
A program ofA program of

MathWorks Math Modeling Challenge 2025
Trinity Preparatory School
Team #18076, Winter Park, Florida

Coach: Donald Worcester
Students: Katherine Alvarez, Connor Brady, Jerry Chen, Victor Fang, Kangyi Huang

***Note: This cover sheet has been added by SIAM to identify the winning team after judging was completed. Any identifying
information other than team # on a MathWorks Math Modeling Challenge submission is a rules violation. Further, this paper is posted
exactly as submitted to M3 Challenge. Typos, odd formatting, or other mistakes may be attributed to the 14-hour time constraint.

M3 Challenge TECHNICAL COMPUTING
THIRD PLACE—$1,000 Team Award

JUDGE COMMENTS

Specifically for Team #18076—Submitted at the close of triage judging

This team hand-coded a detailed model for Part 1 in Python, using it to predict temperature change over time. The judges were
impressed with how effectively the team used technical computing to produce informative plots showing their predictions over
multiple days of a heat wave. The students also used Python to create plots involving several time series, each corresponding
to a different choice of model parameters. This made it easy to understand how the team’s model was affected by changing
assumptions, like the level of insulation in the home. We saw the effective use of plotting carried through to Part 2, where the
students used built-in functions for time series fitting. They used Python to implement a sensitivity analysis for Part 2 as well,
although the conclusions were not as compelling as in Part 1. Code presentation was uneven – while the students used many
comments, the code was long and verbose at points. With more time, it could likely be streamlined. Still, a nice read, and nice use
of coding for simulation!

AS-
SUME

SOLVE

ANALYZE

COMMUNI-
CATEDE-

FINE

JUS-
TIFY

M3 Challenge 2025:

Hot Button Issue: Staying Cool as the World
Heats Up

Team #18076

March 1st, 2025

 Team #18076 Page 2

Executive Summary
To the City Council of Memphis,
 As global warming intensifies, heat waves are increasingly frequent, severe,
and prolonged, posing significant risks to urban populations [1]. In Memphis, these
events strain the electrical grid, leading to power outages that exacerbate the
dangers of extreme heat, particularly for socioeconomically vulnerable
communities. In order to address this, our team developed mathematical models to
predict the indoor temperatures in non-air-conditioned homes, forecast peak
power demand, and assess neighborhood vulnerability, equipping your city with
the information to mitigate these risks effectively.
 For predicting indoor temperatures during a heat wave, we utilized a
dynamic thermal network model, applying Memphis-specific dwelling data and
specialized physics principles to account for heat transfer via conduction and solar
radiation gains, estimating that over 24 hours, indoor temperatures peak around
36℃ in the evenings, lagging outdoor highs of 39℃ by 2-3 hours.
 We then applied a Seasonal Auto-Regressive Integrated Moving Average
(SARIMA) model to electricity consumption data from 1997 to 2024. Incorporating
gradual temperature rises and stable population trends in accordance with
historical data, our model predicts a summer peak demand increase from current
levels to approximately 15-20% higher by 2045 with a 95% confidence interval(e.g.,
from 3,500 MW to 4,200 MW, pending final calibration). This 20-year projection
highlights the growing strain on your grid, driven by air conditioning reliance.
 To ensure equitable resource allocation during heat waves and outages, we
developed a vulnerability score model using six factors: population, elderly and
child proportions, income, open space, and working population, weighted (from a
scale of 0-1) at 0.2, 0.25, 0.15, 0.3, 0.05, and 0.05, respectively. Applied to 27 ZIP
codes, vulnerability scores ranged from 0.209 (e.g., affluent ZIP 38139) to 0.720
(e.g., low-income ZIP 38127). We propose mapping these scores to prioritize
cooling centers (i.e. green corridors) and power restoration in high-vulnerability
areas like the Frayser area (ZIP 38127).
 We believe these analysis results will enhance your emergency planning,
ensuring a resilient and equitable response to a warming climate.

 Team #18076 Page 3

Table of Contents

Q1: Hot to Go 4
1.1 Defining the Problem 4
1.2 Assumptions 4
1.3 The Model 5

1.3.1 Model Development 5
1.3.1 Model Execution 6

1.4 Results 6
1.5 Discussion 7
1.6 Sensitivity Analysis 7
1.7 Strengths & Weaknesses 8

Q2: Power Hungry 8
2.1 Defining the Problem 8
2.2 Assumptions 8
2.3 The Model 10

2.3.1 Model Development 10
2.3.2 Model Execution 13

2.4 Results 13
2.5 Discussion 14
2.6 Sensitivity Analysis 14
2.7 Strengths & Weaknesses 15

Q3: Beat the Heat
3.1 Defining the Problem 15
3.2 Assumptions 15
3.3 The Model 16

3.3.1 Model Development 16
3.3.1 Model Execution 17

3.4 Results 18
3.5 Discussion 18
3.6 Strengths & Weaknesses 19

4 Conclusion 20
5 References 21
6 Appendix 22

6.1 Q1: Hot to Go 22
6.2 Q2: Power Hungry 33
6.3 Q3: Beat the Heat 49

 Team #18076 Page 4

Q1: Hot to Go
1.1 Defining the Problem

The first problem asks us to develop a model to predict the indoor temperature of any
non-air-conditioned dwelling during a heat wave over a 24-hour period. We have chosen
Memphis, Tennessee as our city. Our model will take into account previous dwelling and heat
wave data in our chosen city.

1.2 Assumptions
1.2-1. Outside conditions such as outdoor air temperature and solar radiation are the
primary driver of heat gain inside of dwellings and dominate internal heat gains from
occupants or appliances.

● Justification: It is difficult to predict usage of appliances across households and the
amount of time occupants spend within their dwellings. Furthermore, studies confirm
that in non-air-conditioned settings, outdoor temperature and direct sunlight
overwhelmingly dominate indoor heat gain, so we will exclude minor variable heat
outputs like appliances or electricity usagex.

1.2-2. All dwellings remain closed with negligible ventilation and have the same
constant uniform thermal properties over time.

● Justification: To avoid introducing difficult-to-measure infiltration effects, air
exchange with the outside environment is treated as negligible. Building materials will
not change significantly over time or region and will be simplified in our model to have a
single material heat absorption and heat transfer area.

1.2-3. The outdoor temperature throughout the day during a heat wave can be
modeled as a smooth, continuous function with a distinct peak around
mid-afternoon.

● Justification: Historical meteorological data for Memphis shows a clear daily
temperature cycle, with temperatures rising steadily in the morning, peaking in the
afternoon, and gradually declining at night. This pattern justifies a simplified
continuous function to represent the indoor temperature trend.

1.2-4. Hourly meteorological data taken on the hottest day of Memphis's July
2022 heat wave is sufficient to determine the indoor temperature of any
non-air-conditioned dwelling during a heat wave over a 24-hour period this year
in Memphis.

● Justification: From the years 2000 to 2023, temperature highs have not risen
significantly as global warming is a gradual change recorded over a number of
decades. Therefore, we assume that meteorological data recorded in 2022 are
sufficient to model this year's outdoor conditions.

 Team #18076 Page 5
1.2-5. External temperature is uniform throughout the different neighborhoods
in Memphis

● Justification: This simplifies the model by treating outdoor temperature
variations as a fixed input rather than spatially diverse data.

1.2-6. The in-door temperature starts at the same temperature as the outdoor
temperature prior to the start of the heatwave.

● Justification: Historical weather data for Memphis indicates that pre-heat wave
nights have minimal temperature gradients between indoors and outdoors.

1.2-7. The height of an average dwelling is approximately 2.5 meters.
● Justification: This simplification ensures model applicability across Memphis's

diverse housing stock.

1.3 The Model
1.3.1 Model Development

We chose a dynamic thermal network model to predict the temperature over a 24
hour period. The thermal network model is a physics-based approach that incorporates
heat transfer from various nodes over time to determine indoor temperatures. This
makes it well-suited for capturing the dynamics of indoor temperature in a
non-air-conditioned dwelling during a heat wave, as temperature changes indoors are
caused primarily by external conditions such as solar radiation or conduction as stated in
1.2-1.

We considered implementing a time-series approach, such as AutoRegressive
Integrated Moving Average (ARIMA), which would use historical indoor temperature data
to forecast future values. However, a purely statistical model would have limited
explanatory power during unusual conditions such as extreme heat waves.

Symbol Variable Unit Values for Memphis

C Thermal capacitance J/K 1000

𝑑𝑇

𝑖𝑛

𝑑𝑡
Rate of change of
temperature

K/s N/A

U Material heat
absorption

W/(m2 * K) 0.4

A Heat transfer area m2 377.25

Tout Outside temperature K Provided in dataset

Tin Inside temperature K N/A

QSolar
Solar heat gained via W/m2 125.75*4*0.5*0.6*I(t)

 Team #18076 Page 6

windows

Our dynamic thermal network model is as follows:

 𝐶
𝑑𝑇

𝑖𝑛

𝑑𝑡 = 𝑈𝐴(𝑇
𝑜𝑢𝑡

− 𝑇
𝑖𝑛
) + 𝑄

𝑠𝑜𝑙𝑎𝑟

1.3.2 Model Execution
We used the provided data on dwellings and heatwave temperatures in Memphis,

Tennessee to conduct our thermal network model. From the dataset, since we are tasked
with building a single model for predicting the in-door temperature, we performed a
calculation on the average floor area of residences/apartments in Memphis, ceiling
height, total volume, building footprint, and window area:

● Floor area = 125.75 m²
● Ceiling height ≈ 2.5 m
● Total volume ≈ 125.75 m² × 2.5 m = 314.4 m³
● Building footprint (for simplicity): ~10 m × 12.6 m
● Perimeter ≈ 2 × (10 + 12.6) = 45.2 m
● Wall area ≈ 45.2 m × 2.5 m = 113 m² (rounded)
● Roof area ≈ 125.75 m²
● Window area: assume 10% of floor area → 12.6 m²

Statistics from the Memphis real estate market show that the median age of a home in
Memphis, Tennessee is 34.7 years old. Using this information and going back 35 years from
2025, we found that

● Walls:

● Roof:
Hence:
1.Walls conduction

2.Roof conduction

3.Windows conduction

So total envelope conduction
We have 12.6 m² of window area. On a sunny summer midday, outside irradiance can be
~800 W/m². That yields:

If the solar heat‐gain coefficient of the window is ~0.5 (typical older double‐pane), the net is
~5040 W. If there is some tree shading or overhang (say 0.5 factor), that knocks it down to

~2520 W. Thus, a peak midday

https://www.codecogs.com/eqnedit.php?latex=U_%7B%5Cmathrm%7Bwall%7D%7D%20%5Capprox%200.35%5C%3B%5Cmathrm%7BW%2F(m%5E2%5C%2CK)%7D#0
https://www.codecogs.com/eqnedit.php?latex=U_%7B%5Cmathrm%7Broof%7D%7D%20%5Capprox%200.20%5C%3B%5Cmathrm%7BW%2F(m%5E2%5C%2CK)%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbigl(U%5C!A%5Cbigr)%7B%5Cmathrm%7Bwalls%7D%7D%3D%200.35%20%5Ctimes%20113%5C%3B%5Capprox%5C%3B%2039.6%5C%3B%5Cmathrm%7BW%2FK%7D.#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbigl(U%5C!A%5Cbigr)_%7B%5Cmathrm%7Broof%7D%7D%3D%200.20%20%5Ctimes%20125.75%5C%3B%5Capprox%5C%3B25.2%5C%3B%5Cmathrm%7BW%2FK%7D.#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbigl(U%5C!A%5Cbigr)_%7B%5Cmathrm%7Bwindows%7D%7D%3D%203.0%20%5Ctimes%2012.6%5C%3B%5Capprox%5C%3B37.8%5C%3B%5Cmathrm%7BW%2FK%7D.#0
https://www.codecogs.com/eqnedit.php?latex=%5Capprox%2039.6%20%2B%2025.2%20%2B%2037.8%20%3D%20102.6%5C%3B%5Cmathrm%7BW%2FK%7D.#0
https://www.codecogs.com/eqnedit.php?latex=12.6%5C%2C%5Cmathrm%7Bm%5E2%7D%5Ctimes800%5C%2C%5Cmathrm%7BW%2Fm%5E2%7D%3D10%7B%2C%7D080%5C%2C%5Cmathrm%7BW%7D%5Cquad(%5Ctext%7Braw%20incoming%20sunlight%7D).#0
https://www.codecogs.com/eqnedit.php?latex=Q_%7B%5Cmathrm%7Bsolar%7D%7D%5Capprox%202500%20W.#0

