
MathWorks Math Modeling Challenge 2020
Montgomery Blair High School
Team # 13662 Silver Spring, Maryland

Coach: David Stein
Students: Jesse Silverberg, Emmy Song, Gabriel Wu, Ambrose Yang, Shawn Zhao

***Note: This cover sheet has been added by SIAM to identify the winning team after judging was completed. Any 
identifying information other than team # on a MathWorks Math Modeling Challenge submission is a rules violation. 
***Note: This paper underwent a light edit by SIAM staff prior to posting.

M3 Challenge Technical Computing Award  
WINNER—$3,OOO Team Prize

JUDGE COMMENTS
Specifically for Team # 13662:  
This paper used technical computing to implement a simple but effective simulation for Part 1. In Part 2 it very effectively used 
AADTT to model a “need” function for chargers along a corridor, which informed charging station placement. This paper had 
outstanding explanations of its algorithms. Each has a clear breakdown, including why the team made certain choices. Over all, the 
paper’s algorithms were simple, but well executed with good visualizations. The students’ code was also very flexible. For example, 
the team realized how general their “need” function for modeling fuel depletion was, and repurposed it to model diesel trucks in 
Part 3. They also performed sensitivity analyses by easily modifying parameters in their code.

Overall Judging Perspective for Technical Computing Submissions:  
The use of technical computing in the final papers was judged on its effectiveness in advancing a papers’ modeling, its creativity, 
and how it was communicated. We rewarded papers where technical computing was used in an essential way, and did not 
simply replace functionality which could have been implemented in a spreadsheet or on a calculator. We also rewarded clear 
explanations, even if the underlying algorithm was relatively simple. This year we noticed that technical computing was used 
in many papers to enhance presentation: some beautiful plots were used to effectively communicate student ideas and final 
solutions. Such uses of technical computing were also rewarded. Finally, one of the benefits of implementing a model in code is 
that it is very easy to change modeling choices or parameters to see how these choices effect the final problem solution. Teams 
which took advantage of this (through sensitivity analysis, testing multiple models, etc.) were rewarded. 



Fully Charged: An Analysis of Electric
Freight Trucks

Team #13662

March 2, 2020



Team #13662 — Fully Charged: An Analysis of Electric Freight Trucks 2

Executive Summary
The United States is heavily dependent on semi-trucks to transport products and resources throughout
the country. The semi-trucks come in three types: long haul (500 miles a day and far from home
terminal), regional haul (within 300 miles of home terminal), and short haul (within 50 miles of home
terminal). Nearly all of these semi-trucks are powered by diesel fuel, and semi-trucks account for
more than 12% of the fuel purchased in the U.S. Due to a combination of factors such as diesel trucks’
harmful environmental effect, low fuel efficiency, and high maintenance costs, we find an enticing
alternative in electric semi-trucks. The advantages of electric semi-trucks present themselves in
environmental factors (use of rechargeable batteries rather than fossil fuels, preservation of safe air
quality) as well as economic factors (with fewer parts, the electric semis cost less to maintain).

Beginning in 2020, vehicle manufacturers such as Tesla are rolling out a line of electric semis to
many companies, including PepsiCo, Walmart, and UPS. As companies’ current fleets of diesel
trucks age and go out of use, electric semis have become an increasingly attractive option. In
this paper, we model the integration of electric semi-trucks into the current fleets as well as the
construction of charging infrastructure that such an integration requires.

We were first tasked with predicting the percentage of semi-trucks in a fleet that will be electric in 5,
10, and 20 years. We determined a maximum cap for a truck’s mileage before it will break down and
become unusable. Our model presents a pipeline for semi-trucks as they age: electric trucks replace
broken or aging long haul trucks, older long haul trucks replace defunct regional haul trucks, and
regional haul trucks replace defunct short haul trucks. We simulated the evolution of a fleet of 1.7
million semi-trucks based on randomly assigned initial mileages. Our findings show that 58.41% of
a fleet of semi-trucks will be electric by 2025, 91.95% by 2030, and 99.86% by 2040.

Afterwards, we looked at five different trucking corridors across the United States to determine how
many charging stations must be constructed in order to support their current level of single-driver,
long haul traffic. We created a “need" function that represents the number of semi-trucks that will
need to recharge at every mile along the route. This function models the ideal scenario for truckers,
where they are able to recharge until the very last minute, and uses this ideal model to inform us
of how many trucks will end up charging at each station. We assume that the trucks entering the
highway have initial mileages assigned by a uniform probability distribution. Our model found that
the charging stations should be evenly distributed every 50 miles and typically have a number of
chargers around 600 but ranging up to 1300.

Finally, we ranked the five corridors in order of when they should be developed into routes sustainable
for electric semi-trucks. Our model looks at the economic and environmental effects, such as
diesel/electricity prices and air quality, of switching to electric semi-trucks along the five routes.
We conclude that the routes should be developed in the following order: New Orleans to San
Antonio, Jacksonville to DC, Minneapolis to Chicago, San Francisco to Los Angeles, and Boston to
Harrisburg.
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1 Introduction
This section outlines the modeling problems we are asked to solve, and their objectives. We also list
global assumptions that will be applied throughout the whole modeling process.

