwaves and power grid faults [15]. Firstly, the development of green 
corridors in urban heat islands in Memphis has the ability to create jobs to lift people of lower 
socioeconomic statuses into increasingly advantageous positions and raise the median income. 

There will be an increased need for planters and construction workers—which people 
can partake in, additionally contributing to community engagement and connectivity (fostering 
and rebuilding supportive communities). Secondly, it has been previously noted that the 
establishment of green corridors in cities like Phoenix, Arizona has decreased high 
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temperatures caused by the heat-reflecting properties of concrete and pavement. These factors 
prove to be a substantial issue for elderly citizens residing in heat islands. The presence of trees 
has been previously studied to reduce heat in urban areas by up to 90%—an impressive amount 
that could be the difference between passing out and walking as normal on a sidewalk, 
especially for the elderly [14]. 
 

3.6 Strengths & Weaknesses 
A key strength of our approach is the model’s ability to incorporate a wide range of 

factors contributing to the complexity of our vulnerability score. These factors are accurately 
accounted for through data normalization and weighted based on their significance, ensuring 
a balanced impact in our equation. Additionally, the model effectively visualizes the wealth 
inequality gap between affluent and poverty-stricken neighborhoods in Memphis, revealing 
clear socioeconomic disparities across the city. Moreover, it highlights specific weaknesses 
within neighborhoods, providing valuable insights into resource deficiencies. This allows for 
targeted interventions to reduce vulnerability by addressing the most critical contributing 
factors. Ultimately, our model offers an accurate and efficient means of analyzing the 
specialized needs of each Memphis neighborhood. 

However, a limitation of this model is that the variable weights are estimated and 
subjectively produced (even though done so with thorough research-backed reasoning), which 
may introduce inaccuracies in predicting neighborhood vulnerability. Due to the lack of 
sufficient studies quantifying the precise impact of each factor, estimation was necessary. 
Additionally, while our model incorporates six key factors, many other unaccounted variables 
could influence vulnerability, potentially affecting its accuracy. Future refinements could 
involve integrating further data-driven weighting methods and additional variables to 
enhance precision. 

 

4: Conclusion 

As a product of thorough examination, our paper presents a reliable set of 
mathematical models, providing critical insight into mitigating the impacts of escalating heat 
waves in Memphis. By employing a dynamic thermal network model, we successfully captured 
the lag and dampening of indoor temperatures relative to outdoor extremes, offering a 
valuable tool for predicting the heat retention characteristics of non-air-conditioned 
dwellings.  

Subsequently, our Seasonal Auto-Regressive Integrated Moving Average (SARIMA) 
model forecasts a rise in peak power demand by 2045, emphasizing the need for proactive grid 
capacity planning as air conditioning use increases along with heatwave prevalence.  

Lastly, our vulnerability score model, which integrates socioeconomic and 
demographic factors, effectively identifies high-risk neighborhoods, enabling targeted 
interventions such as the development of green corridors. Together, these models provide a 
comprehensive framework for urban planners and policymakers, facilitating intelligent 
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decision-making to enhance emergency preparedness and resource allocation. This unique 
approach not only addresses immediate challenges but also supports long-term resilience 
against the compounded effects of climate change in the city of Memphis. 

In conclusion, our findings provide many comprehensive models relating to Memphis’ 
changing conditions and situations. While heatwaves and power grid failures do pose a 
significant threat to a large portion of Memphis’ urban population, this does not mean that 
solutions are impossible. With the models and data we’ve found today, we conclude this report 
with an optimistic outlook on the circumstances in Memphis. Through human ingenuity and 
innovation, there is hope to be found. 
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6 Code Appendix 
6.1 Q1: Hot to Go 
import numpy as np 

import matplotlib.pyplot as plt 

import math 

from scipy.integrate import odeint 

import pandas as pd 

from matplotlib.patches import Rectangle 

 

# Parameters for the differential equation 

UA = 102.6  # Heat transfer coefficient * Area (W/K) 

C = 1.26e7  # Thermal capacity (J/K) 

 

# Convert UA/C from 1/seconds to 1/hours 

# 1 hour = 3600 seconds, so we multiply by 3600 to get rate per hour 

UA_C_per_hour = (UA / C) * 3600  # now in units of 1/hour 

 

# Outdoor temperature function from the code snippet 

def T_outdoor(t): 

   # Handle time values for a full day cycle 

   t_mod = t % 24 

   return 10.15 * math.exp( 

       -0.5 * ( 

           ((t_mod - 13.8)/4.5) 

           - 0.11 * ((t_mod - 13.8)/4.5)**2 

       )**2 

   ) + 28.61 

 

# Solar heat gain (W) - Assuming it follows a pattern during daylight hours 

def Q_solar(t): 

   t_mod = t % 24 

   # Solar gain active between 6am and 6pm with maximum at noon 

   if 6 <= t_mod <= 18: 

       return (2500 * math.sin(math.pi * (t_mod - 6) / 12)) 

   else: 

       return 0 

 

# Modified differential equation to work with hours instead of seconds 

def dTdt(T_in, t): 

   # Q_solar also needs to be adjusted to hours (multiply by 3600 s/hr) 

   return UA_C_per_hour * (T_outdoor(t) - T_in) + (Q_solar(t) * 3600) / C 

 

# Time points for simulation (240 hours = 10 days) 
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t = np.linspace(0, 240, 4000)  # Doubled points for 10 days 

 

# Initial condition - starting indoor temperature 

T_in_initial = T_outdoor(0)  # Starting at the same as outdoor temperature 

 

# Solve the differential equation 

T_in_solution = odeint(dTdt, T_in_initial, t) 

 

# Plotting results 

plt.figure(figsize=(20, 6))  # Made wider for 10 days 

 

# Plot outdoor temperature 

T_out_values = [T_outdoor(time) for time in t] 

plt.plot(t, T_out_values, 'r-', label='Outdoor Temperature T_out(t)') 

 

# Plot indoor temperature 

plt.plot(t, T_in_solution, 'b-', label='Indoor Temperature T_in(t)') 

 

# Add labels and title 

plt.xlabel('Time (hours)') 

plt.ylabel('Temperature (°C)') 

plt.title('Indoor and Outdoor Temperature Simulation (10 Days)') 

plt.grid(True) 

plt.legend() 

 

# Add mathematical expressions on the plot with more space between them 

plt.figtext(0.5, 0.01, 

           r"$T_{out}(t) = 10.15 \cdot \exp(-0.5 \cdot (((t - 13.8)/4.5) - 0.11 \cdot 

((t - 13.8)/4.5)^2)^2) + 28.61$", 

           ha="center", fontsize=9, bbox={"facecolor":"white", "alpha":0.5, "pad":5}) 

           

plt.figtext(0.5, 0.08,  # Changed from 0.05 to 0.08 

           r"$\frac{dT_{in}}{dt} = \frac{UA \cdot (T_{out} - T_{in}) + Q_{solar}}{C}$, 

where $UA=220$ W/K, $C=1.85 \times 10^7$ J/K", 

           ha="center", fontsize=9, bbox={"facecolor":"white", "alpha":0.5, "pad":5}) 

 

# Add shaded region for daytime for all 10 days 

for day in range(10):  # Changed to 10 days 

   plt.axvspan(6 + 24*day, 18 + 24*day, alpha=0.1, color='yellow') 

 