 Team #18076 Page 7
As a rule of thumb for a lightweight wood‐frame building with furniture, use ~100 kJ/(m²·K) of
floor area. Then:

In other words, it takes

about to raise the interior by 1 K (or 1 °C). Putting it all together, the

lumped‐mass ODE in SI units is:

Figure 1: A graph indicating changes in outdoor, indoor temperature, and solar heat gain throughout the
day

Figure 2: A graph showing the outdoor and indoor temperature in 10 days

https://www.codecogs.com/eqnedit.php?latex=C%5C%3B%3D%5C%3B%20125.75%5C%2C%5Cmathrm%7Bm%5E2%7D%5Ctimes%20100%7B%2C%7D000%5C%2C%5Cmathrm%7BJ%2F(m%5E2%5Ccdot%20K)%7D%5C%3B%3D%5C%3B%201.2575%5Ctimes10%5E7%5C%2C%5Cmathrm%7BJ%2FK%7D.#0
https://www.codecogs.com/eqnedit.php?latex=1.26%5Ctimes10%5E7%5C%2C%5Cmathrm%7BJ%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboxed%7B%5Cfrac%7BdT_i%7D%7Bdt%7D%20%3D%20%5Cfrac%7B102.6%5C%2C%5Cmathrm%7BW%2FK%7D%5C%2C%5Cbigl(T_o%20-%20T_i%5Cbigr)%5C%3B%2B%5C%3B%20Q_%7B%5Cmathrm%7Bsolar%7D%7D(t)%7D%7B1.26%5Ctimes10%5E7%5C%2C%5Cmathrm%7BJ%2FK%7D%7D.%7D#0

 Team #18076 Page 8
1.4 Discussion
 On the first day, the indoor temperature (blue) does not rise or fall quite as rapidly as
the outdoor temperature (red). The outdoor temperature peaks around mid‐afternoon, while
the indoor temperature reaches its maximum a bit later and with
slightly smaller amplitude. This is exactly the “lag” and “dampening” effect you expect from a
first‐order thermal system: the building’s thermal mass (represented by the parameter C)
smooths out and slightly delays the temperature swings inside.

Indoor vs. Outdoor: Another notable effect is that at night, the indoor temperature
remains somewhat higher than outside. Since there is no (or very little) solar gain after sunset,
heat is lost through the envelope to the cooler outdoors—but the rate is governed by the
building’s conductance Because the building can only release heat gradually (again
thanks to its thermal mass), indoor temperature stays above outdoor levels until enough time
passes for the indoor space to equilibrate.

Daily Cycling With Reduced Amplitude Indoors: Each day’s temperature waveform
outdoors has a sharper peak (nearing 39 °C) and dips lower at night (around 28 °C), whereas the
indoor temperature’s daily peak is a bit less extreme and the nighttime minimum is higher. This
reduced temperature swing is a hallmark of the first‐order RC model, where the building’s
thermal capacitance dampens rapid changes.

Phase Shift: The warmest indoor temperature occurs after the outdoor peak. This time
delay (phase shift) is visible in each daily cycle. In reality, the building “stores” some heat in its
walls, floors, and air, releasing it later, which explains why the indoor temperature keeps rising
briefly even as the outdoor temperature has started to drop.

Potential Gradual Drift: Over multiple days, if the average daily outdoor temperature
plus solar gains exceeds the rate at which the building can shed heat overnight, you may see a
slow upward “creep” in the indoor baseline. In the plot, the indoor temperature’s overnight
minimum is a bit higher than the outdoor minimum. This suggests that the building never fully
cools to the same low point as outdoors, especially under repeated hot days and strong solar
loading.

1.5 Sensitivity Analysis

Thermal Mass Dominates Peak Damping: The results clearly show that increasing the
effective thermal mass has a pronounced effect on reducing and delaying peak indoor
temperatures. For hot climates or daily heat‐wave scenarios, this is a desirable trait, as it
reduces the need for active cooling during peak hours.
Conduction & Insulation Effects: Adjusting U A changes how easily heat flows through the
building envelope. Improving insulation (lower U A) helps keep the building warmer at night
and slows heat gain during the day—but the net effect on peak temperature is less than that of
changing C. In real buildings, both insulation and mass interact: low U A and high C together
can provide significant comfort benefits.

https://www.codecogs.com/eqnedit.php?latex=U%5C%2CA.#0

 Team #18076 Page 9
Trade‐Offs
With lower U A, once heat gets inside (via solar gains or internal loads), it leaves more
slowly—potentially leading to warmer indoor nights. Meanwhile, a higher‐capacity building is
slower to respond, for better or worse: if the outside temperature is consistently hot, the
building can “store” that heat. In practice, proper night‐time ventilation or mechanical cooling
can mitigate these drawbacks.

Figure 3: Sensitivity Analysis on the Effect of Thermal Capacity of Indoor Temperature

Figure 4: Sensitivity Analysis on the Effect of UA Coefficient on Indoor Temperature

1.6 Strength and Weaknesses
One of the strengths of our model is that the single‐zone, first‐order ODE (the so‐called

lumped RC model) is computationally very light. It is well suited for quick “what‐if”
explorations and for capturing the essential physics of conduction through an envelope plus the
buffering effect of thermal mass. Because the model uses just a few parameters

(), it is straightforward to interpret how each parameter affects the indoor
temperature. This makes it useful for sensitivity studies, as illustrated here.

However, one limitation is that by lumping the entire building into one node, the model
does not distinguish between different zones (e.g., sun‐exposed vs. shaded rooms) or account

https://www.codecogs.com/eqnedit.php?latex=U%20A%2C%20C%2C%20Q_%5Cmathrm%7Bsolar%7D%2C%20%5Cdots#0

 Team #18076 Page 10
for thermal gradients through walls and floors. Furthermore, the model does not explicitly
include infiltration/ventilation, occupant heat loads, or appliance loads.

Q2: Power Hungry
2.1 Defining the Problem

The second problem asks us to develop a model that predicts the peak demand that our
city’s power grid should be prepared to handle during the summer months. We predicted our
city’s power demand by generating a SARIMA model. This was done by collecting the average
monthly electricity consumption of Memphis from the years of 1997 to 2024.

2.2 Assumptions
2.2-1. Temperature Rise is Gradual and can be approximated with
historical/projected trends.

● Justification: Both Memphis and Birmingham have experienced incremental—but
noticeable—increases in annual summer temperatures. Relying on Climatological data
(e.g. NOAA Projections IPCC models) allows us to assume a relatively smooth
temperature trajectory rather than abrupt, unpredictable shifts. This makes long-term
demand forecasting more tractable.

2.2-2. Populations and Economic and national statistics agencies publish expected
population and economic growth rates

● Justification: Municipal and national statistics agencies publish expected
population and economic growth rates. Assuming these forecasts hold lets us
incorporate changing energy consumption patterns without needing to model
migration anomalies or severe economic recessions

2.2-3. Air Conditioning Usage is Strongly correlated with Peak Temperature
● Justification: Numerous power-demand studies show that air conditioning is one of the

dominant residential loads on the grid in heatwave conditions. Assuming a near-linear
relationship between daily maximum temperature and A/C-driven peak demand
simplifies the model while retaining accuracy for extremely hot days.

2.2-4 Improvements in Energy Efficiency Proceed at a Modest Steady Rate
● Justification: While HVAC technologies continue to evolve, large, disruptive leaps in

efficiency of destructive adoption rates (e.g., widespread super-efficient A/C units) are
uncommon in short- to medium-term horizons. Assuming gradual gains avoid
overestimating or underestimating future demand reductions.

 Team #18076 Page 11
2.2-6 No Major Grid-Scale Behavioral Shifts Exist in Summer Consumption

● Justification: Although public demand-reduction campaigns and dynamic pricing can
moderate peaks, historical evidence suggests paramount. We can thus assume that no
large-scale, sustained behavioral changes would drastically reduce peak loads.

2.2-7. Grid Infrastructure Constraints Remain Comparable
● Justification: It is unreasonable to predict infrastructural projects/modifications on a

grid-to-grid basis—especially in a city like Memphis; with significant urban sprawl,
unkempt repair, and poor public transport, infrastructural projects cannot be predicted
in an accurate manner. This assumption additionally keeps the modeling focus on peak
load growth greater than major structural changes to the power supply system.

2.2-8 Limitations on Extreme Events are Acknowledged
● Justification: During 2020-2022, the COVID-19 global pandemic proved to be a

significant anomaly regarding energy consumption in Memphis—Data from years
affected (2020-2022) will be discounted and we will instead assume that trends align
with historical patterns [as mentioned in assumption 1].

2.2-9 Population Growth will Continue Growing in a Manner Closely Following Historical
Trends.

● Justification: There is not a significant amount of data regarding population growth in
central Tennessee to accurately include in the construction of a mathematical model.
Including such a factor will also inhibit the accuracy and validity of the model.

2.3 The Model
2.3.1 Model Development

In order to forecast monthly electricity consumption, we utilized a Seasonal
Auto-Regressive Integrated Moving Average (SARIMA) model. SARIMA models are well
suited for time series that display both autocorrelation (trends in past values) and
seasonality. Specifically, we anticipate electricity consumption to repeat seasonal
patterns each year as weather changes, demand peaks, and other yearly factors recur.

The first step in our approach to developing this model was to verify that the time
series was sufficiently stationary—that is, that its statistical properties (mean, variance)
did not change drastically over time. We conducted an Augmented Dickey–Fuller (ADF)
test, which yielded a p-value below 0.05. This result suggests that the series is likely
stationary and appropriate for SARIMA modeling without further differencing.
Subsequently, we performed a grid search over candidate SARIMA parameters,
systematically checking different combinations of:

1. (p, d, q) for the non-seasonal component (autoregressive order, differencing
order, moving average order).

 Team #18076 Page 12
2. (P, D, Q, m) for the seasonal component, where m = 12 to capture yearly

seasonality in monthly data.
Each candidate model was fitted on the training portion of the data, and we chose the
parameter set that minimized the Akaike Information Criterion (AIC). The model
achieving the lowest AIC was:

This choice allows us to balance model fit (accuracy) with complexity in order to
penalize models that include too many parameters. Consequently, our final SARIMA
specification is:

2.3.2 Model Execution
We tested this SARIMA model by splitting the dataset into a training set from

January 1997 through December 2022 and reserving data from December 2022 through
December 2024 for testing. After fitting the model to the training set, we generated a
forecast for the test period. We then compared these predicted values with the actual
monthly consumption in the test data. One of the metrics we used to assess forecast
performance was the Mean Absolute Percentage Error (MAPE). The MAPE on our test
set was approximately 7.94%, indicating reasonably accurate out-of-sample predictions.

Having validated the model on recent data, we then refit it using all available
historical observations ranging from the late 1990s through the end of 2024 with an
exception of years 2020-2022 (for reasons discussed in the 2.1 “assumptions” section).
Using this final, all-inclusive fit, we generated a 20-year forecast (240 months) into the
future. Figure 5 displays the model’s fitted values on the training set (blue), the test
values (dashed orange line), and the forecast (red line) with its 95% confidence interval
(shaded in pink) for the short test horizon.