1.1 Background
Transportation of cargo shipments in the United States is mostly done by semi-trucks, which are
also known as tractor trailers. These semis are powered by diesel fuel, which is both harmful to
the environment and inefficient for the vast number of miles traveled. A modern alternative to
diesel semi-trucks presents itself in the form of electric semis, which are becoming more and more
attractive to companies due to their environmentally friendly, cost-efficient nature.

In 2020, the production of electric semi-trucks remains in a primitive state. However, companies
such as Tesla plan to roll out production of 100,000 electric semi-trucks by 2024. To prepare for the
overhaul of diesel semis with electric semis, we must consider how to sustain large-scale electric
trucking and the charging infrastructure it necessitates.

In this paper, we model the percentage of electric semi-trucks in a fleet of operational semi-trucks at
different time intervals into the future. We also look at five specific trucking corridors across the
United States and model the charging infrastructure that must be constructed along those routes
in order to sustain electric semi-trucks. Finally, we rank these routes based on how pressing their
development is.

1.2 Restatement of the Problem
The problem asks us to do the following:

1. Predict what percentage of companies’ semi-trucks will be electric in 2025, 2030, and 2040

2. Build a mathematical model to determine how many charging stations are necessary along the
following routes, as well as how many chargers should be constructed at each station:

• San Antonio, Texas to/from New Orleans, Louisiana

• Minneapolis, Minnesota to/from Chicago, Illinois

• Boston, Massachusetts to/from Harrisburg, Pennsylvania

• Jacksonville, Florida to/from Washington, DC

• Los Angeles, California to/from San Francisco, California

3. Rank each of 5 the trucking corridors to determine which one should be developed for electric
trucking first
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2 Part 1: Shape Up or Ship Out
2.1 Restatement of the Problem

The problem asks us to model the percentage of semi-trucks in a fleet that are electric as companies
attempt to transition from diesel fleets to all-electric fleets in the upcoming years. We take into
account the lifespan of long haul, regional haul, and short haul semis and their probability of breaking
down in order to predict the proportion of electric semis in 2025, 2030, and 2040.

2.2 Assumptions
Assumption 2.1. The only two types of truck power sources to be considered are diesel and electric.

Justification. Semi-trucks powered by all other sources of energy make up a negligible part of the
fleet. A mere 4% of semi-trucks use natural gas as fuel [13], and the National Renewable Energy
Laboratory does not even list other viable forms of alternative fuel [2].

Assumption 2.2. An electric truck is more cost effective than a diesel truck.

Justification. In an article published on UPS’s website [14], it states that "electric trucks are expected
to cost UPS no more than regular diesel vehicles." Thus, we assume that the upfront costs of electric
and diesel trucks are equal. At the same time, electric trucks cost $1.26 to operate, compared to
$1.51 for diesel trucks, due to fewer moving parts [17]. Thus, the aggregate cost for electric trucks
is less than that for diesel trucks, and electric trucks have been claimed to save its owner $200 000
compared to a diesel truck over the same lifetime [18].

Assumption 2.3. Charging stations, additional electrical grid equipment, and electric vehicle facto-
ries have been sufficiently implemented so that they do not hinder the production or usage of electric
semi-trucks.

Justification. The problem statement tells us to assume that all necessary electric semi infrastructure
is in place in order to make a transition to all-electric fleets today. Thus, we can assume that the
gradual construction of charging stations, the development of the electric grid, and electric truck
factories and production methods that normally would have taken place over an extended period of
time have been instantaneously achieved.

Assumption 2.4. The goal of a company is to maximize revenue.

Justification. If a company does not make money, it is not sustainable. In order to prevent itself from
failing, companies must maximize their revenue in order to have the most profit buffer in the case of
negative economic shock. Revenue is profit − cost, so this assumption implies that companies want
to maximize profit while minimizing cost.

Assumption 2.5. The total number of semi-trucks on the road does not change.
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Justification. A truck costs money to maintain, so as a result of Assumption 1.5, they are incentivized
to have as few as possible. In fact, truck routes are optimized to minimize the number of trucks
needed [14]. Therefore, a company will only replace a truck when it has reached its lifespan. This
can either be done by purchasing a new semi-truck, or repurposing an aging semi-truck while
purchasing a new-truck to replace that aging truck’s route.

Assumption 2.6. Companies will begin to transition their diesel fleets into all-electric ones by
replacing their aging long haul semi-trucks.

Justification. After a long period of use, most long haul fleets sell their trucks to smaller fleets, such
as for short and regional haul [15]. We assume that companies will not want to waste the diesel
semis that they already own; thus, long haul trucks will be used to replace short and regional haul
semis that have broken down or become unsafe to use. At the same time, due to Assumptions 1.1,
1.2, 1.3, and 1.4, companies will replace vacant truck routes with purely electric trucks. Using
electric semi-trucks costs less in terms of both upfront and maintenance costs, and there are no
production constraints to prevent the purchase of electric trucks.