# Set reasonable y-axis limits 

plt.ylim(min(min(T_out_values), min(T_in_solution)) - 1, 

        max(max(T_out_values), max(T_in_solution)) + 1) 
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# Add day markers along the x-axis 

for day in range(11):  # 0 to 10 days 

   plt.axvline(x=day*24, color='gray', linestyle='--', alpha=0.5) 

   if day < 10:  # Don't add text for the end boundary 

       plt.text(day*24 + 12, min(min(T_out_values), min(T_in_solution)) - 0.8, 

               f'Day {day+1}', ha='center') 

 

# Add x-ticks for each day, but only show every other day to avoid crowding 

plt.xticks([day*24 for day in range(0, 11, 2)], [f'Day {day+1}' for day in range(0, 

11, 2)]) 

 

plt.tight_layout(rect=[0, 0.15, 1, 1])  # Changed from 0.1 to 0.15 

plt.show() 

 

# Add a new plot showing only the first day 

plt.figure(figsize=(12, 6)) 

ax1 = plt.gca()  # Get current axis as primary axis 

 

# Filter data for just the first day (0-24 hours) 

day1_mask = t <= 24 

t_day1 = t[day1_mask] 

T_in_day1 = T_in_solution[day1_mask] 

T_out_day1 = [T_outdoor(time) for time in t_day1] 

 

# Plot temperatures for first day 

outdoor_line = ax1.plot(t_day1, T_out_day1, 'r-', linewidth=2)[0]  # Save line 

reference 

indoor_line = ax1.plot(t_day1, T_in_day1, 'b-', linewidth=2)[0]  # Save line reference 

 

# Add solar heat gain on a secondary axis for better understanding 

ax2 = plt.twinx() 

Q_solar_day1 = [Q_solar(time) for time in t_day1] 

solar_line = ax2.plot(t_day1, Q_solar_day1, 'g--', alpha=0.7)[0]  # Save line 

reference 

ax2.set_ylabel('Solar Heat Gain (W)', color='g') 

ax2.tick_params(axis='y', labelcolor='g') 

 

# Add labels and title 

ax1.set_xlabel('Time (hours)') 

ax1.set_ylabel('Temperature (°C)') 

plt.title('Indoor and Outdoor Temperature - First Day Detail') 

ax1.grid(True) 

 

# Add shaded region for daytime (6am to 6pm) 
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daylight = ax1.axvspan(6, 18, alpha=0.1, color='yellow')  # Save span reference 

 

# Set axis limits 

ax1.set_xlim(0, 24) 

ax1.set_ylim(min(min(T_out_day1), min(T_in_day1)) - 1, 

        max(max(T_out_day1), max(T_in_day1)) + 1) 

 

# Add hourly markers 

ax1.set_xticks(range(0, 25, 2)) 

for hour in range(0, 25, 6): 

   ax1.axvline(x=hour, color='gray', linestyle=':', alpha=0.5) 

   if hour < 24: 

       time_label = f"{hour}:00" 

       ax1.text(hour, min(min(T_out_day1), min(T_in_day1)) - 0.5, 

               time_label, ha='center') 

 

# Create completely custom legend with exactly one entry per item 

from matplotlib.patches import Rectangle 

daylight_handle = Rectangle((0, 0), 1, 1, color='yellow', alpha=0.1) 

 

# Create the legend with exactly the handles and labels we want 

handles = [outdoor_line, indoor_line, solar_line, daylight_handle] 

labels = ['Outdoor Temperature T_out(t)', 'Indoor Temperature T_in(t)', 

         'Solar Heat Gain Q_solar(t)', 'Daylight Hours'] 

 

# Add the legend to the plot 

ax1.legend(handles, labels, loc='best') 

 

# Add mathematical expressions on the plot with more space between them 

plt.figtext(0.5, 0.01, 

           r"$T_{out}(t) = 10.15 \cdot \exp(-0.5 \cdot (((t - 13.8)/4.5) - 0.11 \cdot 

((t - 13.8)/4.5)^2)^2) + 28.61$", 

           ha="center", fontsize=9, bbox={"facecolor":"white", "alpha":0.5, "pad":5}) 

           

plt.figtext(0.5, 0.08, 

           r"$\frac{dT_{in}}{dt} = \frac{UA \cdot (T_{out} - T_{in}) + Q_{solar}}{C}$, 

where $UA=220$ W/K, $C=1.85 \times 10^7$ J/K", 

           ha="center", fontsize=9, bbox={"facecolor":"white", "alpha":0.5, "pad":5}) 

 

plt.tight_layout(rect=[0, 0.15, 1, 1]) 

plt.show() 

 

# Cross-validation of the mathematical model against original data 

print("\n----- Cross-Validation of Temperature Model -----") 
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# Original hourly temperature data (from 12am to 11pm) 

original_data = np.array([ 

   29.4, 29.4, 28.9, 28.3, 28.3, 28.3, 

   28.9, 31.1, 32.8, 34.4, 35.6, 36.1, 

   37.8, 37.8, 38.9, 38.9, 37.8, 37.2, 

   36.1, 34.4, 33.3, 32.8, 32.2, 31.7 

]) 

 

# Time points for the hourly data (0 to 23) 

hours = np.arange(24) 

 

# Get model predictions at hourly intervals 

model_predictions = np.array([T_outdoor(h) for h in hours]) 

 

# Calculate error metrics 

residuals = original_data - model_predictions 

mse = np.mean(residuals**2) 

rmse = np.sqrt(mse) 

mae = np.mean(np.abs(residuals)) 

 

# Calculate R-squared 

ss_total = np.sum((original_data - np.mean(original_data))**2) 

ss_residual = np.sum(residuals**2) 

r_squared = 1 - (ss_residual / ss_total) 

 

# Print metrics 

print(f"Mean Squared Error (MSE): {mse:.4f}°C²") 

print(f"Root Mean Squared Error (RMSE): {rmse:.4f}°C") 

print(f"Mean Absolute Error (MAE): {mae:.4f}°C") 

print(f"R-squared (R²): {r_squared:.4f}") 

 

# Implement leave-one-out cross-validation (LOOCV) 

print("\n----- Leave-One-Out Cross-Validation -----") 

loocv_errors = [] 

 

for i in range(len(hours)): 

   # Create mask for all points except the current one 

   mask = np.ones(24, dtype=bool) 

   mask[i] = False 

   

   # Data for fitting 

   train_hours = hours[mask] 

   train_temps = original_data[mask] 
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   # Test point 

   test_hour = hours[i] 

   test_temp = original_data[i] 

   

   # Predict using our model (we're using the same model, so this is just to 

demonstrate the approach) 

   predicted_temp = T_outdoor(test_hour) 

   

   # Calculate error 

   error = test_temp - predicted_temp 

   loocv_errors.append(error) 

 

# Calculate LOOCV metrics 

loocv_mse = np.mean(np.array(loocv_errors)**2) 

loocv_rmse = np.sqrt(loocv_mse) 

 

print(f"LOOCV Mean Squared Error: {loocv_mse:.4f}°C²") 

print(f"LOOCV Root Mean Squared Error: {loocv_rmse:.4f}°C") 

 

# Create a visualization comparing original data with model predictions 

plt.figure(figsize=(12, 6)) 

 

# Plot original data points 

plt.scatter(hours, original_data, color='blue', label='Original Data', s=50) 

 

# Plot model predictions 

plt.plot(np.linspace(0, 23, 100), [T_outdoor(t) for t in np.linspace(0, 23, 100)], 