Figure 6 shows the extended forecast (red) through the 2040s, along with the
complete historical data (blue). The confidence intervals widen over time, reflecting
greater uncertainty as the forecast extends further.

https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7B(p%2C%20d%2C%20q)%7D%20%3D%20(2%2C%200%2C%202)%2C%5Cquad%5Ctext%7B(P%2C%20D%2C%20Q%2C%20m)%7D%20%3D%20(1%2C%200%2C%201%2C%2012).#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BSARIMA%7D(2%2C%200%2C%202)%5Ctimes(1%2C%200%2C%201)_%7B12%7D.#0

 Team #18076 Page 13

Figure 5: Historical (1997-2024) Electricity consumption (Billion kWh) in Memphis Tennessee with 5 year

prediction

Figure 6: Historical (1997-2024) Electricity consumption (Billion kWh) in Memphis Tennessee with 20
year prediction

From the SARIMA models, an annual peak in electricity consumption is noticed in the
months of June, July, and August (with variations depending on yearly anomaly). As seen in
Figure 7, energy consumption in 2000 displays peaks in mid-late year as previously stated.

Through our modeling, our findings indicate that there will be no significant change in
Memphis’ population’s energy consumption in the upcoming 20 years. This prediction is
supported by an analysis of our produced SARIMA graph (provided above). In red, our
prediction of the next twenty years, only a slight upwards trend can be visualized. Even while
examining a prediction-exclusive variation (found below) of our SARIMA model, only a
marginal growth trend can be seen.

 Team #18076 Page 14

Figure 7: Amplified prediction-exclusive SARINA model

2.4 Results

Our team utilized a SARIMA model to accurately predict the electricity consumption
of Memphis, Tennessee’s residents for the next 20 years. We were able to model our graph by
inputting data (Memphis Pop. / East South Central Pop.’s electricity consumption) and
employed Python to create a graph in VS code. Our results are included below

Through this process, we found that the SARIMA model offers a
strong balance of interpretability and forecast accuracy. It captures both the longer-term trends
and the seasonal fluctuations, enabling us to project monthly electricity consumption up to
twenty years into the future with statistically grounded confidence intervals

2.5 Discussion
In Memphis, the electricity consumption of the city’s population will slowly but steadily

follow an upwards trend in the upcoming twenty years. Although electricity consumption will
remain relative to present-day and historical patterns, presumptive measures should be taken
in order to prepare for any anomalies. Even modest warming can lead to higher penetrations of
air-conditioning use, intensifying peak loads. This warrants moderate planning on the behalf
of Memphis’ city government in electrical grid-capacity planning.

2.6 Sensitivity Analysis
We tested how using only the last 5 years of data vs. 15 years or the full dataset affects

the forecast. The MAPE differences from the baseline can reach around 1.5% up to 11.6% in
monthly forecasts. For peak demand, smaller training sets (especially in very hot or very cold
prior years) might under‐capture the true extremes, yielding either under‐ or over‐estimates of
peak months in the future.

● Shorter Training (3–5 Years): Tends to produce higher forecast uncertainty, so the
predicted maximum demand might swing more drastically.

https://www.codecogs.com/eqnedit.php?latex=(2%2C0%2C2)%5Ctimes(1%2C0%2C1)_%7B12%7D#0

 Team #18076 Page 15
● Longer Training (>10 Years): Smoother forecasts with narrower differences, though

possible that older data might not fully capture recent usage trends or new efficiency
measures.

Training Data Size Sensitivity:
● Training with data from 2009-01 to 2024-12
● Training with data from 2014-01 to 2024-12
● Training with data from 2019-01 to 2024-12
● Training with data from 2021-01 to 2024-12

Mean Absolute Percent Difference from Baseline for Training Size:

● 15 years (192 months): 5.49%
● 10 years (132 months): 3.69%
● 5 years (72 months): 1.55%
● 3 years (48 months): 11.64%

2.7 Strengths & Weaknesses
A major strength of our SARIMA (Seasonal Auto-Regressive Integrated Moving

Average) model was its ability to showcase change in monthly electricity consumption
over the span of 25+ years—encompassing a large variety of situations and historical
precedent.

A weakness our model faced was the principle that the historical data available
for us to use only met the minimum threshold to generate an accurate SARIMA model
for this problem. Additionally, the model does not definitively account for population
dynamics during the specified predictive period of twenty years; it primarily utilizes
historical population-related data associated with electrical consumption rates in
Memphis.

Q3: Beat the Heat
3.1 Defining the Problem
The third problem asks us to assign a vulnerability score for various neighborhoods to
equitably allocate resources in minimizing the effects of a heat wave or a power grid
failure.

3.2 Assumptions
3.2-1. All ZIP codes experience similar heat wave intensity, but the ability to cope
varies based on demographic, socioeconomic, and environmental factors.

 Team #18076 Page 16

● Justification: Heat waves pose risks primarily through their effects on people.
Therefore, health issues like heat stroke, dehydration, and lack of cooling are the core
concerns. Variations in urban infrastructure and green space availability also contribute
to differing levels of resilience.

3.2-2. Power grid failures affect all equally, as they affect ZIP codes uniformly in
terms of occurrence, with differences arising from how residents can respond.

● Justification: Heat waves are regional events, and while microclimates exist, the
primary differentiator will still be factors that influence a neighborhood's resilience.
Power outages are typically citywide events, not localized failures.

3.2-3. The contribution of each factor to a ZIP code's vulnerability score can be modeled
as linearly weighted.

● Justification: While there may be correlation between different factors (e.g., income
level and number of vehicles), there is no evidence to suggest that one factor amplifies
the risk of another in a nonlinear fashion.

3.2-4. Workers are not subject to unsafe work conditions such as being outside in
extreme heat for long periods of time, with the majority working indoors in which AC is
available under normal conditions.

● Justification: Across the Memphis metropolitan area, a significant proportion of the
workforce is employed in indoor, climate-controlled environments like offices or retail
spaces.

3.2-5. All neighborhoods respond the same way to high temperatures in terms of energy
usage.

● Justification: We assume that consumers respond similarly to temperature rises by
running cooling devices if possible.

3.3 The Model
3.3.1 Model Development
To model the impacts of various factors on the vulnerability of a ZIP code, we chose to use a
weighted sum of normalized factors. Our vulnerability scores have a range from 0 to 1, with 1
being the most vulnerable.

The most important factors (ranked by importance) that we took into account were:

1. Median household income: Lower-income households lack resources like generators
and poverty exacerbates heat exposure. Wealthier areas generally cope better.

2. Amount of households 1 or more elderly (over 65): Older adults are more
physiologically vulnerable to heat (e.g., heat stroke) and may rely on power for medical
devices. Protecting this at-risk group is central to equitable resource distribution

3. Population: Larger populations mean more people are potentially exposed to heat and
outages, amplifying the scale of impact. More residents demand greater city resources.

4. Amount of households with 1 or more children (under 18): Young children are less
efficient at regulating temperature, increasing heat-related risks.

 Team #18076 Page 17

5. Proportion of developed, open space: The Urban Heat Island Effect refers to the
phenomenon where cities experience higher temperatures than surrounding rural areas
due to human activity and land use patterns. The more developed open space, the better
ZIP codes cope due to green spaces acting as localized cooling zones.

6. Working population (over 16): While the working population somewhat overlaps with
household income, it adds a small, distinct demographic layer (e.g., high-income retiree
ZIP codes vs. low-income jobless ones).

3.3.1 Model Execution

In our model, we calculated a weighted sum where a higher score indicates greater
vulnerability. The first 3 factors above were treated normally as each contributed to greater
vulnerability, while the last 3 factors were treated as negative factors which utilized inverse
proportions.

To execute our vulnerability score model, we applied the weighted sum formula to
normalized factors for the provided dataset of 27 ZIP codes. Weights were assigned based on
relative importance. Using Excel, we calculated the vulnerability score for each ZIP code,
reflecting its susceptibility to heat waves and power outages based on the following six factors.

Symbol Variable Unit

P
Total population Persons

E Amount of households 1 or
more elderly (over 65)

Households with elderly people

C Amount of households with 1 or
more children (under 18)

Households with children

I
Median household income Dollars/per household

O Proportion of developed, open
space

unitless

W Working population (over 16) Persons

The vulnerability score is calculated as:

 𝑉𝑆 = 0. 2𝑃 + 0. 25𝐸 + 0. 15𝐶 + 0. 3(1 − 𝐼
𝐼
𝑚𝑎𝑥

) + 0. 05(1 − 𝑂
𝑂
𝑚𝑎𝑥

) + 0. 05(1 − 𝑊
𝑊

𝑚𝑎𝑥
)

3.4 Results
Our dynamic heatmap is as follows:

 Team #18076 Page 18

Figure 7: A Heatmap showing

Our approach to the “Beat the Heat” incorporated an urban heatmap model. Through initially
selecting the provided data, we cleaned and optimized the dataset into one applicable to
showcase the vulnerability of neighborhoods in Memphis during a heat wave or power grid
failure. Following this, we determined equational factors by normalizing the data and weighting
it based on its significance. With these factors, we input the values into R Studio to generate an
urban heat map relating each zip code from the provided dataset to its vulnerability score.

Through this procedure, we were able to clearly identify the zip-code specific vulnerability
scores of neighborhoods in Memphis. The heat map approach provided a substantial visual
representation of Memphis’ wealth inequality and how factors as such correlate to the
vulnerability of underprivileged neighborhoods.

3.5 Discussion
 Through this investigative analysis of Memphis, Tennessee’s urban heat islands, two

main vulnerability factors have become apparent. Income inequality and the lack of elderly
support networks for excessively warm months. The one-solution approach that we propose is
the implementation of green corridors in underprivileged and vulnerable Memphis
neighborhoods—a tactic that mitigates income inequalities and the elderly population’s
elevated risk of heatwaves and power grid faults [15]. Firstly, the development of green
corridors in urban heat islands in Memphis has the ability to create jobs to lift people of lower
socioeconomic statuses into increasingly advantageous positions and raise the median income.

There will be an increased need for planters and construction workers—which people
can partake in, additionally contributing to community engagement and connectivity (fostering
and rebuilding supportive communities). Secondly, it has been previously noted that the
establishment of green corridors in cities like Phoenix, Arizona has decreased high

 Team #18076 Page 19

temperatures caused by the heat-reflecting properties of concrete and pavement. These factors
prove to be a substantial issue for elderly citizens residing in heat islands. The presence of trees
has been previously studied to reduce heat in urban areas by up to 90%—an impressive amount
that could be the difference between passing out and walking as normal on a sidewalk,
especially for the elderly [14].

3.6 Strengths & Weaknesses
A key strength of our approach is the model’s ability to incorporate a wide range of

factors contributing to the complexity of our vulnerability score. These factors are accurately
accounted for through data normalization and weighted based on their significance, ensuring
a balanced impact in our equation. Additionally, the model effectively visualizes the wealth
inequality gap between affluent and poverty-stricken neighborhoods in Memphis, revealing
clear socioeconomic disparities across the city. Moreover, it highlights specific weaknesses
within neighborhoods, providing valuable insights into resource deficiencies. This allows for
targeted interventions to reduce vulnerability by addressing the most critical contributing
factors. Ultimately, our model offers an accurate and efficient means of analyzing the
specialized needs of each Memphis neighborhood.

However, a limitation of this model is that the variable weights are estimated and
subjectively produced (even though done so with thorough research-backed reasoning), which
may introduce inaccuracies in predicting neighborhood vulnerability. Due to the lack of
sufficient studies quantifying the precise impact of each factor, estimation was necessary.
Additionally, while our model incorporates six key factors, many other unaccounted variables
could influence vulnerability, potentially affecting its accuracy. Future refinements could
involve integrating further data-driven weighting methods and additional variables to
enhance precision.