2.3 Model Development
In order to determine the percentage of electric semi-trucks in a fleet over time, we model the
entrance of electric semi-trucks into the fleet. By Assumption 1.5,

d)
dC
= 0

where ) is the total number of semi-trucks on the road. By Assumption 1.1,

d)
dC
=

d�
dC
+ d�

dC
= 0

where � is the total number of diesel vehicles, and � is the total number of electric vehicles.
According to Assumption 1.6, d�

dC only occurs when trucks break down or aging long haul diesel
trucks transition into regional haul trucks following five years of usage [15], and d�

dC only matters in
regards to replacing trucks that have transitioned or been retired.

Trucks go out of commission when they reach the end of their lifespan, which our model defines in
terms of mileage. We use mileage by analogizing the effects of truck mileage to car mileage [12],
and reasoning based on the fact that long haul trucks are reassigned to regional haul routes after 5
years to decrease the distance it travels per year [15].

We calculate a lifespan, in miles, that a diesel and electric semi-truck can respectively travel.
According to the Truck Usage Data [21], short haul trucks travel 42,640 miles annually, regional
haul trucks travel 70,000 miles annually, and long haul trucks travel 118,820 miles annually. The
lifespan, in years, for a short haul truck can be expressed as

"miles
42 640 miles/year
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where " is the number of miles a truck can be expected to drive before becoming unsafe. We can
similarly express the lifespan of the regional haul truck. Long haul trucks are reassigned as medium
haul trucks after 5 years, so that has to be taken into account in the calculation of its lifespan, yielding

"miles − 5 ∗ 118 820 miles
70 000 miles/year

+ 5 years

The average lifespan of a semi-truck would be the average of the lifespans of each kind of truck,
accounting for their relative frequencies in the population of semi-trucks.

We hold the proportion of short, regional, and long haul trucks to be constant. Short haul trucks
make up 5% of all semis, regional haul trucks make up 45% of all semis, and long haul trucks make
up 50% of all semis [15]. This means that we can now write our expression for the average lifespan
as

(0.05)
(
"

42640

)
+ (0.45)

(
"

70000

)
+ (0.5)

(
" − (5) (118820)

70000
+ 5

)
Since we know that the average lifespan of a diesel truck is 12 years [15], we can solve for " to
obtain a value for the average lifespan in terms of mileage: " = 932 144 miles.

There has been little published work on the mileage lifespan of electric semi-trucks. However, new
research by Tesla has shown the potential for their lithium-ion battery technology to be deployed
in their electric semi-truck could last more than 1 million miles [1] [16]. We can assume that all
necessary electric infrastucture is in place to make a transition today, so we can assume that the
development of electric batteries has stabilized and these experimental results have been properly
implemented. Therefore, 1 million miles becomes a lower bound on the mileage lifespan of an
electric semi-truck, so we use it for the average lifespan of an electric truck in terms of mileage.

We also model the probability of a semi-truck breaking down as its mileage approaches its lifespan.
We introduce a small probability of a truck spontaneously breaking down, which varies directly with
the proportion of its current mileage over its mileage cap. In a given year, a truck C can break down
with some probability:

%(C) = C’s current mileage
C’s lifespan mileage

This probability function is motivated by the reasoning that as a truck logs more miles, the parts
inside become more used and worn out, which leads to a higher chance of damage or breaking down.

Finally, we abide by the rule that after 5 years, long haul diesel trucks are transitioned to regional
or short haul trucks [15]. Given that a long haul truck travels 118 820 miles/year, we transition a
diesel truck from long haul to regional haul when it has surpassed 5 ∗ 118820 = 594 100 miles.

We ran our simulation given a lifespan mileage, this probability of a truck breaking down prior to
reaching the maximum cap, and the associated rearrangement of the fleet. The following flowchart
is a summary of the possible states of a truck as it transitions throughout its lifestyle.
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Figure 1 Diagram of the Cycle of Electric and Diesel Semi-Trucks

2.4 Model Application
We build a simulation for a fleet of trucks, where each truck is assigned to start at a random mileage
ranging from 0 miles (brand new) to 932144 miles (its mileage cap). After running the simulation
for a year, we assume each type of truck (long haul, regional haul, and short haul) travels a certain
mileage value (118820, 70000, and 42640 respectively).

The following steps occur within the simulation every year:

1. If a truck reaches its mileage cap in a given year, it is retired from the fleet. Trucks are also
retired if they have "broken down" according to our probability function.

2. After retiring trucks, the fleet assignments are rearranged to restore the relative proportion of
each type of truck, which we recall are 50% (long haul), 45% (regional haul), and 5% (short
haul). They are rearranged in the following way: any deficiency in the number of short haul
trucks is resolved by repurposing regional haul trucks into short haul trucks. Then, a deficit
in regional haul trucks is filled by repurposing long haul trucks. The resulting deficit in long
haul trucks is resolved by purchasing new electric trucks, by Assumption 1.6.

3. Finally, any long haul diesel trucks above 594 100 miles are transitioned to regional haul. To
maintain the relative proportions, this pushes regional haul truck(s) to short haul, and leads to
the forced retirement of short haul trucks.