        'r-', label='Mathematical Model') 

 

# Add error bars to visualize residuals 

for i in range(len(hours)): 

   plt.plot([hours[i], hours[i]], [original_data[i], model_predictions[i]], 'k-', 

alpha=0.3) 

 

# Add labels and title 

plt.xlabel('Time (hours)') 

plt.ylabel('Temperature (°C)') 

plt.title('Cross-Validation: Original Data vs. Mathematical Model') 

plt.grid(True) 

plt.legend() 

 

# Add metrics to the plot 

plt.figtext(0.5, 0.01, 
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           f"Model Metrics: RMSE = {rmse:.2f}°C, R² = {r_squared:.2f}", 

           ha="center", fontsize=10, bbox={"facecolor":"white", "alpha":0.5, "pad":5}) 

 

plt.tight_layout(rect=[0, 0.05, 1, 1]) 

plt.show() 

 

# Add a new section for sensitivity analysis 

print("\n----- Sensitivity Analysis -----") 

 

# Define the baseline parameter values 

UA_baseline = 220  # W/K 

C_baseline = 1.85e7  # J/K 

 

# Define parameter ranges for sensitivity analysis 

# Testing values from -50% to +50% of baseline 

UA_values = [UA_baseline * factor for factor in [0.5, 0.75, 1.0, 1.25, 1.5]] 

C_values = [C_baseline * factor for factor in [0.5, 0.75, 1.0, 1.25, 1.5]] 

 

# Function to run simulation with given parameters 

def run_simulation(UA_val, C_val, time_points): 

   # Convert to hourly rates 

   UA_C_per_hour_val = (UA_val / C_val) * 3600 

   

   # Define modified differential equation with the new parameters 

   def dTdt_modified(T_in, t): 

       return UA_C_per_hour_val * (T_outdoor(t) - T_in) + (Q_solar(t) * 3600) / C_val 

   

   # Use the same initial condition 

   T_in_initial = T_outdoor(0) 

   

   # Solve the ODE 

   return odeint(dTdt_modified, T_in_initial, time_points) 

 

# Time range for sensitivity analysis (using 3 days) 

t_sens = np.linspace(0, 72, 1000) 

 

# 1. Sensitivity to UA (Heat Transfer Coefficient * Area) 

# ------------------------------------------------------- 

plt.figure(figsize=(15, 7)) 

 

# Run simulations for different UA values 

UA_results = {} 

for UA_val in UA_values: 

   T_in_solution = run_simulation(UA_val, C_baseline, t_sens) 
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   UA_results[UA_val] = T_in_solution.flatten() 

   

   # Calculate percentage difference from baseline 

   percent_diff = (UA_val / UA_baseline - 1) * 100 

   label = f"UA = {UA_val:.0f} W/K ({percent_diff:+.0f}%)" 

   

   plt.plot(t_sens, T_in_solution, label=label) 

 

# Add outdoor temperature for reference 

T_out_sens = [T_outdoor(time) for time in t_sens] 

plt.plot(t_sens, T_out_sens, 'k--', label='Outdoor Temperature', alpha=0.5) 

 

# Add shaded regions for daytime 

for day in range(3): 

   plt.axvspan(6 + 24*day, 18 + 24*day, alpha=0.1, color='yellow') 

 

# Plot formatting 

plt.xlabel('Time (hours)') 

plt.ylabel('Indoor Temperature (°C)') 

plt.title('Sensitivity Analysis: Effect of UA Coefficient on Indoor Temperature') 

plt.grid(True) 

plt.legend(loc='best') 

plt.tight_layout() 

plt.savefig('sensitivity_UA.png') 

plt.show() 

 

# 2. Sensitivity to C (Thermal Capacity) 

# ------------------------------------------------------- 

plt.figure(figsize=(15, 7)) 

 

# Run simulations for different C values 

C_results = {} 

for C_val in C_values: 

   T_in_solution = run_simulation(UA_baseline, C_val, t_sens) 

   C_results[C_val] = T_in_solution.flatten() 

   

   # Calculate percentage difference from baseline 

   percent_diff = (C_val / C_baseline - 1) * 100 

   label = f"C = {C_val:.2e} J/K ({percent_diff:+.0f}%)" 

   

   plt.plot(t_sens, T_in_solution, label=label) 

 

# Add outdoor temperature for reference 

plt.plot(t_sens, T_out_sens, 'k--', label='Outdoor Temperature', alpha=0.5) 
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# Add shaded regions for daytime 

for day in range(3): 

   plt.axvspan(6 + 24*day, 18 + 24*day, alpha=0.1, color='yellow') 

# Plot formatting 

plt.xlabel('Time (hours)') 

plt.ylabel('Indoor Temperature (°C)') 

plt.title('Sensitivity Analysis: Effect of Thermal Capacity on Indoor Temperature') 

plt.grid(True) 

plt.legend(loc='best') 

plt.tight_layout() 

plt.savefig('sensitivity_C.png') 

plt.show() 

 

# 3. Quantitative Sensitivity Metrics 

# ------------------------------------------------------- 

print("\nQuantitative Sensitivity Metrics:") 

 

# Calculate statistics for UA sensitivity 

UA_sensitivity_metrics = [] 

for UA_val in UA_values: 

   if UA_val == UA_baseline: 

       continue  # Skip baseline 

   

   # Get temperature differences from baseline 

   temp_diffs = UA_results[UA_val] - UA_results[UA_baseline] 

   

   # Calculate metrics 

   max_diff = np.max(np.abs(temp_diffs)) 

   avg_diff = np.mean(np.abs(temp_diffs)) 

   

   # Calculate parameter change percentage 

   param_change_pct = (UA_val / UA_baseline - 1) * 100 

   

   UA_sensitivity_metrics.append({ 

       'Parameter': 'UA', 

       'Value': UA_val, 

       'Change': f"{param_change_pct:+.0f}%", 

       'Max_Temp_Diff': max_diff, 

       'Avg_Temp_Diff': avg_diff 

   }) 

 

# Calculate statistics for C sensitivity 

C_sensitivity_metrics = [] 
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for C_val in C_values: 

   if C_val == C_baseline: 

       continue  # Skip baseline 

   

   # Get temperature differences from baseline 

   temp_diffs = C_results[C_val] - C_results[C_baseline] 

   

   # Calculate metrics 

   max_diff = np.max(np.abs(temp_diffs)) 

   avg_diff = np.mean(np.abs(temp_diffs)) 

   

   # Calculate parameter change percentage 

   param_change_pct = (C_val / C_baseline - 1) * 100 

   

   C_sensitivity_metrics.append({ 

       'Parameter': 'C', 

       'Value': C_val, 

       'Change': f"{param_change_pct:+.0f}%", 

       'Max_Temp_Diff': max_diff, 

       'Avg_Temp_Diff': avg_diff 

   }) 

 

# Combine metrics and create DataFrame 

all_metrics = UA_sensitivity_metrics + C_sensitivity_metrics 

metrics_df = pd.DataFrame(all_metrics) 

print(metrics_df) 

 

# 4. Relative sensitivity indices 

# ----------------------------------------------------- 

plt.figure(figsize=(10, 6)) 

 

# Calculate normalized sensitivity 

normalized_sens = [] 

 

for metric in all_metrics: 

   param = metric['Parameter'] 

   change_pct = float(metric['Change'].replace('%', '')) 

   avg_diff = metric['Avg_Temp_Diff'] 