4: Conclusion

As a product of thorough examination, our paper presents a reliable set of
mathematical models, providing critical insight into mitigating the impacts of escalating heat
waves in Memphis. By employing a dynamic thermal network model, we successfully captured
the lag and dampening of indoor temperatures relative to outdoor extremes, offering a
valuable tool for predicting the heat retention characteristics of non-air-conditioned
dwellings.

Subsequently, our Seasonal Auto-Regressive Integrated Moving Average (SARIMA)
model forecasts a rise in peak power demand by 2045, emphasizing the need for proactive grid
capacity planning as air conditioning use increases along with heatwave prevalence.

Lastly, our vulnerability score model, which integrates socioeconomic and
demographic factors, effectively identifies high-risk neighborhoods, enabling targeted
interventions such as the development of green corridors. Together, these models provide a
comprehensive framework for urban planners and policymakers, facilitating intelligent

 Team #18076 Page 20

decision-making to enhance emergency preparedness and resource allocation. This unique
approach not only addresses immediate challenges but also supports long-term resilience
against the compounded effects of climate change in the city of Memphis.

In conclusion, our findings provide many comprehensive models relating to Memphis’
changing conditions and situations. While heatwaves and power grid failures do pose a
significant threat to a large portion of Memphis’ urban population, this does not mean that
solutions are impossible. With the models and data we’ve found today, we conclude this report
with an optimistic outlook on the circumstances in Memphis. Through human ingenuity and
innovation, there is hope to be found.

 Team #18076 Page 21

5: References
1. Hot Button Issue, MathWorks Math Modeling Challenge, curated data,

https://m3challenge.siam.org/897bjhb54cgfc/.
2. https://blackdiamondtoday.com/blog/the-4-most-common-sources-of-heat-gain-and-how-to-re

duce-the-problem/
3. https://www.wunderground.com/history/weekly/us/tn/memphis/KMEM
4. https://stackoverflow.com/questions/38362630/machine-learning-algorithm-for-predicting-indo

or-temperature#:~:text=The%20intuitive%20approach%20is%20a,angle
5. https://www.mdpi.com/1996-1073/11/6/1477#:~:text=buildings,heat%20demand%20at%20city%

20level
6. https://pmc.ncbi.nlm.nih.gov/articles/PMC6888563/#:~:text=up%20a%20predictive%20model%

3A%20weather,had%20the%20highest%20performance%20when
7. https://www.mdpi.com/2071-1050/16/22/9831#:~:text=variations%20in%20indoor%20thermal%

20conditions,insulation%20in%20vulnerable%20regions%20could
8. https://pmc.ncbi.nlm.nih.gov/articles/PMC10199188/#:~:text=Thermal%20insulation%20impact

%20on%20overheating,used%20as%20case%20studies
9. https://www.osti.gov/servlets/purl/1485557#:~:text=3,the%20low%20population%20growth%20

DoF
10. https://www.pnas.org/doi/10.1073/pnas.1613193114#:~:text=match%20at%20L396%20subset%2

0of,than%20effects%20on%20average%20demand
11. https://www.citizensutilityboard.org/wp-content/uploads/2021/06/Cost-of-Climate-Change-Pap

er.pdf#:~:text=from%20a%20392%20GWh%20increase,MW%20in%202020%2C%20rising%20to
12. https://ehp.niehs.nih.gov/0900683#:~:text=Category%20Data%20source%20,Percent%20census

%20tract%20area%20not
13. https://www.carbonbrief.org/climate-change-could-flip-european-peak-power-demand-to-sum

mer-study-says/#:~:text=If%20global%20greenhouse%20gases%20aren%E2%80%99t,for%20hea
ters%20in%20the%20winter

14. https://theconversation.com/can-trees-really-cool-our-cities-down-44099
15. https://www.npr.org/2019/09/03/754044732/as-rising-heat-bakes-u-s-cities-the-poor-often-feel

-it-most?t=1628079007286

https://m3challenge.siam.org/897bjhb54cgfc/
https://blackdiamondtoday.com/blog/the-4-most-common-sources-of-heat-gain-and-how-to-reduce-the-problem/
https://blackdiamondtoday.com/blog/the-4-most-common-sources-of-heat-gain-and-how-to-reduce-the-problem/
https://www.wunderground.com/history/weekly/us/tn/memphis/KMEM
https://stackoverflow.com/questions/38362630/machine-learning-algorithm-for-predicting-indoor-temperature#:~:text=The%20intuitive%20approach%20is%20a,angle
https://stackoverflow.com/questions/38362630/machine-learning-algorithm-for-predicting-indoor-temperature#:~:text=The%20intuitive%20approach%20is%20a,angle
https://www.mdpi.com/1996-1073/11/6/1477#:~:text=buildings,heat%20demand%20at%20city%20level
https://www.mdpi.com/1996-1073/11/6/1477#:~:text=buildings,heat%20demand%20at%20city%20level
https://pmc.ncbi.nlm.nih.gov/articles/PMC6888563/#:~:text=up%20a%20predictive%20model%3A%20weather,had%20the%20highest%20performance%20when
https://pmc.ncbi.nlm.nih.gov/articles/PMC6888563/#:~:text=up%20a%20predictive%20model%3A%20weather,had%20the%20highest%20performance%20when
https://www.mdpi.com/2071-1050/16/22/9831#:~:text=variations%20in%20indoor%20thermal%20conditions,insulation%20in%20vulnerable%20regions%20could
https://www.mdpi.com/2071-1050/16/22/9831#:~:text=variations%20in%20indoor%20thermal%20conditions,insulation%20in%20vulnerable%20regions%20could
https://pmc.ncbi.nlm.nih.gov/articles/PMC10199188/#:~:text=Thermal%20insulation%20impact%20on%20overheating,used%20as%20case%20studies
https://pmc.ncbi.nlm.nih.gov/articles/PMC10199188/#:~:text=Thermal%20insulation%20impact%20on%20overheating,used%20as%20case%20studies
https://www.osti.gov/servlets/purl/1485557#:~:text=3,the%20low%20population%20growth%20DoF
https://www.osti.gov/servlets/purl/1485557#:~:text=3,the%20low%20population%20growth%20DoF
https://www.pnas.org/doi/10.1073/pnas.1613193114#:~:text=match%20at%20L396%20subset%20of,than%20effects%20on%20average%20demand
https://www.pnas.org/doi/10.1073/pnas.1613193114#:~:text=match%20at%20L396%20subset%20of,than%20effects%20on%20average%20demand
https://www.citizensutilityboard.org/wp-content/uploads/2021/06/Cost-of-Climate-Change-Paper.pdf#:~:text=from%20a%20392%20GWh%20increase,MW%20in%202020%2C%20rising%20to
https://www.citizensutilityboard.org/wp-content/uploads/2021/06/Cost-of-Climate-Change-Paper.pdf#:~:text=from%20a%20392%20GWh%20increase,MW%20in%202020%2C%20rising%20to
https://www.carbonbrief.org/climate-change-could-flip-european-peak-power-demand-to-summer-study-says/#:~:text=If%20global%20greenhouse%20gases%20aren%E2%80%99t,for%20heaters%20in%20the%20winter
https://www.carbonbrief.org/climate-change-could-flip-european-peak-power-demand-to-summer-study-says/#:~:text=If%20global%20greenhouse%20gases%20aren%E2%80%99t,for%20heaters%20in%20the%20winter
https://www.carbonbrief.org/climate-change-could-flip-european-peak-power-demand-to-summer-study-says/#:~:text=If%20global%20greenhouse%20gases%20aren%E2%80%99t,for%20heaters%20in%20the%20winter
https://theconversation.com/can-trees-really-cool-our-cities-down-44099
https://www.npr.org/2019/09/03/754044732/as-rising-heat-bakes-u-s-cities-the-poor-often-feel-it-most?t=1628079007286
https://www.npr.org/2019/09/03/754044732/as-rising-heat-bakes-u-s-cities-the-poor-often-feel-it-most?t=1628079007286

 Team #18076 Page 22

6 Code Appendix
6.1 Q1: Hot to Go
import numpy as np

import matplotlib.pyplot as plt

import math

from scipy.integrate import odeint

import pandas as pd

from matplotlib.patches import Rectangle

Parameters for the differential equation

UA = 102.6 # Heat transfer coefficient * Area (W/K)

C = 1.26e7 # Thermal capacity (J/K)

Convert UA/C from 1/seconds to 1/hours

1 hour = 3600 seconds, so we multiply by 3600 to get rate per hour

UA_C_per_hour = (UA / C) * 3600 # now in units of 1/hour

Outdoor temperature function from the code snippet

def T_outdoor(t):

 # Handle time values for a full day cycle

 t_mod = t % 24

 return 10.15 * math.exp(

 -0.5 * (

 ((t_mod - 13.8)/4.5)

 - 0.11 * ((t_mod - 13.8)/4.5)**2

)**2

) + 28.61

Solar heat gain (W) - Assuming it follows a pattern during daylight hours

def Q_solar(t):

 t_mod = t % 24

 # Solar gain active between 6am and 6pm with maximum at noon

 if 6 <= t_mod <= 18:

 return (2500 * math.sin(math.pi * (t_mod - 6) / 12))

 else:

 return 0

Modified differential equation to work with hours instead of seconds

def dTdt(T_in, t):

 # Q_solar also needs to be adjusted to hours (multiply by 3600 s/hr)

 return UA_C_per_hour * (T_outdoor(t) - T_in) + (Q_solar(t) * 3600) / C

Time points for simulation (240 hours = 10 days)

 Team #18076 Page 23
t = np.linspace(0, 240, 4000) # Doubled points for 10 days

Initial condition - starting indoor temperature

T_in_initial = T_outdoor(0) # Starting at the same as outdoor temperature

Solve the differential equation

T_in_solution = odeint(dTdt, T_in_initial, t)

Plotting results

plt.figure(figsize=(20, 6)) # Made wider for 10 days

Plot outdoor temperature

T_out_values = [T_outdoor(time) for time in t]

plt.plot(t, T_out_values, 'r-', label='Outdoor Temperature T_out(t)')

Plot indoor temperature

plt.plot(t, T_in_solution, 'b-', label='Indoor Temperature T_in(t)')

Add labels and title

plt.xlabel('Time (hours)')

plt.ylabel('Temperature (°C)')

plt.title('Indoor and Outdoor Temperature Simulation (10 Days)')

plt.grid(True)

plt.legend()

Add mathematical expressions on the plot with more space between them

plt.figtext(0.5, 0.01,

 r"$T_{out}(t) = 10.15 \cdot \exp(-0.5 \cdot (((t - 13.8)/4.5) - 0.11 \cdot

((t - 13.8)/4.5)^2)^2) + 28.61$",

 ha="center", fontsize=9, bbox={"facecolor":"white", "alpha":0.5, "pad":5})

plt.figtext(0.5, 0.08, # Changed from 0.05 to 0.08

 r"$\frac{dT_{in}}{dt} = \frac{UA \cdot (T_{out} - T_{in}) + Q_{solar}}{C}$,

where $UA=220$ W/K, $C=1.85 \times 10^7$ J/K",

 ha="center", fontsize=9, bbox={"facecolor":"white", "alpha":0.5, "pad":5})

Add shaded region for daytime for all 10 days

for day in range(10): # Changed to 10 days

 plt.axvspan(6 + 24*day, 18 + 24*day, alpha=0.1, color='yellow')

Set reasonable y-axis limits

plt.ylim(min(min(T_out_values), min(T_in_solution)) - 1,

 max(max(T_out_values), max(T_in_solution)) + 1)