The trucks that will be repurposed or retired will be the ones with the most mileage, as they have the
largest chance of spontaneously breaking down according to our probability function. Repurposing
those trucks in particular will slow the growth of their already high chance of breaking down while
preserving younger trucks with lower chances of breaking down, minimizing the cost that must be
spent on replacing trucks expected to be retired, which is an objective of Assumption 1.5.

According to the Information Sheet [15], there are around 1.7 million semi-trucks transporting cargo
around the United States today. Therefore, our simulation was run with a fleet size of 1.7 million.
The mileage cap for diesel trucks was taken to be 932 144, while the cap for electric was taken to be
1 000 000. The simulation was run for 20 years.
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Figure 2 The composition of the fleet based on the results of our simluation, averaged across 10
trials

Our simulation shows that 58.41% of a fleet of semi-trucks will be electric by 2025, 91.95% by
2030, and 99.86% by 2040.

2.5 Model Analysis
2.5.1 Sensitivity Analysis

We conducted sensitivity analysis on our model by changing our input variables and analyzing the
changes’ impact on our outputs. We present our model’s results when it used altered values for the
cap on diesel mileage, cap on electric mileage, and the number of trials used.

Variable Change 2025 2030 2040
Original (Electric cap: 932 144) 0.584 0.920 0.999

Diesel Cap: 697 500 0.700 0.989 1.000
Diesel Cap: 750 000 0.667 0.970 1.000
Diesel Cap: 1 000 000 0.558 0.882 0.998

Figure 3 The effect of changing the diesel lifespan mileage on the fleet composition after 5, 10,
and 20 years

Our simulation predicts a higher percentage of electric semi-trucks in a fleet if the cap for diesel
mileage decreases by around 200,000. This behavior aligns with our expectations—a lower mileage
cap means the diesel semis will break down faster, thus requiring a higher proportion of electric
semis in order to replace the losses.

In our simulation, decreasing the electric cap by more than 20% from 1 million to 796496 does not
affect the results. This makes sense because most of the electric vehicles would not have been in the
fleet for long enough to reach the cap at all. The simulation also performs consistently through the
trials, mostly due to the large fleet size of 1.7 million.
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Variable Change 2025 2030 2040
Original (Electric cap: 1 000 000) 0.584 0.920 0.999

Electric Cap: 796 496 0.584 0.920 0.999

Figure 4 The effect of electric lifespan mileage on the fleet composition after 5, 10, and 20 years

Variable Change 2025 2030 2040
Original (10 trials) 0.584 0.920 0.999

5 trials 0.584 0.920 0.999
1 trial 0.584 0.920 0.999

Figure 5 The effect of trials on the fleet composition after 5, 10, and 20 years

In our simulation, changing the number of trials has little effect on the fleet composition after 5, 10,
and 20 years. This is due to the robustness of simulating across 1.7 million trials.

2.5.2 Strengths and Weaknesses

Our model’s strength lies in the fact that it is resilient to small changes in inputs. In addition, our
sensitivity testing shows that its results are consistent regardless of the number of trials and also
make sense intuitively.

A weakness of our model is that it heavily relies on our pipeline of electric semi-trucks only entering
the fleet of semi-trucks when they replace aging long haul trucks. Companies may choose to use
electric trucks to replace short haul trucks instead: because the electric semis are a new product,
they may want to minimize risk by testing the electric vehicles on short distances first. This would
greatly complicate our model, as we have no quantifiable way to determine when a company would
become trusting enough of electric semis to use them on longer routes.

3 Part 2: In It for the Long Haul
3.1 Restatement of the Problem

The problem asks us to determine how many charging stations are necessary and how many chargers
are sufficient at each station along the five traffic corridors. Our interpretation of this problem is
that we want to minimize the number of constructed chargers and stations while still supporting the
current level of long haul traffic from diesel trucks.

3.2 Definition of Terms and Variables
• ) (G): the number of trucks per day that are on the corridor G miles from the start of the
corridor.

• ) ′(G): the rate of change of ) per mile, at a distance G miles from the start of the corridor.
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• U: truck drivers will wait until their battery has fewer than U miles left before they stop to
recharge.

• V: the number of miles a truck can drive after filling up the battery.

• g: the time it takes, in hours, for a truck to recharge to full battery.

• ^: the ratio of total number of chargers in a station to the average number of trucks that are
using the station at any given time.

• mileage: the number of miles that a given truck can continue to travel before it runs out of
electricity. As a truck travels along its route, its mileage decreases. The mileage resets to V
once it recharges. This is not to be confused with the standard use of the word mileage, which
is a measure of efficiency.

The following functions will be further explained in the Model Development section.

• � (G, <): The number of trucks (per day) on mile G of the corridor and have mileage <.

• # (G): The number of trucks (per day) that naturally reach a mileage of 0 at mile G of the
corridor.

3.3 Assumptions
Assumption 3.1. For all trucks, let U = 50, V = 400, and g = 9.

Justification. Assuming that all trucks are identical makes our model simpler. [7] reports that electric
trucks have a maximum mileage (range) of 400 to 500 miles, so we choose V = 400. According to
[9], it takes about 8 hours to charge an electric car. We assume that trucks take a bit longer to charge
than cars, so g = 9. Finally, we let V = 50 because recharging at one-eighth of the maximum charge
is a reasonable estimate. Note that the exact values of these constants do not affect the structure of
our model.