   

   # Normalized sensitivity = (% change in output) / (% change in input) 

   # Here output is Avg_Temp_Diff and input is parameter change 

   normalized_sens.append({ 

       'Parameter': param, 

       'Change': change_pct, 
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       'Sensitivity_Index': avg_diff / abs(change_pct) 

   }) 

 

sens_df = pd.DataFrame(normalized_sens) 

 

# Plot sensitivity indices 

colors = ['blue', 'blue', 'blue', 'blue', 'red', 'red', 'red', 'red'] 

param_labels = [f"{row['Parameter']} ({row['Change']:+.0f}%)" for _, row in 

sens_df.iterrows()] 

 

plt.figure(figsize=(12, 6)) 

bars = plt.bar(param_labels, sens_df['Sensitivity_Index'], color=colors) 

 

# Add labels and styling 

plt.axhline(y=0, color='black', linestyle='-', alpha=0.3) 

plt.ylabel('Normalized Sensitivity Index\n(°C change per % parameter change)') 

plt.title('Parameter Sensitivity Comparison') 

plt.xticks(rotation=45) 

plt.grid(axis='y', linestyle='--', alpha=0.7) 

 

# Add a legend 

from matplotlib.patches import Patch 

legend_elements = [ 

   Patch(facecolor='blue', label='UA Coefficient'), 

   Patch(facecolor='red', label='Thermal Capacity') 

] 

plt.legend(handles=legend_elements) 

 

plt.tight_layout() 

plt.savefig('sensitivity_indices.png') 

plt.show() 

 

# 5. Sensitivity Heatmap (2D parameter space exploration) 

# -------------------------------------------------------- 

# Create a grid of parameter combinations 

param_grid = [] 

for UA_val in UA_values: 

   for C_val in C_values: 

       param_grid.append((UA_val, C_val)) 

 

# Select a specific time point for heatmap evaluation (e.g., after 48 hours) 

eval_time_idx = np.where(t_sens >= 48)[0][0] 

 

# Run simulations for all parameter combinations 
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results_grid = np.zeros((len(UA_values), len(C_values))) 

 

for i, UA_val in enumerate(UA_values): 

   for j, C_val in enumerate(C_values): 

       T_in_solution = run_simulation(UA_val, C_val, t_sens) 

       results_grid[i, j] = T_in_solution[eval_time_idx] 

 

# Create labels for the axes 

UA_labels = [f"{UA:.0f}" for UA in UA_values] 

C_labels = [f"{C:.2e}" for C in C_values] 

 

# Plot heatmap 

plt.figure(figsize=(10, 8)) 

im = plt.imshow(results_grid, cmap='viridis') 

plt.colorbar(im, label='Temperature (°C) at t=48 hours') 

 

# Add labels 

plt.xticks(np.arange(len(C_values)), C_labels, rotation=45) 

plt.yticks(np.arange(len(UA_values)), UA_labels) 

plt.xlabel('Thermal Capacity C (J/K)') 

plt.ylabel('Heat Transfer Coefficient UA (W/K)') 

plt.title('Temperature at t=48h for Different Parameter Combinations') 

 

# Add text annotations with temperature values 

for i in range(len(UA_values)): 

   for j in range(len(C_values)): 

       plt.text(j, i, f"{results_grid[i, j]:.2f}°C", 

                ha="center", va="center", color="white" if results_grid[i, j] < 

np.median(results_grid) else "black") 

 

plt.tight_layout() 

plt.savefig('sensitivity_heatmap.png') 

plt.show() 

 

 
6.2 Q2: Power Hungry 
import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import statsmodels.api as sm 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

from statsmodels.tsa.stattools import adfuller 

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 
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import itertools 

import warnings 

import io 

import os 

import joblib 

import matplotlib.dates as mdates 

 

# Suppress warnings for cleaner output 

warnings.filterwarnings('ignore') 

 

data_str = """Omitted to save space""" 

# 1) LOAD AND PREPARE THE DATA 

# --------------------------------------------------- 

df = pd.read_csv(io.StringIO(data_str)) 

# Convert Year/Month to a proper datetime 

df['Date'] = pd.to_datetime(df['Year'].astype(str) + '-' + df['Month'], 

format='%Y-%B') 

df = df.sort_values('Date') 

 

# Create a monthly frequency datetime index 

# Some older data might not exactly line up with day-of-month; "MS" = Month Start 

df.set_index('Date', inplace=True) 

df.index = df.index.to_period('M')  # or use asfreq('MS') for a Timestamp index 

 

# Extract our target time series 

ts = df['Memphis_Billion_kWh'].asfreq('M')  # ensures monthly freq 

 

# 2) OPTIONAL: STATIONARITY CHECK 

# --------------------------------------------------- 

# Quick function to print ADF test results: 

def test_stationarity(series): 

   result = adfuller(series.dropna()) 

   print("ADF Statistic: ", result[0]) 

   print("p-value: ", result[1]) 

   print("Critical Values:") 

   for key, value in result[4].items(): 

       print(f"   {key}: {value}") 

 

   if result[1] <= 0.05: 

       print("\n=> Likely Stationary (Reject H0)\n") 

   else: 

       print("\n=> Likely Non-Stationary (Fail to Reject H0)\n") 

 

print("Original series stationarity test:") 
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test_stationarity(ts) 

 

# 3) TRAIN/TEST SPLIT FOR VALIDATION 

# --------------------------------------------------- 

# Decide on a cutoff date for training vs. testing. 

train_end_date = '2022-12' 

train = ts[:train_end_date] 

test = ts[train_end_date:]  # includes Dec 2022 if you prefer, or start from '2023-01' 

 

print(f"Training set: {train.index.min()} to {train.index.max()} (n={len(train)})") 

print(f"Test set: {test.index.min()} to {test.index.max()} (n={len(test)})") 

 

# 4) GRID SEARCH OVER SARIMA PARAMETERS 

# --------------------------------------------------- 

p = range(0, 3) 

d = range(0, 3) 

q = range(0, 3) 

 

P = range(0, 3) 

D = range(0, 2) 

Q = range(0, 3) 

m = 12  # monthly seasonality 

 

best_aic = float('inf') 

best_order = None 

best_seasonal_order = None 

best_model = None 

 

# 7) REFIT ON THE ENTIRE DATASET & FORECAST INTO THE FUTURE 

# --------------------------------------------------- 

# Add model persistence to avoid retraining 

model_filename = 'memphis_sarima_model.pkl' 

 

# Check if saved model exists 

if os.path.exists(model_filename): 

   print("Loading previously trained model...") 

   final_res = joblib.load(model_filename) 

   # Get the saved model parameters for reference 

   best_order = final_res.model.order 

   best_seasonal_order = final_res.model.seasonal_order 

   print(f"Loaded model with ARIMA Order: {best_order}, Seasonal Order: 

{best_seasonal_order}") 

else: 

   print("Training new model...") 
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   final_model = SARIMAX(ts, 

                         order=best_order, 

                         seasonal_order=best_seasonal_order, 

                         enforce_stationarity=False, 

                         enforce_invertibility=False) 

   final_res = final_model.fit(disp=False) 

   # Save the model 

   joblib.dump(final_res, model_filename) 

   print(f"Model saved to {model_filename}") 

 

# Forecast for the next 20 years = 240 months 

forecast_steps = 264 

full_forecast = final_res.get_forecast(steps=forecast_steps) 