 Team #18076 Page 24
Add day markers along the x-axis

for day in range(11): # 0 to 10 days

 plt.axvline(x=day*24, color='gray', linestyle='--', alpha=0.5)

 if day < 10: # Don't add text for the end boundary

 plt.text(day*24 + 12, min(min(T_out_values), min(T_in_solution)) - 0.8,

 f'Day {day+1}', ha='center')

Add x-ticks for each day, but only show every other day to avoid crowding

plt.xticks([day*24 for day in range(0, 11, 2)], [f'Day {day+1}' for day in range(0,

11, 2)])

plt.tight_layout(rect=[0, 0.15, 1, 1]) # Changed from 0.1 to 0.15

plt.show()

Add a new plot showing only the first day

plt.figure(figsize=(12, 6))

ax1 = plt.gca() # Get current axis as primary axis

Filter data for just the first day (0-24 hours)

day1_mask = t <= 24

t_day1 = t[day1_mask]

T_in_day1 = T_in_solution[day1_mask]

T_out_day1 = [T_outdoor(time) for time in t_day1]

Plot temperatures for first day

outdoor_line = ax1.plot(t_day1, T_out_day1, 'r-', linewidth=2)[0] # Save line

reference

indoor_line = ax1.plot(t_day1, T_in_day1, 'b-', linewidth=2)[0] # Save line reference

Add solar heat gain on a secondary axis for better understanding

ax2 = plt.twinx()

Q_solar_day1 = [Q_solar(time) for time in t_day1]

solar_line = ax2.plot(t_day1, Q_solar_day1, 'g--', alpha=0.7)[0] # Save line

reference

ax2.set_ylabel('Solar Heat Gain (W)', color='g')

ax2.tick_params(axis='y', labelcolor='g')

Add labels and title

ax1.set_xlabel('Time (hours)')

ax1.set_ylabel('Temperature (°C)')

plt.title('Indoor and Outdoor Temperature - First Day Detail')

ax1.grid(True)

Add shaded region for daytime (6am to 6pm)

 Team #18076 Page 25
daylight = ax1.axvspan(6, 18, alpha=0.1, color='yellow') # Save span reference

Set axis limits

ax1.set_xlim(0, 24)

ax1.set_ylim(min(min(T_out_day1), min(T_in_day1)) - 1,

 max(max(T_out_day1), max(T_in_day1)) + 1)

Add hourly markers

ax1.set_xticks(range(0, 25, 2))

for hour in range(0, 25, 6):

 ax1.axvline(x=hour, color='gray', linestyle=':', alpha=0.5)

 if hour < 24:

 time_label = f"{hour}:00"

 ax1.text(hour, min(min(T_out_day1), min(T_in_day1)) - 0.5,

 time_label, ha='center')

Create completely custom legend with exactly one entry per item

from matplotlib.patches import Rectangle

daylight_handle = Rectangle((0, 0), 1, 1, color='yellow', alpha=0.1)

Create the legend with exactly the handles and labels we want

handles = [outdoor_line, indoor_line, solar_line, daylight_handle]

labels = ['Outdoor Temperature T_out(t)', 'Indoor Temperature T_in(t)',

 'Solar Heat Gain Q_solar(t)', 'Daylight Hours']

Add the legend to the plot

ax1.legend(handles, labels, loc='best')

Add mathematical expressions on the plot with more space between them

plt.figtext(0.5, 0.01,

 r"$T_{out}(t) = 10.15 \cdot \exp(-0.5 \cdot (((t - 13.8)/4.5) - 0.11 \cdot

((t - 13.8)/4.5)^2)^2) + 28.61$",

 ha="center", fontsize=9, bbox={"facecolor":"white", "alpha":0.5, "pad":5})

plt.figtext(0.5, 0.08,

 r"$\frac{dT_{in}}{dt} = \frac{UA \cdot (T_{out} - T_{in}) + Q_{solar}}{C}$,

where $UA=220$ W/K, $C=1.85 \times 10^7$ J/K",

 ha="center", fontsize=9, bbox={"facecolor":"white", "alpha":0.5, "pad":5})

plt.tight_layout(rect=[0, 0.15, 1, 1])

plt.show()

Cross-validation of the mathematical model against original data

print("\n----- Cross-Validation of Temperature Model -----")

 Team #18076 Page 26

Original hourly temperature data (from 12am to 11pm)

original_data = np.array([

 29.4, 29.4, 28.9, 28.3, 28.3, 28.3,

 28.9, 31.1, 32.8, 34.4, 35.6, 36.1,

 37.8, 37.8, 38.9, 38.9, 37.8, 37.2,

 36.1, 34.4, 33.3, 32.8, 32.2, 31.7

])

Time points for the hourly data (0 to 23)

hours = np.arange(24)

Get model predictions at hourly intervals

model_predictions = np.array([T_outdoor(h) for h in hours])

Calculate error metrics

residuals = original_data - model_predictions

mse = np.mean(residuals**2)

rmse = np.sqrt(mse)

mae = np.mean(np.abs(residuals))

Calculate R-squared

ss_total = np.sum((original_data - np.mean(original_data))**2)

ss_residual = np.sum(residuals**2)

r_squared = 1 - (ss_residual / ss_total)

Print metrics

print(f"Mean Squared Error (MSE): {mse:.4f}°C²")

print(f"Root Mean Squared Error (RMSE): {rmse:.4f}°C")

print(f"Mean Absolute Error (MAE): {mae:.4f}°C")

print(f"R-squared (R²): {r_squared:.4f}")

Implement leave-one-out cross-validation (LOOCV)

print("\n----- Leave-One-Out Cross-Validation -----")

loocv_errors = []

for i in range(len(hours)):

 # Create mask for all points except the current one

 mask = np.ones(24, dtype=bool)

 mask[i] = False

 # Data for fitting

 train_hours = hours[mask]

 train_temps = original_data[mask]

 Team #18076 Page 27

 # Test point

 test_hour = hours[i]

 test_temp = original_data[i]

 # Predict using our model (we're using the same model, so this is just to

demonstrate the approach)

 predicted_temp = T_outdoor(test_hour)

 # Calculate error

 error = test_temp - predicted_temp

 loocv_errors.append(error)

Calculate LOOCV metrics

loocv_mse = np.mean(np.array(loocv_errors)**2)

loocv_rmse = np.sqrt(loocv_mse)

print(f"LOOCV Mean Squared Error: {loocv_mse:.4f}°C²")

print(f"LOOCV Root Mean Squared Error: {loocv_rmse:.4f}°C")

Create a visualization comparing original data with model predictions

plt.figure(figsize=(12, 6))

Plot original data points

plt.scatter(hours, original_data, color='blue', label='Original Data', s=50)

Plot model predictions

plt.plot(np.linspace(0, 23, 100), [T_outdoor(t) for t in np.linspace(0, 23, 100)],

 'r-', label='Mathematical Model')

Add error bars to visualize residuals

for i in range(len(hours)):

 plt.plot([hours[i], hours[i]], [original_data[i], model_predictions[i]], 'k-',

alpha=0.3)

Add labels and title

plt.xlabel('Time (hours)')

plt.ylabel('Temperature (°C)')

plt.title('Cross-Validation: Original Data vs. Mathematical Model')

plt.grid(True)

plt.legend()

Add metrics to the plot

plt.figtext(0.5, 0.01,

 Team #18076 Page 28
 f"Model Metrics: RMSE = {rmse:.2f}°C, R² = {r_squared:.2f}",

 ha="center", fontsize=10, bbox={"facecolor":"white", "alpha":0.5, "pad":5})

plt.tight_layout(rect=[0, 0.05, 1, 1])

plt.show()

Add a new section for sensitivity analysis

print("\n----- Sensitivity Analysis -----")

Define the baseline parameter values

UA_baseline = 220 # W/K

C_baseline = 1.85e7 # J/K

Define parameter ranges for sensitivity analysis

Testing values from -50% to +50% of baseline

UA_values = [UA_baseline * factor for factor in [0.5, 0.75, 1.0, 1.25, 1.5]]

C_values = [C_baseline * factor for factor in [0.5, 0.75, 1.0, 1.25, 1.5]]

Function to run simulation with given parameters

def run_simulation(UA_val, C_val, time_points):

 # Convert to hourly rates

 UA_C_per_hour_val = (UA_val / C_val) * 3600

 # Define modified differential equation with the new parameters

 def dTdt_modified(T_in, t):

 return UA_C_per_hour_val * (T_outdoor(t) - T_in) + (Q_solar(t) * 3600) / C_val

 # Use the same initial condition

 T_in_initial = T_outdoor(0)

 # Solve the ODE

 return odeint(dTdt_modified, T_in_initial, time_points)

Time range for sensitivity analysis (using 3 days)

t_sens = np.linspace(0, 72, 1000)

1. Sensitivity to UA (Heat Transfer Coefficient * Area)

plt.figure(figsize=(15, 7))

Run simulations for different UA values

UA_results = {}

for UA_val in UA_values:

 T_in_solution = run_simulation(UA_val, C_baseline, t_sens)

 Team #18076 Page 29
 UA_results[UA_val] = T_in_solution.flatten()

 # Calculate percentage difference from baseline

 percent_diff = (UA_val / UA_baseline - 1) * 100

 label = f"UA = {UA_val:.0f} W/K ({percent_diff:+.0f}%)"

 plt.plot(t_sens, T_in_solution, label=label)

Add outdoor temperature for reference

T_out_sens = [T_outdoor(time) for time in t_sens]

plt.plot(t_sens, T_out_sens, 'k--', label='Outdoor Temperature', alpha=0.5)

Add shaded regions for daytime

for day in range(3):

 plt.axvspan(6 + 24*day, 18 + 24*day, alpha=0.1, color='yellow')

Plot formatting

plt.xlabel('Time (hours)')

plt.ylabel('Indoor Temperature (°C)')

plt.title('Sensitivity Analysis: Effect of UA Coefficient on Indoor Temperature')

plt.grid(True)

plt.legend(loc='best')

plt.tight_layout()

plt.savefig('sensitivity_UA.png')

plt.show()

2. Sensitivity to C (Thermal Capacity)

plt.figure(figsize=(15, 7))

Run simulations for different C values

C_results = {}

for C_val in C_values:

 T_in_solution = run_simulation(UA_baseline, C_val, t_sens)

 C_results[C_val] = T_in_solution.flatten()

 # Calculate percentage difference from baseline

 percent_diff = (C_val / C_baseline - 1) * 100

 label = f"C = {C_val:.2e} J/K ({percent_diff:+.0f}%)"

 plt.plot(t_sens, T_in_solution, label=label)

Add outdoor temperature for reference

plt.plot(t_sens, T_out_sens, 'k--', label='Outdoor Temperature', alpha=0.5)

 Team #18076 Page 30

Add shaded regions for daytime

for day in range(3):

 plt.axvspan(6 + 24*day, 18 + 24*day, alpha=0.1, color='yellow')

Plot formatting

plt.xlabel('Time (hours)')

plt.ylabel('Indoor Temperature (°C)')

plt.title('Sensitivity Analysis: Effect of Thermal Capacity on Indoor Temperature')

plt.grid(True)

plt.legend(loc='best')

plt.tight_layout()

plt.savefig('sensitivity_C.png')

plt.show()

3. Quantitative Sensitivity Metrics

print("\nQuantitative Sensitivity Metrics:")

Calculate statistics for UA sensitivity

UA_sensitivity_metrics = []

for UA_val in UA_values:

 if UA_val == UA_baseline:

 continue # Skip baseline

 # Get temperature differences from baseline

 temp_diffs = UA_results[UA_val] - UA_results[UA_baseline]

 # Calculate metrics

 max_diff = np.max(np.abs(temp_diffs))

 avg_diff = np.mean(np.abs(temp_diffs))

 # Calculate parameter change percentage

 param_change_pct = (UA_val / UA_baseline - 1) * 100

 UA_sensitivity_metrics.append({

 'Parameter': 'UA',

 'Value': UA_val,

 'Change': f"{param_change_pct:+.0f}%",

 'Max_Temp_Diff': max_diff,

 'Avg_Temp_Diff': avg_diff

 })