Assumption 3.2. On any part of the corridor, trucks are either entering or exiting, not both. That is,
if ) ′(G) > 0, no truck leaves the corridor at mile G. If ) ′(0) < 0, no truck enters the corridor at mile
G.

Justification. This is clearly an oversimplification of the way trucking routes work. However, we
could not find separate data on the number of trucks entering and the number of trucks exiting the
corridor at each mile. Only the net change in trucks () ′(G)) was available to us. Without more
detailed information, we were forced to make this assumption.

Assumption 3.3. Let < be the mileage of a truck entering the corridor (either at the start of the
corridor or somewhere in the middle). We assume < comes from a uniform probability distribution
ranging from U to V.
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Justification. The mileage of a truck decreases linearly with miles traveled, and always stays below
its maximum, V. A truck driver would not want to enter a highway with a low battery, so we can
assume < > U. Thus, at a random time, the probability of a truck having mileage < should be
uniformly distributed over this interval [U, V].

Assumption 3.4. Recharging stations should occur at evenly spaced locations along the corridor.
They are located every U miles, starting at mile 0 (at the starting city).

Justification. First, it is important to realize that the distance between consecutive stations should
never be greater than U. This is because a truck may enter the corridor right after a refueling station
and have mileage of U (due to Assumption 3.3). If the distance to the next recharging station is
greater than U, the truck will run out of energy on the highway. This is clearly an issue, so we should
make sure no pair of refueling stations are over U miles apart.

The goal of the problem is to minimize the number of recharging stations. With the previous
restriction in mind, the farthest apart we can have consecutive stations is U miles. Thus, we choose
to uniformly space the stations with exactly U miles between them.

Assumption 3.5. The trucks that leave the corridor at mile G are a perfectly representative sample
of all of the trucks that are on the highway at mile G.

Justification. This is a simplifying assumption. We could not find data on the breakdown of mileages
of trucks that leave the corridor, so it is necessary to assume that the trucks that leave come uniformly
at random from all trucks on the highway at that mile.

Assumption 3.6. The value of ^, the ratio of chargers in a station to number of trucks using the
station, is 1.5.

Justification. The number of trucks in a station can fluctuate. Because of this, we want to make sure
that the station has more chargers than it usually needs (so ^ > 1). However, we do not want to have
too many extra unused chargers. ^ = 1.5 is a good middle ground.

3.4 Model Development
In our model, we attempt to simulate a highway system where we are able to keep track of the
number of trucks that have each possible mileage < ∈ [U, V] at each mile G.

The purpose of our simulation is to develop a "need" function, # (G). This function represents the
number of trucks that naturally run out of mileage at mile G (technically, along the interval [G, G +1)).
To calculate this need function, we ignore the planned locations of charging stations and instead
assume that trucks are able to recharge wherever they want. Trucks in our simulation keep driving
until they hit a mileage of 0. When this happens, we take note of it by increasing # (G) by 1. We
then refill the truck’s mileage to V (full).
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The motivation for creating # (G) is that it models an ideal scenario for truckers, allowing them to
recharge at the very last minute. Once we know where truckers are recharging in this ideal scenario,
we can impose our equally spaced charging stations as described in Assumption 3.4 to see how many
trucks will end up charging at each station. Note that the units of # (G) is in trucks per day per mile.

The Corridor Data dataset [5] gives us observations of ) , the number of trucks per day for certain
values of G along the corridors of interest. We use first order linear approximations to interpolate
the values of ) between consecutive observations by connecting the given points with line segments.
This lets us generate the continuous function, ) (G), by connecting consecutive points.

Once we have ) at all miles G, we can take a derivative, ) ′(G) = ) (G + 1) − ) (G). Note that this is
not a true derivative, because we are not taking a limit. For this algorithm, all of our functions take
in integer inputs (as opposed to inputs that are all real numbers) for simplicity.

We start at the beginning of the corridor (G = 0). We set � (0, <), which is the number of trucks per
day on mile 0 of the corridor and with mileage m, to be a uniform distribution from U to V, scaled so
that the total number of trucks is ) (0). This is consistent with Assumption 3.3. We use a step size of
1 mile to carry out the simulation. For each new step, we do the following to calculate � (G + 1, <)
from � (G, <) for all values of <:

1. Count the number of trucks which have mileage of 0. This is � (G, 0). These trucks have run out
of electricity, so now we will let them recharge. As described before, we set # (G) = � (G, 0)
to keep track of the "need function." Now, set � (G + 1, V) = � (G, 0) because these trucks now
have full battery.