 

# Create an index for future periods 

last_period = ts.index[-1] 

forecast_index_full = pd.period_range(start=last_period+1, periods=forecast_steps, 

freq='M') 

forecast_mean_full = full_forecast.predicted_mean 

forecast_ci_full = full_forecast.conf_int() 

 

# Convert PeriodIndex to Timestamp for plotting 

forecast_index_full_ts = forecast_index_full.to_timestamp() 

 

# Make a DataFrame for your final forecasts 

forecast_df = pd.DataFrame({ 

   'Forecast': forecast_mean_full, 

   'Lower_CI': forecast_ci_full.iloc[:, 0], 

   'Upper_CI': forecast_ci_full.iloc[:, 1] 

}, index=forecast_index_full) 

forecast_df.index.name = 'Date' 

print("\nFinal Forecast Sample:") 

print(forecast_df.head(12)) 

 

# 8) PLOT FULL DATA + FUTURE FORECAST 

# --------------------------------------------------- 

plt.figure(figsize=(14,6)) 

plt.plot(ts.index.to_timestamp(), ts, label='Historical') 

plt.plot(forecast_index_full_ts, forecast_mean_full, label='Future Forecast', 

color='red') 

plt.fill_between(forecast_index_full_ts, 

                forecast_ci_full.iloc[:, 0], 

                forecast_ci_full.iloc[:, 1], 

                color='pink', alpha=0.3, 
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                label='95% Confidence Interval') 

plt.title("SARIMA - Historical and 20-Year Forecast") 

plt.xlabel('Date') 

plt.ylabel('Electricity Consumption (Billion kWh)') 

plt.legend() 

plt.grid(True) 

plt.show() 

 

plt.figure(figsize=(20,6)) # Wider figure for stretched x-axis 

plt.plot(ts.index.to_timestamp(), ts, label='Historical') 

plt.plot(forecast_index_full_ts, forecast_mean_full, label='Future Forecast', 

color='red') 

plt.fill_between(forecast_index_full_ts, 

forecast_ci_full.iloc[:, 0], 

forecast_ci_full.iloc[:, 1], 

color='pink', alpha=0.3, 

label='95% Confidence Interval') 

plt.title("SARIMA - Historical and 20-Year Forecast (Stretched X-Axis)") 

plt.xlabel('Date') 

plt.ylabel('Electricity Consumption (Billion kWh)') 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

 

# 9) ADD FOCUSED PLOT AROUND 2045 

plt.figure(figsize=(16, 8))  # Wider figure for better detail 

 

# Calculate the date range around 2045 (e.g., 2044-2046) 

start_date = '2025-01-01' 

end_date = '2045-12-31' 

 

# Filter forecast data for this range 

mask = (forecast_index_full_ts >= start_date) & (forecast_index_full_ts <= end_date) 

future_slice = forecast_mean_full[mask] 

ci_slice_lower = forecast_ci_full.iloc[:, 0][mask] 

ci_slice_upper = forecast_ci_full.iloc[:, 1][mask] 

future_dates_slice = forecast_index_full_ts[mask] 

 

# Plot the focused range 

plt.plot(future_dates_slice, future_slice, label='Forecast 2044-2046', color='red') 

plt.fill_between(future_dates_slice, 

                ci_slice_lower, 

                ci_slice_upper, 
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                color='pink', alpha=0.3, 

                label='95% Confidence Interval') 

                

# Add monthly gridlines and format 

plt.grid(True, which='both', linestyle='--', linewidth=0.5) 

plt.title("Detailed Monthly Forecast Around 2045", fontsize=16) 

plt.xlabel('Date', fontsize=12) 

plt.ylabel('Electricity Consumption (Billion kWh)', fontsize=12) 

plt.legend() 

 

# Format x-axis to show months 

plt.gca().xaxis.set_major_locator(mdates.YearLocator()) 

# plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%b %Y')) 

plt.xticks(rotation=45) 

plt.tight_layout() 

plt.show() 

 

# 10) ALTERNATIVE: STRETCHED FULL FORECAST 

plt.figure(figsize=(24, 8))  # Very wide figure for stretched x-axis 

plt.plot(ts.index.to_timestamp(), ts, label='Historical') 

plt.plot(forecast_index_full_ts, forecast_mean_full, label='Future Forecast', 

color='red') 

plt.fill_between(forecast_index_full_ts, 

                forecast_ci_full.iloc[:, 0], 

                forecast_ci_full.iloc[:, 1], 

                color='pink', alpha=0.3, 

                label='95% Confidence Interval') 

plt.title("SARIMA - Historical and 20-Year Forecast (Extra Stretched X-Axis)", 

fontsize=16) 

plt.xlabel('Date', fontsize=12) 

plt.ylabel('Electricity Consumption (Billion kWh)', fontsize=12) 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

 

# 11) SENSITIVITY ANALYSIS FOR SARIMA MODEL 

# --------------------------------------------------- 

print("\n----- SENSITIVITY ANALYSIS -----") 

 

# Create directory for sensitivity outputs 

if not os.path.exists('sensitivity_results'): 

   os.makedirs('sensitivity_results') 
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# 1. Parameter Sensitivity 

# --------------------------------------------------- 

def run_model_with_params(order, seasonal_order): 

   """Train SARIMA with specific parameters and return forecast""" 

   try: 

       model = SARIMAX(ts, 

                       order=order, 

                       seasonal_order=seasonal_order, 

                       enforce_stationarity=False, 

                       enforce_invertibility=False) 

       results = model.fit(disp=False) 

       forecast = results.get_forecast(steps=forecast_steps) 

       return { 

           'mean': forecast.predicted_mean, 

           'ci': forecast.conf_int(), 

           'aic': results.aic, 

           'bic': results.bic 

       } 

   except Exception as e: 

       print(f"Error with order={order}, seasonal_order={seasonal_order}: {e}") 

       return None 

 

# Baseline parameters (from your existing model) 

baseline_order = final_res.model.order 

baseline_seasonal_order = final_res.model.seasonal_order 

print(f"Baseline model parameters: ARIMA{baseline_order} × 

SARIMA{baseline_seasonal_order}") 

 

# Get baseline forecast 

baseline_forecast = run_model_with_params(baseline_order, baseline_seasonal_order) 

 

# 1.1 Vary the AR order (p) 

p_variations = [(p, baseline_order[1], baseline_order[2]) for p in range(0, 4) 

              if (p, baseline_order[1], baseline_order[2]) != baseline_order] 

 

# 1.2 Vary the differencing (d) 

d_variations = [(baseline_order[0], d, baseline_order[2]) for d in range(0, 3) 

              if (baseline_order[0], d, baseline_order[2]) != baseline_order] 

 

# 1.3 Vary the MA order (q) 

q_variations = [(baseline_order[0], baseline_order[1], q) for q in range(0, 4) 

              if (baseline_order[0], baseline_order[1], q) != baseline_order] 

 

# 1.4 Vary seasonal parameters (one at a time) 
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P_variations = [(P, baseline_seasonal_order[1], baseline_seasonal_order[2], 

baseline_seasonal_order[3]) 

              for P in range(0, 3) 

              if (P, baseline_seasonal_order[1], baseline_seasonal_order[2], 

baseline_seasonal_order[3]) != baseline_seasonal_order] 

 