Calculate statistics for C sensitivity

C_sensitivity_metrics = []

 Team #18076 Page 31
for C_val in C_values:

 if C_val == C_baseline:

 continue # Skip baseline

 # Get temperature differences from baseline

 temp_diffs = C_results[C_val] - C_results[C_baseline]

 # Calculate metrics

 max_diff = np.max(np.abs(temp_diffs))

 avg_diff = np.mean(np.abs(temp_diffs))

 # Calculate parameter change percentage

 param_change_pct = (C_val / C_baseline - 1) * 100

 C_sensitivity_metrics.append({

 'Parameter': 'C',

 'Value': C_val,

 'Change': f"{param_change_pct:+.0f}%",

 'Max_Temp_Diff': max_diff,

 'Avg_Temp_Diff': avg_diff

 })

Combine metrics and create DataFrame

all_metrics = UA_sensitivity_metrics + C_sensitivity_metrics

metrics_df = pd.DataFrame(all_metrics)

print(metrics_df)

4. Relative sensitivity indices

plt.figure(figsize=(10, 6))

Calculate normalized sensitivity

normalized_sens = []

for metric in all_metrics:

 param = metric['Parameter']

 change_pct = float(metric['Change'].replace('%', ''))

 avg_diff = metric['Avg_Temp_Diff']

 # Normalized sensitivity = (% change in output) / (% change in input)

 # Here output is Avg_Temp_Diff and input is parameter change

 normalized_sens.append({

 'Parameter': param,

 'Change': change_pct,

 Team #18076 Page 32
 'Sensitivity_Index': avg_diff / abs(change_pct)

 })

sens_df = pd.DataFrame(normalized_sens)

Plot sensitivity indices

colors = ['blue', 'blue', 'blue', 'blue', 'red', 'red', 'red', 'red']

param_labels = [f"{row['Parameter']} ({row['Change']:+.0f}%)" for _, row in

sens_df.iterrows()]

plt.figure(figsize=(12, 6))

bars = plt.bar(param_labels, sens_df['Sensitivity_Index'], color=colors)

Add labels and styling

plt.axhline(y=0, color='black', linestyle='-', alpha=0.3)

plt.ylabel('Normalized Sensitivity Index\n(°C change per % parameter change)')

plt.title('Parameter Sensitivity Comparison')

plt.xticks(rotation=45)

plt.grid(axis='y', linestyle='--', alpha=0.7)

Add a legend

from matplotlib.patches import Patch

legend_elements = [

 Patch(facecolor='blue', label='UA Coefficient'),

 Patch(facecolor='red', label='Thermal Capacity')

]

plt.legend(handles=legend_elements)

plt.tight_layout()

plt.savefig('sensitivity_indices.png')

plt.show()

5. Sensitivity Heatmap (2D parameter space exploration)

--

Create a grid of parameter combinations

param_grid = []

for UA_val in UA_values:

 for C_val in C_values:

 param_grid.append((UA_val, C_val))

Select a specific time point for heatmap evaluation (e.g., after 48 hours)

eval_time_idx = np.where(t_sens >= 48)[0][0]

Run simulations for all parameter combinations

 Team #18076 Page 33
results_grid = np.zeros((len(UA_values), len(C_values)))

for i, UA_val in enumerate(UA_values):

 for j, C_val in enumerate(C_values):

 T_in_solution = run_simulation(UA_val, C_val, t_sens)

 results_grid[i, j] = T_in_solution[eval_time_idx]

Create labels for the axes

UA_labels = [f"{UA:.0f}" for UA in UA_values]

C_labels = [f"{C:.2e}" for C in C_values]

Plot heatmap

plt.figure(figsize=(10, 8))

im = plt.imshow(results_grid, cmap='viridis')

plt.colorbar(im, label='Temperature (°C) at t=48 hours')

Add labels

plt.xticks(np.arange(len(C_values)), C_labels, rotation=45)

plt.yticks(np.arange(len(UA_values)), UA_labels)

plt.xlabel('Thermal Capacity C (J/K)')

plt.ylabel('Heat Transfer Coefficient UA (W/K)')

plt.title('Temperature at t=48h for Different Parameter Combinations')

Add text annotations with temperature values

for i in range(len(UA_values)):

 for j in range(len(C_values)):

 plt.text(j, i, f"{results_grid[i, j]:.2f}°C",

 ha="center", va="center", color="white" if results_grid[i, j] <

np.median(results_grid) else "black")

plt.tight_layout()

plt.savefig('sensitivity_heatmap.png')

plt.show()

6.2 Q2: Power Hungry
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import statsmodels.api as sm

from statsmodels.tsa.statespace.sarimax import SARIMAX

from statsmodels.tsa.stattools import adfuller

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

 Team #18076 Page 34
import itertools

import warnings

import io

import os

import joblib

import matplotlib.dates as mdates

Suppress warnings for cleaner output

warnings.filterwarnings('ignore')

data_str = """Omitted to save space"""

1) LOAD AND PREPARE THE DATA

df = pd.read_csv(io.StringIO(data_str))

Convert Year/Month to a proper datetime

df['Date'] = pd.to_datetime(df['Year'].astype(str) + '-' + df['Month'],

format='%Y-%B')

df = df.sort_values('Date')

Create a monthly frequency datetime index

Some older data might not exactly line up with day-of-month; "MS" = Month Start

df.set_index('Date', inplace=True)

df.index = df.index.to_period('M') # or use asfreq('MS') for a Timestamp index

Extract our target time series

ts = df['Memphis_Billion_kWh'].asfreq('M') # ensures monthly freq

2) OPTIONAL: STATIONARITY CHECK

Quick function to print ADF test results:

def test_stationarity(series):

 result = adfuller(series.dropna())

 print("ADF Statistic: ", result[0])

 print("p-value: ", result[1])

 print("Critical Values:")

 for key, value in result[4].items():

 print(f" {key}: {value}")

 if result[1] <= 0.05:

 print("\n=> Likely Stationary (Reject H0)\n")

 else:

 print("\n=> Likely Non-Stationary (Fail to Reject H0)\n")

print("Original series stationarity test:")

 Team #18076 Page 35
test_stationarity(ts)

3) TRAIN/TEST SPLIT FOR VALIDATION

Decide on a cutoff date for training vs. testing.

train_end_date = '2022-12'

train = ts[:train_end_date]

test = ts[train_end_date:] # includes Dec 2022 if you prefer, or start from '2023-01'

print(f"Training set: {train.index.min()} to {train.index.max()} (n={len(train)})")

print(f"Test set: {test.index.min()} to {test.index.max()} (n={len(test)})")

4) GRID SEARCH OVER SARIMA PARAMETERS

p = range(0, 3)

d = range(0, 3)

q = range(0, 3)

P = range(0, 3)

D = range(0, 2)

Q = range(0, 3)

m = 12 # monthly seasonality

best_aic = float('inf')

best_order = None

best_seasonal_order = None

best_model = None

7) REFIT ON THE ENTIRE DATASET & FORECAST INTO THE FUTURE

Add model persistence to avoid retraining

model_filename = 'memphis_sarima_model.pkl'

Check if saved model exists

if os.path.exists(model_filename):

 print("Loading previously trained model...")

 final_res = joblib.load(model_filename)

 # Get the saved model parameters for reference

 best_order = final_res.model.order

 best_seasonal_order = final_res.model.seasonal_order

 print(f"Loaded model with ARIMA Order: {best_order}, Seasonal Order:

{best_seasonal_order}")

else:

 print("Training new model...")

 Team #18076 Page 36
 final_model = SARIMAX(ts,

 order=best_order,

 seasonal_order=best_seasonal_order,

 enforce_stationarity=False,

 enforce_invertibility=False)

 final_res = final_model.fit(disp=False)

 # Save the model

 joblib.dump(final_res, model_filename)

 print(f"Model saved to {model_filename}")

Forecast for the next 20 years = 240 months

forecast_steps = 264

full_forecast = final_res.get_forecast(steps=forecast_steps)

Create an index for future periods

last_period = ts.index[-1]

forecast_index_full = pd.period_range(start=last_period+1, periods=forecast_steps,

freq='M')

forecast_mean_full = full_forecast.predicted_mean

forecast_ci_full = full_forecast.conf_int()

Convert PeriodIndex to Timestamp for plotting

forecast_index_full_ts = forecast_index_full.to_timestamp()

Make a DataFrame for your final forecasts

forecast_df = pd.DataFrame({

 'Forecast': forecast_mean_full,

 'Lower_CI': forecast_ci_full.iloc[:, 0],

 'Upper_CI': forecast_ci_full.iloc[:, 1]

}, index=forecast_index_full)

forecast_df.index.name = 'Date'

print("\nFinal Forecast Sample:")

print(forecast_df.head(12))

8) PLOT FULL DATA + FUTURE FORECAST

plt.figure(figsize=(14,6))

plt.plot(ts.index.to_timestamp(), ts, label='Historical')

plt.plot(forecast_index_full_ts, forecast_mean_full, label='Future Forecast',

color='red')

plt.fill_between(forecast_index_full_ts,

 forecast_ci_full.iloc[:, 0],

 forecast_ci_full.iloc[:, 1],

 color='pink', alpha=0.3,

 Team #18076 Page 37
 label='95% Confidence Interval')

plt.title("SARIMA - Historical and 20-Year Forecast")

plt.xlabel('Date')

plt.ylabel('Electricity Consumption (Billion kWh)')

plt.legend()

plt.grid(True)

plt.show()

plt.figure(figsize=(20,6)) # Wider figure for stretched x-axis

plt.plot(ts.index.to_timestamp(), ts, label='Historical')

plt.plot(forecast_index_full_ts, forecast_mean_full, label='Future Forecast',

color='red')

plt.fill_between(forecast_index_full_ts,

forecast_ci_full.iloc[:, 0],

forecast_ci_full.iloc[:, 1],

color='pink', alpha=0.3,

label='95% Confidence Interval')

plt.title("SARIMA - Historical and 20-Year Forecast (Stretched X-Axis)")

plt.xlabel('Date')

plt.ylabel('Electricity Consumption (Billion kWh)')

plt.legend()

plt.grid(True)

plt.tight_layout()

plt.show()

9) ADD FOCUSED PLOT AROUND 2045

plt.figure(figsize=(16, 8)) # Wider figure for better detail

Calculate the date range around 2045 (e.g., 2044-2046)

start_date = '2025-01-01'

end_date = '2045-12-31'

Filter forecast data for this range

mask = (forecast_index_full_ts >= start_date) & (forecast_index_full_ts <= end_date)

future_slice = forecast_mean_full[mask]

ci_slice_lower = forecast_ci_full.iloc[:, 0][mask]

ci_slice_upper = forecast_ci_full.iloc[:, 1][mask]

future_dates_slice = forecast_index_full_ts[mask]

Plot the focused range

plt.plot(future_dates_slice, future_slice, label='Forecast 2044-2046', color='red')

plt.fill_between(future_dates_slice,

 ci_slice_lower,

 ci_slice_upper,

 Team #18076 Page 38
 color='pink', alpha=0.3,

 label='95% Confidence Interval')

Add monthly gridlines and format

plt.grid(True, which='both', linestyle='--', linewidth=0.5)

plt.title("Detailed Monthly Forecast Around 2045", fontsize=16)

plt.xlabel('Date', fontsize=12)

plt.ylabel('Electricity Consumption (Billion kWh)', fontsize=12)

plt.legend()

Format x-axis to show months

plt.gca().xaxis.set_major_locator(mdates.YearLocator())

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))

plt.xticks(rotation=45)

plt.tight_layout()

plt.show()