2. Account for the inflow or outflow of trucks. Note that we apply Assumption 3.2 here.

a) If ) ′ > 0: this means that in the interval in question, there is a net gain in the number
of trucks. From Assumption 3.3, the trucks entering the highway have mileages evenly
distributed in [U, V]. Let %(<) be a probability density function that represents this even
distribution. Then, we simply add %(<) · ) ′(<) to � (G + 1, <) for each < ∈ [U, V].

b) If ) ′ < 0: this means that in the interval in question, there is a net loss in the number
of trucks. From Assumption 3.5, we can simply scale down � (G, <) at all values of <
by a certain factor that results in a decrease of ) ′(G) total trucks. This factor is 1 + ) ′

)
,

because when multiplied by ) , it results in ) + ) ′ total trucks. Thus, we simply set
� (G + 1, <) = � (G, <) · (1 + ) ′

)
) for all < ∈ [0, V]

3. We now have � (G + 1, <) for all values of <. However, the trucks must now drive another
mile to reach the next step of the simulation. Thus, we simply shift all values of mileage down
by 1 by setting � (G + 1, <) = � (G + 1, < + 1).

Once we simulate this process over every mile of the corridor, we have our need function, # (G).
Now, we can calculate the number of trucks that stop at each station per day. From Assumption 3.4,
the stations occur at locations 0, U, 2U, . . . , =U. In the ideal scenario that # (G) models, if a trucker
reaches mileage 0 at mile G ∈ [2U, (2 + 1)U), they really should have recharged at the station located
at mile 2U. Thus, we can say that the number of trucks (per day) that use a station located at mile
2U is
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∫ (2+1)U−1

2U

# (G)3G

This gives us the number of trucks per day which use any given station. Call this value = for a station
(. To get the number of chargers ( should have, we note that if a truck uses station (, it requires g

24
charger-days at the station. Thus, ( must be able to provide an average = g

24 charger-days of energy
per day. Applying our definition of ^, the station should have ^= g

24 chargers. Our final formula for
the number of chargers a station should have is

^g

24

∫ (2+1)U−1

2U

# (G)3G

3.4.1 Dealing with Incomplete Data

Many of the observations in the corridor traffic data provided in [5] were missing. To resolve this,
we used linear interpolation on the AADTT% to calculate the AADTT of the missing observations
(AADTT stands for Annual Average Daily Truck Traffic).

3.5 Model Application
We ran our model on the data provided in Corridor Data [5] on the five required corridors. Below
are the model’s results for the Boston, MA to Harrisburg, PA corridor. Figures for the four other
corridors can be found in the appendix.

Figure 6 The number of trucks that have used up all of their electricity on a given mile from
Boston to Harrisburg
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The results above allow us calculate the number of chargers needed at each station on the corridor. If
we space out the stations every U miles along the corridor and overlay it onto the map of the corridor,
we get the following figure.

Figure 7 Number of chargers needed at each station from Boston to Harrisburg

The largest stations in our model have up to 1300 chargers, but the typical station has 600 chargers.
While this may seem too large to be true, we believe that these are actually reasonably sized results.
The important thing to keep in mind is that it takes g = 9 hours for a truck to charge. Unlike a gas
station, where diesel trucks only need to visit for 15 minutes to refuel, the 9 hours of waiting time
means that many more chargers are necessary. We can do a quick sanity check to confirm this—gas
stations refuel about 36 times faster than charging stations; the typical gas station could have around
20 pumps: 20 · 36 = 720, which is around 600.

3.6 Strengths and Weaknesses
One of the strengths of our model is its ability to produce a need function, which provides us with a
general idea of where chargers are needed. In our model, we used the assumption that a charging
station will be placed every 50 miles; however, our need function allows for a general consideration
of the placement of charging stations and the number of chargers needed at a station. For example,
if charging stations are placed at locations G0 and G1 along a highway, the number of trucks that visit
the mile G0 station per day is simply

∫ G1
G0
# (G)3G. This demonstrates the flexibility of our model:

adapting the use of our need function is very convenient.

The major weaknesses of our the model come from unrealistic assumptions. The most obvious flaw
is Assumptions 3.2: trucks often enter and leave on the same part of the highway. Assumption 3.1 is
also unrealistic because electric trucks may come in different models and have different specifications.
The arbitrary choice of ^ in Assumption 3.6 is not based on any data; however, this only scales our
results by a constant factor and does not affect the underlying reasoning and mathematics that our
model is based on.
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4 Part 3: I Like to Move It, Move It
4.1 Restatement of the Problem

We are asked to rank the five trucking corridors in order of how soon they should be developed for
electric trucking. We consider both the economic and environmental impacts of electric trucking for
each of the five corridors.

4.2 Assumptions
As we continue to use need functions as in Part 2 for both electric and diesel trucks, the assumptions
in Part 2 are also applicable for this part.

4.3 Definition of Variables
• G: distance from starting point along a corridor

• 6(G): average price per gallon of diesel gasoline in the state which contains point G

• 4(G): average price of electricity per kWh in the state which contains point G

• 24: average electric battery capacity per truck, in kWh

• 26: average gas tank capacity per truck, in gallons

4.4 Model Development
4.4.1 Economic Component

Take the need function for electric trucks. Now consider how often diesel trucks need to refuel. This
distribution necessarily looks very different, since diesel trucks need to refuel much less often. We
will calculate the difference in spending after a switch to electric truck as follows:

Δ� =

∫
6(G)26#6 (G) − 4(G)24#4 (G)3G

where Δ� is the change in fuel related spending per day. The need function # (G) outputs the number
of trucks per day per mile that need to be refueled. Thus the need function multiplied by the fuel
capacity of a truck represents the volume of fuel per day per mile. Integrating gives the amount
spent on fuel day in the entire corridor.