D_variations = [(baseline_seasonal_order[0], D, baseline_seasonal_order[2], 

baseline_seasonal_order[3]) 

              for D in range(0, 2) 

              if (baseline_seasonal_order[0], D, baseline_seasonal_order[2], 

baseline_seasonal_order[3]) != baseline_seasonal_order] 

 

Q_variations = [(baseline_seasonal_order[0], baseline_seasonal_order[1], Q, 

baseline_seasonal_order[3]) 

              for Q in range(0, 3) 

              if (baseline_seasonal_order[0], baseline_seasonal_order[1], Q, 

baseline_seasonal_order[3]) != baseline_seasonal_order] 

 

# All parameter variations to test 

param_variations = { 

   'AR Order (p)': {'orders': p_variations, 'seasonal_orders': 

[baseline_seasonal_order] * len(p_variations)}, 

   'Differencing (d)': {'orders': d_variations, 'seasonal_orders': 

[baseline_seasonal_order] * len(d_variations)}, 

   'MA Order (q)': {'orders': q_variations, 'seasonal_orders': 

[baseline_seasonal_order] * len(q_variations)}, 

   'Seasonal AR (P)': {'orders': [baseline_order] * len(P_variations), 

'seasonal_orders': P_variations}, 

   'Seasonal Diff (D)': {'orders': [baseline_order] * len(D_variations), 

'seasonal_orders': D_variations}, 

   'Seasonal MA (Q)': {'orders': [baseline_order] * len(Q_variations), 

'seasonal_orders': Q_variations}, 

} 

 

# Run sensitivity for each parameter category 

for param_name, variations in param_variations.items(): 

   results = [] 

   forecasts = [] 

   

   # Get all forecasts for this parameter variation 

   for i in range(len(variations['orders'])): 

       order = variations['orders'][i] 

       seasonal_order = variations['seasonal_orders'][i] 
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       print(f"Testing {param_name}: ARIMA{order} × SARIMA{seasonal_order}") 

       forecast_result = run_model_with_params(order, seasonal_order) 

       

       if forecast_result: 

           param_label = f"{order}" if param_name in ['AR Order (p)', 'Differencing 

(d)', 'MA Order (q)'] else f"{seasonal_order}" 

           results.append({ 

               'param': param_label, 

               'aic': forecast_result['aic'], 

               'bic': forecast_result['bic'], 

               'mean': forecast_result['mean'], 

               'ci': forecast_result['ci'], 

           }) 

           forecasts.append(forecast_result['mean']) 

   

   # Plot the parameter sensitivity 

   if len(results) > 0: 

       plt.figure(figsize=(16, 8)) 

       

       # Plot baseline 

       plt.plot(forecast_index_full_ts, baseline_forecast['mean'], 

                label=f'Baseline 

ARIMA{baseline_order}×SARIMA{baseline_seasonal_order}', 

                color='black', linewidth=2) 

       

       # Plot variations 

       colors = plt.cm.tab10(np.linspace(0, 1, len(results))) 

       for i, result in enumerate(results): 

           plt.plot(forecast_index_full_ts, result['mean'], 

                    label=f'{param_name}={result["param"]} (AIC={result["aic"]:.2f})', 

                    color=colors[i], alpha=0.7) 

       

       plt.title(f'Sensitivity Analysis: Effect of {param_name} on Forecast', 

fontsize=14) 

       plt.xlabel('Date', fontsize=12) 

       plt.ylabel('Electricity Consumption (Billion kWh)', fontsize=12) 

       plt.legend(loc='best') 

       plt.grid(True) 

       plt.tight_layout() 

       plt.savefig(f'sensitivity_results/sensitivity_{param_name.replace(" ", 

"_").lower()}.png') 

       plt.show() 

       

       # Calculate MAPE between baseline and variations 
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       print(f"\nMean Absolute Percent Difference from Baseline for {param_name}:") 

       for i, result in enumerate(results): 

           mape = np.mean(np.abs((baseline_forecast['mean'] - result['mean']) / 

baseline_forecast['mean'])) * 100 

           print(f"  {param_name}={result['param']}: {mape:.2f}%") 

 

# 2. Training Data Size Sensitivity 

# --------------------------------------------------- 

print("\n2. Training Data Size Sensitivity") 

 

# Define different training periods 

training_periods = { 

   '15 years': '2009-01',   # Approximately 15 years of data 

   '10 years': '2014-01',   # Approximately 10 years of data 

   '5 years': '2019-01',    # Approximately 5 years of data 

   '3 years': '2021-01',    # Approximately 3 years of data 

} 

 

# Get forecasts for different training sizes 

train_size_results = {} 

for period_name, start_date in training_periods.items(): 

   print(f"Training with data from {start_date} to {ts.index[-1]}") 

   

   # Truncate the time series to the start_date 

   truncated_ts = ts[start_date:] 

   

   try: 

       model = SARIMAX(truncated_ts, 

                        order=baseline_order, 

                        seasonal_order=baseline_seasonal_order, 

                        enforce_stationarity=False, 

                        enforce_invertibility=False) 

       results = model.fit(disp=False) 

       

       # Get the same length forecast as baseline 

       forecast = results.get_forecast(steps=forecast_steps) 

       

       train_size_results[period_name] = { 

           'mean': forecast.predicted_mean, 

           'ci': forecast.conf_int(), 

           'aic': results.aic, 

           'bic': results.bic, 

           'training_size': len(truncated_ts) 

       } 
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   except Exception as e: 

       print(f"Error with training period {period_name}: {e}") 

 

# Plot comparison of forecasts with different training sizes 

plt.figure(figsize=(16, 8)) 

 

# Plot the baseline forecast (full data) 

plt.plot(forecast_index_full_ts, baseline_forecast['mean'], 

        label=f'Full Training ({len(ts)} months)', 

        color='black', linewidth=2) 

 

# Plot each training size variation 

colors = plt.cm.tab10(np.linspace(0, 1, len(train_size_results))) 

for i, (period_name, result) in enumerate(train_size_results.items()): 

   plt.plot(forecast_index_full_ts, result['mean'], 

            label=f'{period_name} ({result["training_size"]} months)', 

            color=colors[i], alpha=0.7) 

 

plt.title('Sensitivity Analysis: Effect of Training Data Size on Forecast', 

fontsize=14) 

plt.xlabel('Date', fontsize=12) 

plt.ylabel('Electricity Consumption (Billion kWh)', fontsize=12) 

plt.legend(loc='best') 

plt.grid(True) 

plt.tight_layout() 

plt.savefig('sensitivity_results/sensitivity_training_size.png') 

plt.show() 

 

# Calculate metrics for training size comparison 

print("\nMean Absolute Percent Difference from Baseline for Training Size:") 

for period_name, result in train_size_results.items(): 

   mape = np.mean(np.abs((baseline_forecast['mean'] - result['mean']) / 

baseline_forecast['mean'])) * 100 

   print(f"  {period_name} ({result['training_size']} months): {mape:.2f}%") 

 

# 3. Forecast Horizon Sensitivity 

# --------------------------------------------------- 

print("\n3. Forecast Horizon Sensitivity Analysis") 

 

# Define forecast horizons to analyze 

horizons = [12, 24, 60, 120, 240]  # 1, 2, 5, 10, 20 years 

horizon_labels = ['1 year', '2 years', '5 years', '10 years', '20 years'] 

 

# Get confidence intervals and error growth for different horizons 
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horizon_results = [] 

for horizon, label in zip(horizons, horizon_labels): 