10) ALTERNATIVE: STRETCHED FULL FORECAST

plt.figure(figsize=(24, 8)) # Very wide figure for stretched x-axis

plt.plot(ts.index.to_timestamp(), ts, label='Historical')

plt.plot(forecast_index_full_ts, forecast_mean_full, label='Future Forecast',

color='red')

plt.fill_between(forecast_index_full_ts,

 forecast_ci_full.iloc[:, 0],

 forecast_ci_full.iloc[:, 1],

 color='pink', alpha=0.3,

 label='95% Confidence Interval')

plt.title("SARIMA - Historical and 20-Year Forecast (Extra Stretched X-Axis)",

fontsize=16)

plt.xlabel('Date', fontsize=12)

plt.ylabel('Electricity Consumption (Billion kWh)', fontsize=12)

plt.legend()

plt.grid(True)

plt.tight_layout()

plt.show()

11) SENSITIVITY ANALYSIS FOR SARIMA MODEL

print("\n----- SENSITIVITY ANALYSIS -----")

Create directory for sensitivity outputs

if not os.path.exists('sensitivity_results'):

 os.makedirs('sensitivity_results')

 Team #18076 Page 39
1. Parameter Sensitivity

def run_model_with_params(order, seasonal_order):

 """Train SARIMA with specific parameters and return forecast"""

 try:

 model = SARIMAX(ts,

 order=order,

 seasonal_order=seasonal_order,

 enforce_stationarity=False,

 enforce_invertibility=False)

 results = model.fit(disp=False)

 forecast = results.get_forecast(steps=forecast_steps)

 return {

 'mean': forecast.predicted_mean,

 'ci': forecast.conf_int(),

 'aic': results.aic,

 'bic': results.bic

 }

 except Exception as e:

 print(f"Error with order={order}, seasonal_order={seasonal_order}: {e}")

 return None

Baseline parameters (from your existing model)

baseline_order = final_res.model.order

baseline_seasonal_order = final_res.model.seasonal_order

print(f"Baseline model parameters: ARIMA{baseline_order} ×

SARIMA{baseline_seasonal_order}")

Get baseline forecast

baseline_forecast = run_model_with_params(baseline_order, baseline_seasonal_order)

1.1 Vary the AR order (p)

p_variations = [(p, baseline_order[1], baseline_order[2]) for p in range(0, 4)

 if (p, baseline_order[1], baseline_order[2]) != baseline_order]

1.2 Vary the differencing (d)

d_variations = [(baseline_order[0], d, baseline_order[2]) for d in range(0, 3)

 if (baseline_order[0], d, baseline_order[2]) != baseline_order]

1.3 Vary the MA order (q)

q_variations = [(baseline_order[0], baseline_order[1], q) for q in range(0, 4)

 if (baseline_order[0], baseline_order[1], q) != baseline_order]

1.4 Vary seasonal parameters (one at a time)

 Team #18076 Page 40
P_variations = [(P, baseline_seasonal_order[1], baseline_seasonal_order[2],

baseline_seasonal_order[3])

 for P in range(0, 3)

 if (P, baseline_seasonal_order[1], baseline_seasonal_order[2],

baseline_seasonal_order[3]) != baseline_seasonal_order]

D_variations = [(baseline_seasonal_order[0], D, baseline_seasonal_order[2],

baseline_seasonal_order[3])

 for D in range(0, 2)

 if (baseline_seasonal_order[0], D, baseline_seasonal_order[2],

baseline_seasonal_order[3]) != baseline_seasonal_order]

Q_variations = [(baseline_seasonal_order[0], baseline_seasonal_order[1], Q,

baseline_seasonal_order[3])

 for Q in range(0, 3)

 if (baseline_seasonal_order[0], baseline_seasonal_order[1], Q,

baseline_seasonal_order[3]) != baseline_seasonal_order]

All parameter variations to test

param_variations = {

 'AR Order (p)': {'orders': p_variations, 'seasonal_orders':

[baseline_seasonal_order] * len(p_variations)},

 'Differencing (d)': {'orders': d_variations, 'seasonal_orders':

[baseline_seasonal_order] * len(d_variations)},

 'MA Order (q)': {'orders': q_variations, 'seasonal_orders':

[baseline_seasonal_order] * len(q_variations)},

 'Seasonal AR (P)': {'orders': [baseline_order] * len(P_variations),

'seasonal_orders': P_variations},

 'Seasonal Diff (D)': {'orders': [baseline_order] * len(D_variations),

'seasonal_orders': D_variations},

 'Seasonal MA (Q)': {'orders': [baseline_order] * len(Q_variations),

'seasonal_orders': Q_variations},

}

Run sensitivity for each parameter category

for param_name, variations in param_variations.items():

 results = []

 forecasts = []

 # Get all forecasts for this parameter variation

 for i in range(len(variations['orders'])):

 order = variations['orders'][i]

 seasonal_order = variations['seasonal_orders'][i]

 Team #18076 Page 41
 print(f"Testing {param_name}: ARIMA{order} × SARIMA{seasonal_order}")

 forecast_result = run_model_with_params(order, seasonal_order)

 if forecast_result:

 param_label = f"{order}" if param_name in ['AR Order (p)', 'Differencing

(d)', 'MA Order (q)'] else f"{seasonal_order}"

 results.append({

 'param': param_label,

 'aic': forecast_result['aic'],

 'bic': forecast_result['bic'],

 'mean': forecast_result['mean'],

 'ci': forecast_result['ci'],

 })

 forecasts.append(forecast_result['mean'])

 # Plot the parameter sensitivity

 if len(results) > 0:

 plt.figure(figsize=(16, 8))

 # Plot baseline

 plt.plot(forecast_index_full_ts, baseline_forecast['mean'],

 label=f'Baseline

ARIMA{baseline_order}×SARIMA{baseline_seasonal_order}',

 color='black', linewidth=2)

 # Plot variations

 colors = plt.cm.tab10(np.linspace(0, 1, len(results)))

 for i, result in enumerate(results):

 plt.plot(forecast_index_full_ts, result['mean'],

 label=f'{param_name}={result["param"]} (AIC={result["aic"]:.2f})',

 color=colors[i], alpha=0.7)

 plt.title(f'Sensitivity Analysis: Effect of {param_name} on Forecast',

fontsize=14)

 plt.xlabel('Date', fontsize=12)

 plt.ylabel('Electricity Consumption (Billion kWh)', fontsize=12)

 plt.legend(loc='best')

 plt.grid(True)

 plt.tight_layout()

 plt.savefig(f'sensitivity_results/sensitivity_{param_name.replace(" ",

"_").lower()}.png')

 plt.show()

 # Calculate MAPE between baseline and variations

 Team #18076 Page 42
 print(f"\nMean Absolute Percent Difference from Baseline for {param_name}:")

 for i, result in enumerate(results):

 mape = np.mean(np.abs((baseline_forecast['mean'] - result['mean']) /

baseline_forecast['mean'])) * 100

 print(f" {param_name}={result['param']}: {mape:.2f}%")

2. Training Data Size Sensitivity

print("\n2. Training Data Size Sensitivity")

Define different training periods

training_periods = {

 '15 years': '2009-01', # Approximately 15 years of data

 '10 years': '2014-01', # Approximately 10 years of data

 '5 years': '2019-01', # Approximately 5 years of data

 '3 years': '2021-01', # Approximately 3 years of data

}

Get forecasts for different training sizes

train_size_results = {}

for period_name, start_date in training_periods.items():

 print(f"Training with data from {start_date} to {ts.index[-1]}")

 # Truncate the time series to the start_date

 truncated_ts = ts[start_date:]

 try:

 model = SARIMAX(truncated_ts,

 order=baseline_order,

 seasonal_order=baseline_seasonal_order,

 enforce_stationarity=False,

 enforce_invertibility=False)

 results = model.fit(disp=False)

 # Get the same length forecast as baseline

 forecast = results.get_forecast(steps=forecast_steps)

 train_size_results[period_name] = {

 'mean': forecast.predicted_mean,

 'ci': forecast.conf_int(),

 'aic': results.aic,

 'bic': results.bic,

 'training_size': len(truncated_ts)

 }

 Team #18076 Page 43
 except Exception as e:

 print(f"Error with training period {period_name}: {e}")

Plot comparison of forecasts with different training sizes

plt.figure(figsize=(16, 8))

Plot the baseline forecast (full data)

plt.plot(forecast_index_full_ts, baseline_forecast['mean'],

 label=f'Full Training ({len(ts)} months)',

 color='black', linewidth=2)

Plot each training size variation

colors = plt.cm.tab10(np.linspace(0, 1, len(train_size_results)))

for i, (period_name, result) in enumerate(train_size_results.items()):

 plt.plot(forecast_index_full_ts, result['mean'],

 label=f'{period_name} ({result["training_size"]} months)',

 color=colors[i], alpha=0.7)

plt.title('Sensitivity Analysis: Effect of Training Data Size on Forecast',

fontsize=14)

plt.xlabel('Date', fontsize=12)

plt.ylabel('Electricity Consumption (Billion kWh)', fontsize=12)

plt.legend(loc='best')

plt.grid(True)

plt.tight_layout()

plt.savefig('sensitivity_results/sensitivity_training_size.png')

plt.show()

Calculate metrics for training size comparison

print("\nMean Absolute Percent Difference from Baseline for Training Size:")

for period_name, result in train_size_results.items():

 mape = np.mean(np.abs((baseline_forecast['mean'] - result['mean']) /

baseline_forecast['mean'])) * 100

 print(f" {period_name} ({result['training_size']} months): {mape:.2f}%")

3. Forecast Horizon Sensitivity

print("\n3. Forecast Horizon Sensitivity Analysis")

Define forecast horizons to analyze

horizons = [12, 24, 60, 120, 240] # 1, 2, 5, 10, 20 years

horizon_labels = ['1 year', '2 years', '5 years', '10 years', '20 years']

Get confidence intervals and error growth for different horizons

 Team #18076 Page 44
horizon_results = []

for horizon, label in zip(horizons, horizon_labels):

 # Extract forecast for this horizon

 mean = baseline_forecast['mean'][:horizon]

 ci = baseline_forecast['ci'].iloc[:horizon]

 # Calculate confidence interval width (absolute and relative)

 ci_width = ci.iloc[:, 1] - ci.iloc[:, 0]

 relative_ci_width = ci_width / mean

 horizon_results.append({

 'horizon': horizon,

 'label': label,

 'mean': mean,

 'ci': ci,

 'avg_ci_width': ci_width.mean(),

 'avg_relative_ci_width': relative_ci_width.mean() * 100 # as percentage

 })

Plot confidence interval width trend

plt.figure(figsize=(14, 6))

horizons_x = [h['horizon'] for h in horizon_results]

width_y = [h['avg_ci_width'] for h in horizon_results]

relative_width_y = [h['avg_relative_ci_width'] for h in horizon_results]

plt.subplot(1, 2, 1)

plt.plot(horizons_x, width_y, 'o-', linewidth=2)

plt.xlabel('Forecast Horizon (months)')

plt.ylabel('Average CI Width (Billion kWh)')

plt.title('Absolute Confidence Interval Width\nvs. Forecast Horizon')

plt.grid(True)

plt.xticks(horizons_x, horizon_labels, rotation=45)

plt.subplot(1, 2, 2)

plt.plot(horizons_x, relative_width_y, 'o-', linewidth=2, color='orange')

plt.xlabel('Forecast Horizon (months)')

plt.ylabel('Average CI Width (%)')

plt.title('Relative Confidence Interval Width\nvs. Forecast Horizon')

plt.grid(True)

plt.xticks(horizons_x, horizon_labels, rotation=45)

plt.tight_layout()

plt.savefig('sensitivity_results/sensitivity_forecast_horizon.png')

plt.show()