The need functions #4 (G) were generated in part 2 (section 3). To generate the need functions #6 (G),
we simply run the same simulation as in part 2, simply changing the number of miles needed to
recharge from the value of 400 for electric trucks to 2000 for diesel trucks [22].
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4.4.2 Environmental Component

We split this component into the financial and nonfinancial components. For the financial component,
we consider the cost due to carbon emissions as detailed in [19]. We can place a cost on each corridor
based on the volume of CO2 that would have been emitted if diesel trucks were used instead of
electric.

We want to estimate the carbon cost Δ�. We will calculate this as a function of truck traffic volume.
We can calculate the amount of CO2 emitted using the conversion detailed in [11], which expresses
the tonnage of CO2 emitted as a function of the load carried and the mileage traveled. Since we will
be integrating for a total value over all trucks eventually, we will assume a uniform payload weight,
equal to the average over all trucks.

Δ� = 2<,

∫
) (G)3G

where ) (G) represents the number of trucks at any given point G along the route, 2 is the carbon cost
in dollars per ton, < is a constant representing CO2 emissions per mile per ton of payload, and, is
the payload weight in tons.

We can also consider the non-financial impact of corridor conversion on the air quality of the
surrounding region [23]. First, we need to calculate the average value of the air quality index (AQI)
along the corridor to get a baseline vale. We will compute this by considering the path integral:

1
B

∫
�

�(G, H)3®A

where B is the total arc length of the corridor, and �(G, H) is the AQI at any coordinate. From [3],
we can calculate how much carbon monoxide $ trucks produce in a day:

$ = >

∫
) (G)3G

where > is a constant representing how much carbon monoxide trucks produce per mile (2.311
grams/mile [3]).

This $ gives a tonnage of carbon monoxide produced per day. For a better sense of magnitude,
let us consider the effect after 1 month (30 days). Based on the prior AQI, we can find what the
concentration of carbon monoxide was, and the equivalent volume. We then subtract the monthly
contribution volume that was produced by the diesel trucks, since this would not be a source of
pollutants after a switch to electric trucks. This new concentration of carbon monoxide can be
converted back to an AQI, which will be purer than the previous.

4.5 Model Application
4.5.1 Economic Component

In the table below, we have listed energy prices by region from [8] and [6]:
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Corridor Electricity Prices (cents/kWh) Diesel Prices (dollars/gallon)
New Orleans to San Antonio 7.81 2.654
Minneapolis to Chicago 9.61 2.756
Boston to Harrisburg 9.16 3.17
Jacksonville to DC 7.57 2.779

San Francisco to Los Angeles 9.07 3.778

Figure 8 Energy Prices by Region

We use that 24 = 325 kWh by the Battery Data [4] provided and 26 = 225 gallons of gasoline [10].
We applied the need functions to both electric and diesel trucks, and the results are shown in the
table below.

Corridor Need (electric) Need (gasoline)
New Orleans to San Antonio 30086 5881
Minneapolis to Chicago 6686 1204
Boston to Harrisburg 3960 713
Jacksonville to DC 10582 1930

San Francisco to Los Angeles 5318 957

Figure 9 Total Need (trucks/day)

After generating the new need functions #6, we can calculate the following table of values Δ�:

Corridor Δ�

New Orleans to San Antonio 2 748 181
Minneapolis to Chicago 537 779
Boston to Harrisburg 390 658
Jacksonville to DC 946 437

San Francisco to Los Angeles 656 736

Figure 10 Reduction in Spending for Electric Trucks versus Diesel Trucks

4.5.2 Environmental Component

We can assume an average load of 20.665 tons [20]. Multiplying this factor by integral representing
the daily traffic through the corridor, we get the carbon cost Δ� that is eliminated due to the transition
to electric trucks:

Δ� = (50)
(
1.783 × 10−4

)
(20.665)

∫
) (G)3G
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Corridor Δ�

New Orleans to San Antonio 2 459 969
Minneapolis to Chicago 910 970
Boston to Harrisburg 730 508
Jacksonville to DC 1 149 699

San Francisco to Los Angeles 676 381

Figure 11 Change in carbon cost, in dollars per day

We approximated the path integral with a Riemann sum along segments of the corridor.

Corridor Average AQI
New Orleans to San Antonio 39.29
Minneapolis to Chicago 46
Boston to Harrisburg 33.14
Jacksonville to DC 35.3

San Francisco to Los Angeles 29

Figure 12 The average Air Quality Index along each corridor, as sampled by measurements
provided by [23]

The following table explains the estimated new AQI after diesel trucks are converted to electric
trucks.