   # Extract forecast for this horizon 

   mean = baseline_forecast['mean'][:horizon] 

   ci = baseline_forecast['ci'].iloc[:horizon] 

   

   # Calculate confidence interval width (absolute and relative) 

   ci_width = ci.iloc[:, 1] - ci.iloc[:, 0] 

   relative_ci_width = ci_width / mean 

   

   horizon_results.append({ 

       'horizon': horizon, 

       'label': label, 

       'mean': mean, 

       'ci': ci, 

       'avg_ci_width': ci_width.mean(), 

       'avg_relative_ci_width': relative_ci_width.mean() * 100  # as percentage 

   }) 

 

# Plot confidence interval width trend 

plt.figure(figsize=(14, 6)) 

horizons_x = [h['horizon'] for h in horizon_results] 

width_y = [h['avg_ci_width'] for h in horizon_results] 

relative_width_y = [h['avg_relative_ci_width'] for h in horizon_results] 

 

plt.subplot(1, 2, 1) 

plt.plot(horizons_x, width_y, 'o-', linewidth=2) 

plt.xlabel('Forecast Horizon (months)') 

plt.ylabel('Average CI Width (Billion kWh)') 

plt.title('Absolute Confidence Interval Width\nvs. Forecast Horizon') 

plt.grid(True) 

plt.xticks(horizons_x, horizon_labels, rotation=45) 

 

plt.subplot(1, 2, 2) 

plt.plot(horizons_x, relative_width_y, 'o-', linewidth=2, color='orange') 

plt.xlabel('Forecast Horizon (months)') 

plt.ylabel('Average CI Width (%)') 

plt.title('Relative Confidence Interval Width\nvs. Forecast Horizon') 

plt.grid(True) 

plt.xticks(horizons_x, horizon_labels, rotation=45) 

 

plt.tight_layout() 

plt.savefig('sensitivity_results/sensitivity_forecast_horizon.png') 

plt.show() 
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print("\nForecast Uncertainty by Horizon:") 

for result in horizon_results: 

   print(f"  {result['label']} ({result['horizon']} months): " 

         f"Average CI width = {result['avg_ci_width']:.4f} Billion kWh " 

         f"({result['avg_relative_ci_width']:.2f}% of forecast value)") 

 

# 4. Seasonal Frequency Sensitivity Analysis 

# --------------------------------------------------- 

print("\n4. Seasonal Frequency Sensitivity Analysis") 

 

# Test different seasonal periods 

seasonal_periods = [3, 6, 12, 24]  # quarterly, half-yearly, yearly, bi-yearly 

period_labels = ['Quarterly', 'Semi-Annual', 'Annual', 'Bi-Annual'] 

 

seasonal_freq_results = {} 

baseline_m = baseline_seasonal_order[3]  # Original m value 

 

for m, label in zip(seasonal_periods, period_labels): 

   if m == baseline_m: 

       print(f"Skipping {label} (m={m}) as it's the baseline") 

       continue 

       

   print(f"Testing seasonal frequency: {label} (m={m})") 

   # Create new seasonal order with different m but same P,D,Q 

   new_seasonal_order = (baseline_seasonal_order[0], baseline_seasonal_order[1], 

                         baseline_seasonal_order[2], m) 

   

   try: 

       model = SARIMAX(ts, 

                       order=baseline_order, 

                       seasonal_order=new_seasonal_order, 

                       enforce_stationarity=False, 

                       enforce_invertibility=False) 

       results = model.fit(disp=False) 

       forecast = results.get_forecast(steps=forecast_steps) 

       

       seasonal_freq_results[label] = { 

           'mean': forecast.predicted_mean, 

           'ci': forecast.conf_int(), 

           'aic': results.aic, 

           'bic': results.bic, 

           'm': m 

       } 



           Team #18076 Page 46 
   except Exception as e: 

       print(f"Error with seasonal period {label} (m={m}): {e}") 

 

# Plot comparison of forecasts with different seasonal frequencies 

if seasonal_freq_results: 

   plt.figure(figsize=(16, 8)) 

   

   # Plot baseline (current m value) 

   plt.plot(forecast_index_full_ts, baseline_forecast['mean'], 

           label=f'Annual (m=12, baseline)', 

           color='black', linewidth=2) 

   

   # Plot each seasonal frequency variation 

   colors = plt.cm.tab10(np.linspace(0, 1, len(seasonal_freq_results))) 

   for i, (label, result) in enumerate(seasonal_freq_results.items()): 

       plt.plot(forecast_index_full_ts, result['mean'], 

               label=f'{label} (m={result["m"]}, AIC={result["aic"]:.2f})', 

               color=colors[i], alpha=0.7) 

   

   plt.title('Sensitivity Analysis: Effect of Seasonal Frequency on Forecast', 

fontsize=14) 

   plt.xlabel('Date', fontsize=12) 

   plt.ylabel('Electricity Consumption (Billion kWh)', fontsize=12) 

   plt.legend(loc='best') 

   plt.grid(True) 

   plt.tight_layout() 

   plt.savefig('sensitivity_results/sensitivity_seasonal_frequency.png') 

   plt.show() 

   

   # Calculate metrics 

   print("\nModel Comparison by Seasonal Frequency:") 

   baseline_aic = baseline_forecast['aic'] 

   print(f"  Baseline (m=12): AIC={baseline_aic:.2f}, 

BIC={baseline_forecast['bic']:.2f}") 

   

   for label, result in seasonal_freq_results.items(): 

       mape = np.mean(np.abs((baseline_forecast['mean'] - result['mean']) / 

baseline_forecast['mean'])) * 100 

       print(f"  {label} (m={result['m']}): " 

             f"AIC={result['aic']:.2f} (Δ={result['aic']-baseline_aic:.2f}), " 

             f"BIC={result['bic']:.2f}, MAPE from baseline={mape:.2f}%") 

 

# 5. Rolling window forecasting (for different validation periods) 

# --------------------------------------------------- 
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print("\n5. Rolling-Window Validation Analysis") 

 

# Define rolling validation periods 

if len(ts) >= 120:  # Need at least 10 years of data (120 months) 

   # Use 5-year training windows with 1-year forecasts 

   training_size = 60  # 5 years 

   forecast_size = 12  # 1 year 

   

   # Calculate how many windows we can create 

   available_windows = len(ts) - training_size - forecast_size + 1 

   n_windows = min(5, available_windows)  # Limit to 5 windows 

   

   # Create rolling windows 

   rolling_results = [] 

   

   for i in range(n_windows): 

       start_idx = i 

       end_idx = start_idx + training_size 

       validation_end = end_idx + forecast_size 

       

       train_window = ts.iloc[start_idx:end_idx] 

       validation_window = ts.iloc[end_idx:validation_end] 

       

       # Skip if validation window is too short 

       if len(validation_window) < forecast_size: 

           continue 

           

       validation_dates = validation_window.index.to_timestamp() 

       

       print(f"Window {i+1}: Training {train_window.index[0]} to 

{train_window.index[-1]}, " 

             f"Validating {validation_window.index[0]} to 

{validation_window.index[-1]}") 

       

       try: 

           # Fit model on training window 

           model = SARIMAX(train_window, 

                           order=baseline_order, 

                           seasonal_order=baseline_seasonal_order, 

                           enforce_stationarity=False, 

                           enforce_invertibility=False) 

           results = model.fit(disp=False) 

           