 Team #18076 Page 45

print("\nForecast Uncertainty by Horizon:")

for result in horizon_results:

 print(f" {result['label']} ({result['horizon']} months): "

 f"Average CI width = {result['avg_ci_width']:.4f} Billion kWh "

 f"({result['avg_relative_ci_width']:.2f}% of forecast value)")

4. Seasonal Frequency Sensitivity Analysis

print("\n4. Seasonal Frequency Sensitivity Analysis")

Test different seasonal periods

seasonal_periods = [3, 6, 12, 24] # quarterly, half-yearly, yearly, bi-yearly

period_labels = ['Quarterly', 'Semi-Annual', 'Annual', 'Bi-Annual']

seasonal_freq_results = {}

baseline_m = baseline_seasonal_order[3] # Original m value

for m, label in zip(seasonal_periods, period_labels):

 if m == baseline_m:

 print(f"Skipping {label} (m={m}) as it's the baseline")

 continue

 print(f"Testing seasonal frequency: {label} (m={m})")

 # Create new seasonal order with different m but same P,D,Q

 new_seasonal_order = (baseline_seasonal_order[0], baseline_seasonal_order[1],

 baseline_seasonal_order[2], m)

 try:

 model = SARIMAX(ts,

 order=baseline_order,

 seasonal_order=new_seasonal_order,

 enforce_stationarity=False,

 enforce_invertibility=False)

 results = model.fit(disp=False)

 forecast = results.get_forecast(steps=forecast_steps)

 seasonal_freq_results[label] = {

 'mean': forecast.predicted_mean,

 'ci': forecast.conf_int(),

 'aic': results.aic,

 'bic': results.bic,

 'm': m

 }

 Team #18076 Page 46
 except Exception as e:

 print(f"Error with seasonal period {label} (m={m}): {e}")

Plot comparison of forecasts with different seasonal frequencies

if seasonal_freq_results:

 plt.figure(figsize=(16, 8))

 # Plot baseline (current m value)

 plt.plot(forecast_index_full_ts, baseline_forecast['mean'],

 label=f'Annual (m=12, baseline)',

 color='black', linewidth=2)

 # Plot each seasonal frequency variation

 colors = plt.cm.tab10(np.linspace(0, 1, len(seasonal_freq_results)))

 for i, (label, result) in enumerate(seasonal_freq_results.items()):

 plt.plot(forecast_index_full_ts, result['mean'],

 label=f'{label} (m={result["m"]}, AIC={result["aic"]:.2f})',

 color=colors[i], alpha=0.7)

 plt.title('Sensitivity Analysis: Effect of Seasonal Frequency on Forecast',

fontsize=14)

 plt.xlabel('Date', fontsize=12)

 plt.ylabel('Electricity Consumption (Billion kWh)', fontsize=12)

 plt.legend(loc='best')

 plt.grid(True)

 plt.tight_layout()

 plt.savefig('sensitivity_results/sensitivity_seasonal_frequency.png')

 plt.show()

 # Calculate metrics

 print("\nModel Comparison by Seasonal Frequency:")

 baseline_aic = baseline_forecast['aic']

 print(f" Baseline (m=12): AIC={baseline_aic:.2f},

BIC={baseline_forecast['bic']:.2f}")

 for label, result in seasonal_freq_results.items():

 mape = np.mean(np.abs((baseline_forecast['mean'] - result['mean']) /

baseline_forecast['mean'])) * 100

 print(f" {label} (m={result['m']}): "

 f"AIC={result['aic']:.2f} (Δ={result['aic']-baseline_aic:.2f}), "

 f"BIC={result['bic']:.2f}, MAPE from baseline={mape:.2f}%")

5. Rolling window forecasting (for different validation periods)

 Team #18076 Page 47
print("\n5. Rolling-Window Validation Analysis")

Define rolling validation periods

if len(ts) >= 120: # Need at least 10 years of data (120 months)

 # Use 5-year training windows with 1-year forecasts

 training_size = 60 # 5 years

 forecast_size = 12 # 1 year

 # Calculate how many windows we can create

 available_windows = len(ts) - training_size - forecast_size + 1

 n_windows = min(5, available_windows) # Limit to 5 windows

 # Create rolling windows

 rolling_results = []

 for i in range(n_windows):

 start_idx = i

 end_idx = start_idx + training_size

 validation_end = end_idx + forecast_size

 train_window = ts.iloc[start_idx:end_idx]

 validation_window = ts.iloc[end_idx:validation_end]

 # Skip if validation window is too short

 if len(validation_window) < forecast_size:

 continue

 validation_dates = validation_window.index.to_timestamp()

 print(f"Window {i+1}: Training {train_window.index[0]} to

{train_window.index[-1]}, "

 f"Validating {validation_window.index[0]} to

{validation_window.index[-1]}")

 try:

 # Fit model on training window

 model = SARIMAX(train_window,

 order=baseline_order,

 seasonal_order=baseline_seasonal_order,

 enforce_stationarity=False,

 enforce_invertibility=False)

 results = model.fit(disp=False)

 # Forecast for validation period

 Team #18076 Page 48
 forecast = results.get_forecast(steps=len(validation_window))

 forecast_mean = forecast.predicted_mean

 forecast_ci = forecast.conf_int()

 # Calculate error metrics

 mape = np.mean(np.abs((validation_window - forecast_mean) /

validation_window)) * 100

 rmse = np.sqrt(np.mean((validation_window - forecast_mean) ** 2))

 rolling_results.append({

 'window': i+1,

 'train_start': train_window.index[0],

 'train_end': train_window.index[-1],

 'valid_start': validation_window.index[0],

 'valid_end': validation_window.index[-1],

 'actual': validation_window,

 'forecast': forecast_mean,

 'ci': forecast_ci,

 'mape': mape,

 'rmse': rmse,

 'validation_dates': validation_dates

 })

 except Exception as e:

 print(f" Error with window {i+1}: {e}")

 # Plot rolling validation results

 if rolling_results:

 plt.figure(figsize=(16, 12))

 for i, result in enumerate(rolling_results):

 plt.subplot(len(rolling_results), 1, i+1)

 # Plot actual vs. forecast

 plt.plot(result['validation_dates'], result['actual'],

 label='Actual', linewidth=2)

 plt.plot(result['validation_dates'], result['forecast'],

 label=f'Forecast (MAPE={result['mape']:.2f}%)',

 linestyle='--')

 # Add CI

 plt.fill_between(result['validation_dates'],

 result['ci'].iloc[:, 0],

 result['ci'].iloc[:, 1],

 color='red', alpha=0.2)

 Team #18076 Page 49

 plt.title(f'Window {result['window']}: {result['train_start']} to

{result['train_end']} '

 f'→ {result['valid_start']} to {result['valid_end']}')

 plt.grid(True)

 plt.legend()

 plt.tight_layout()

 plt.savefig('sensitivity_results/sensitivity_rolling_validation.png')

 plt.show()

 # Summary table of error metrics

 print("\nRolling Window Validation Results:")

 for result in rolling_results:

 print(f" Window {result['window']} ({result['valid_start']} to

{result['valid_end']}): "

 f"MAPE={result['mape']:.2f}%, RMSE={result['rmse']:.4f}")

 # Calculate average performance metrics

 avg_mape = np.mean([r['mape'] for r in rolling_results])

 avg_rmse = np.mean([r['rmse'] for r in rolling_results])

 print(f"\n Average: MAPE={avg_mape:.2f}%, RMSE={avg_rmse:.4f}")

 else:

 print(" No valid rolling windows were created.")

else:

 print(" Insufficient data for rolling window validation (need at least 10

years).")

6.3 Q3: Beat the Heat
library(tidyverse)

library(ggplot2)

define the data!!

df <- tibble(

 ZIP_code = c(38103, 38002, 38017, 38016, 38018,

 38028, 38060, 38066, 38104, 38105,

 38106, 38107, 38108, 38109, 38111,

 38112, 38117, 38125, 38126, 38127,

 38128, 38133, 38134, 38135, 38138,

 38139, 38141),

 Population = c(0.1544, 0.7613, 1.0000, 0.7724, 0.6529,

 0.0760, 0.1648, 0.0000, 0.3506, 0.0239,

 0.3427, 0.1960, 0.2803, 0.7604, 0.7303,

 Team #18076 Page 50
 0.2171, 0.4294, 0.7431, 0.0333, 0.6797,

 0.7615, 0.3274, 0.6691, 0.5061, 0.4087,

 0.2398, 0.3820),

 Median_income = c(0.3209, 0.5953, 0.7367, 0.3206, 0.4167,

 0.8397, 0.3797, 0.5249, 0.1875, 0.0000,

 0.0035, 0.0489, 0.0423, 0.0526, 0.1623,

 0.1611, 0.4448, 0.3722, 0.0104, 0.0584,

 0.0957, 0.3674, 0.2201, 0.4363, 0.6965,

 1.0000, 0.2400),

 Open_space = c(0.0464, 0.0780, 0.1416, 0.2971, 0.3797,

 0.0714, 0.0741, 0.0000, 0.3834, 0.1668,

 0.1762, 0.4060, 0.3245, 0.2032, 0.9447,

 0.5502, 1.0000, 0.3770, 0.2019, 0.2263,

 0.3522, 0.3919, 0.4443, 0.5500, 0.7190,

 0.6680, 0.2318),

 Elderly = c(0.0381, 0.6354, 0.8621, 0.6354, 0.4518,

 0.0617, 0.1652, 0.0000, 0.3435, 0.0057,

 0.4302, 0.1542, 0.2480, 1.0000, 0.6773,

 0.2098, 0.4943, 0.3667, 0.0005, 0.5399,

 0.5029, 0.1780, 0.4684, 0.4396, 0.6606,

 0.2617, 0.1310),

 People_under_18 = c(0.0402, 0.7908, 1.0000, 0.5969,

 0.5517, 0.0865, 0.1581, 0.0000,

 0.1965, 0.0129, 0.1945, 0.1506,

 0.2465, 0.5819, 0.4747, 0.1740,

 0.3608, 0.6411, 0.0888, 0.6748,

 0.7677, 0.3435, 0.6074, 0.4099,

 0.3821, 0.2618, 0.3980),

 People_who_work = c(0.2632, 0.7657, 1.0000, 0.8530,

 0.6995, 0.0654, 0.1635, 0.0000,

 0.4590, 0.0361,0.2013, 0.1646,

 0.1654, 0.5119, 0.7335, 0.2173,

 0.4630, 0.7797, 0.0015, 0.4596,

 0.6573, 0.3270, 0.6768, 0.5258,

 0.3834, 0.2106, 0.3348)

)

Invert some variables

invert_cols <- c("Population", "Elderly", "People_under_18", "Median_income",

"Open_space", "People_who_work")

df <- df %>%

 mutate(across(all_of(invert_cols), ~ 1 - .)) # Invert selected factors

 Team #18076 Page 51
Convert data to long format

df_long <- df %>%

 pivot_longer(cols = -ZIP_code, names_to = "Factor", values_to = "Score")

order each facitor

df_long$ZIP_code <- factor(df_long$ZIP_code, levels = unique(df_long$ZIP_code))

style

ggplot(df_long, aes(x = Factor, y = ZIP_code, fill = Score)) +

 geom_tile() +

 geom_text(aes(label = round(Score, 2)), color = "black", size = 3) + # Add values to

each cell

 scale_fill_gradient(low = "beige", high = "maroon", name = "Vulnerability Score") +

 theme_minimal() +

 theme(

 axis.text.x = element_text(angle = 45, hjust = 1, size = 10, face = "bold"),

 axis.text.y = element_text(size = 10, face = "bold"),

 plot.title = element_text(size = 14, face = "bold"),

 legend.position = "right"

) +

 labs(title = "Memphis Neighborhood Vulnerability Heatmap",

 x = "Vulnerability Factors",

 y = "ZIP Codes")

	Finalist paper cover sheet 2025_TC THIRD PLACE_18076.pdf
	6--18076_TC.pdf