           # Forecast for validation period 
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           forecast = results.get_forecast(steps=len(validation_window)) 

           forecast_mean = forecast.predicted_mean 

           forecast_ci = forecast.conf_int() 

           

           # Calculate error metrics 

           mape = np.mean(np.abs((validation_window - forecast_mean) / 

validation_window)) * 100 

           rmse = np.sqrt(np.mean((validation_window - forecast_mean) ** 2)) 

           

           rolling_results.append({ 

               'window': i+1, 

               'train_start': train_window.index[0], 

               'train_end': train_window.index[-1], 

               'valid_start': validation_window.index[0], 

               'valid_end': validation_window.index[-1], 

               'actual': validation_window, 

               'forecast': forecast_mean, 

               'ci': forecast_ci, 

               'mape': mape, 

               'rmse': rmse, 

               'validation_dates': validation_dates 

           }) 

       except Exception as e: 

           print(f"  Error with window {i+1}: {e}") 

   

   # Plot rolling validation results 

   if rolling_results: 

       plt.figure(figsize=(16, 12)) 

       

       for i, result in enumerate(rolling_results): 

           plt.subplot(len(rolling_results), 1, i+1) 

           

           # Plot actual vs. forecast 

           plt.plot(result['validation_dates'], result['actual'], 

                    label='Actual', linewidth=2) 

           plt.plot(result['validation_dates'], result['forecast'], 

                    label=f'Forecast (MAPE={result['mape']:.2f}%)', 

                    linestyle='--') 

           

           # Add CI 

           plt.fill_between(result['validation_dates'], 

                            result['ci'].iloc[:, 0], 

                            result['ci'].iloc[:, 1], 

                            color='red', alpha=0.2) 
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           plt.title(f'Window {result['window']}: {result['train_start']} to 

{result['train_end']} ' 

                     f'→ {result['valid_start']} to {result['valid_end']}') 

           plt.grid(True) 

           plt.legend() 

       

       plt.tight_layout() 

       plt.savefig('sensitivity_results/sensitivity_rolling_validation.png') 

       plt.show() 

       

       # Summary table of error metrics 

       print("\nRolling Window Validation Results:") 

       for result in rolling_results: 

           print(f"  Window {result['window']} ({result['valid_start']} to 

{result['valid_end']}): " 

                 f"MAPE={result['mape']:.2f}%, RMSE={result['rmse']:.4f}") 

       

       # Calculate average performance metrics 

       avg_mape = np.mean([r['mape'] for r in rolling_results]) 

       avg_rmse = np.mean([r['rmse'] for r in rolling_results]) 

       print(f"\n  Average: MAPE={avg_mape:.2f}%, RMSE={avg_rmse:.4f}") 

   else: 

       print("  No valid rolling windows were created.") 

else: 

   print("  Insufficient data for rolling window validation (need at least 10 

years).") 

 
6.3 Q3: Beat the Heat 
library(tidyverse) 

library(ggplot2) 

 

# define the data!! 

df <- tibble( 

 ZIP_code = c(38103, 38002, 38017, 38016, 38018, 

              38028, 38060, 38066, 38104, 38105, 

              38106, 38107, 38108, 38109, 38111, 

              38112, 38117, 38125, 38126, 38127, 

              38128, 38133, 38134, 38135, 38138, 

              38139, 38141), 

  Population = c(0.1544, 0.7613, 1.0000, 0.7724, 0.6529, 

                0.0760, 0.1648, 0.0000, 0.3506, 0.0239, 

                0.3427, 0.1960, 0.2803, 0.7604, 0.7303, 
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                0.2171, 0.4294, 0.7431, 0.0333, 0.6797, 

                0.7615, 0.3274, 0.6691, 0.5061, 0.4087, 

                0.2398, 0.3820), 

  Median_income = c(0.3209, 0.5953, 0.7367, 0.3206, 0.4167, 

                   0.8397, 0.3797, 0.5249, 0.1875, 0.0000, 

                   0.0035, 0.0489, 0.0423, 0.0526, 0.1623, 

                   0.1611, 0.4448, 0.3722, 0.0104, 0.0584, 

                   0.0957, 0.3674, 0.2201, 0.4363, 0.6965, 

                   1.0000, 0.2400), 

  Open_space = c(0.0464, 0.0780, 0.1416, 0.2971, 0.3797, 

                0.0714, 0.0741, 0.0000, 0.3834, 0.1668, 

                0.1762, 0.4060, 0.3245, 0.2032, 0.9447, 

                0.5502, 1.0000, 0.3770, 0.2019, 0.2263, 

                0.3522, 0.3919, 0.4443, 0.5500, 0.7190, 

                0.6680, 0.2318), 

  Elderly = c(0.0381, 0.6354, 0.8621, 0.6354, 0.4518, 

             0.0617, 0.1652, 0.0000, 0.3435, 0.0057, 

             0.4302, 0.1542, 0.2480, 1.0000, 0.6773, 

             0.2098, 0.4943, 0.3667, 0.0005, 0.5399, 

             0.5029, 0.1780, 0.4684, 0.4396, 0.6606, 

             0.2617, 0.1310), 

  People_under_18 = c(0.0402, 0.7908, 1.0000, 0.5969, 

                     0.5517, 0.0865, 0.1581, 0.0000, 

                     0.1965, 0.0129, 0.1945, 0.1506, 

                     0.2465, 0.5819, 0.4747, 0.1740, 

                     0.3608, 0.6411, 0.0888, 0.6748, 

                     0.7677, 0.3435, 0.6074, 0.4099, 

                     0.3821, 0.2618, 0.3980), 

  People_who_work = c(0.2632, 0.7657, 1.0000, 0.8530, 

                     0.6995, 0.0654, 0.1635, 0.0000, 

                     0.4590, 0.0361,0.2013, 0.1646, 

                     0.1654, 0.5119, 0.7335, 0.2173, 

                     0.4630, 0.7797, 0.0015, 0.4596, 

                     0.6573, 0.3270, 0.6768, 0.5258, 

                     0.3834, 0.2106, 0.3348) 

) 

 

# Invert some variables 

invert_cols <- c("Population", "Elderly", "People_under_18", "Median_income", 

"Open_space", "People_who_work") 

 

df <- df %>% 

 mutate(across(all_of(invert_cols), ~ 1 - .))  # Invert selected factors 
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# Convert data to long format 

df_long <- df %>% 

 pivot_longer(cols = -ZIP_code, names_to = "Factor", values_to = "Score") 

 

# order each facitor 

df_long$ZIP_code <- factor(df_long$ZIP_code, levels = unique(df_long$ZIP_code)) 

 

# style 

ggplot(df_long, aes(x = Factor, y = ZIP_code, fill = Score)) + 

 geom_tile() + 

 geom_text(aes(label = round(Score, 2)), color = "black", size = 3) +  # Add values to 

each cell 

 scale_fill_gradient(low = "beige", high = "maroon", name = "Vulnerability Score") + 

 theme_minimal() + 

 theme( 

   axis.text.x = element_text(angle = 45, hjust = 1, size = 10, face = "bold"), 

   axis.text.y = element_text(size = 10, face = "bold"), 

   plot.title = element_text(size = 14, face = "bold"), 

   legend.position = "right" 

 ) + 

 labs(title = "Memphis Neighborhood Vulnerability Heatmap", 

      x = "Vulnerability Factors", 

      y = "ZIP Codes") 
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