Corridor New AQI Percent Decrease
New Orleans to San Antonio 36.5 7.1%
Minneapolis to Chicago 44 4.34%
Boston to Harrisburg 32 3.44%
Jacksonville to DC 32 9.35%

San Francisco to Los Angeles 28 3.45%

Figure 13 The predicted Air Quality Index along each corridor after 1 month of electric trucks

4.6 Summary
We standardize each variable to 1 by dividing each variable by the maximum value in the category.

Corridor Δ� Δ� AQI Σ Rank
New Orleans to San Antonio 1 1 0.759 2.759 1

Jacksonville to DC 0.344 0.467 1 1.811 2
Minneapolis to Chicago 0.196 0.370 0.464 1.03 3

San Francisco to Los Angeles 0.239 0.275 0.369 0.883 4
Boston to Harrisburg 0.142 0.297 0.367 0.806 5

Figure 14 Overall rankings
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We summed the values across each variable for all five corridors. Since the New Orleans-San
Antonio corridor has the highest value, clearly, the first corridor to be targeted for development
should be the New Orleans to San Antonio corridor.

4.7 Strengths and Weaknesses
One of the strengths of our model was that we were able to consider multiple aspects of the effects.
By separating the model into various aspects of cost, carbon emissions, and AQI, we can see in
greater detail the effects of switching to electric trucks. Also, the relative impacts of each variable
contributing to the final ranking can be distinguished due to the standardization of values. However,
one of our model’s weaknesses was a failure to consider additional qualitative factors such as
community support and public opinion to the changes in trucking.

5 Conclusion
Diesel semi-trucks present a serious issue in today’s world because of their inefficiency and massive
consumption of fossil fuels. Fortunately, we have found an outstanding alternative in electric semi-
trucks, which are simultaneously better for the environment and more cost-effective than diesel
semi-trucks. Our models suggest that within 5 years, more than 50% of the current operational
semi-truck fleets will be electric, and by 2040, nearly 100% of the fleets will be electric. Our models
further analyze the implementation of charging infrastructure that will be necessary to sustain the
transition to electric semi-trucks. Our model finds that the number of charging stations should be
evenly placed every 50 miles along the 5 trucking corridors that were provided for evaluation. At
each station along the 5 corridors, our results show that there should typically be 600 chargers, but
this number may range up to 1300 chargers. Finally, we evaluated the 5 corridors based on the
economic and environmental consequences of switching from diesel trucks to electric trucks on each
of the 5 corridors, and found that the first corridor that should be targeted is the San Antonio-New
Orleans corridor.
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A Additional Figures
A.1 Problem 2 Additional Figures

Figure 15 The number of trucks that have used up all of their electricity on a given mile from
Jacksonville to DC

Figure 16 The number of trucks that have used up all of their electricity on a given mile from
Minneapolis to Chicago



Team #13662 — Fully Charged: An Analysis of Electric Freight Trucks 22

Figure 17 The number of trucks that have used up all of their electricity on a given mile from San
Antonio to New Orleans

Figure 18 The number of trucks that have used up all of their electricity on a given mile from LA
to San Francisco



Team #13662 — Fully Charged: An Analysis of Electric Freight Trucks 23

Figure 19 Stations on Jacksonville to DC

Figure 20 Stations on Minneapolis to Chicago
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Figure 21 Stations on Los Angeles to San Francisco

Figure 22 Stations on San Antonio to New Orleans

B Code
B.1 Problem 1 Simulation Code

import random

import csv

fleetSize=1700000

# Long Haul avg. miles driven per year, regional, etc.

multipliers={"L":118820,"R":70000,"S":42640}
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class Truck:

def __init__(self, t,m=0,f="Diesel"):

self.mileage=m

self.type=t

self.fuel=f

# Average mileage until retirement based on truck type

if self.fuel=="Diesel":

self.cap=932144

else:

self.cap=1000000

def birthday(self):

self.mileage += multipliers[self.type]

return self.mileage

def stillYoung(truck):

if truck.mileage>truck.cap:

return False

else:

# Small probability of truck failing before EOL

if random.random()<truck.mileage/truck.cap*0.1:

return False

return True

# Run multiple times, then average for sensitivity

for run in range(10):

fleet = []

electric=[]

total=[]

# Construct a fleet of all diesel trucks with uniformly distributed odometers

for count in range(fleetSize):

fleet.append(Truck(random.choices(population=

["L","R","S"],weights=[0.5,0.45,0.05],k=1)[0]))

fleet[-1].mileage=random.randint(0,fleet[-1].cap)

for year in range(2020,2041):

total.append(len(fleet))

eCount=0

avgAge=0

for truck in fleet:

if truck.fuel!="Diesel":

eCount+=1

avgAge+=truck.mileage

truck.birthday()

electric.append(eCount)

fleet = list(filter(stillYoung, fleet))
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short=list(filter(lambda truck: truck.type=="S",fleet))

regional = list(filter(lambda truck: truck.type == "R", fleet))

regional.sort(key=lambda truck: truck.mileage, reverse=True)

long = list(filter(lambda truck: truck.type == "L", fleet))

long.sort(key=lambda truck: truck.mileage, reverse=True)

# Shift trucks down the hierarchy of less taxing positions

transfer1=0.05*fleetSize-len(short)

for count in range(int(transfer1)):

regional[count].type="S"

transfer2=0.45*fleetSize-( len(regional)-transfer1 )

for count in range(int(transfer2)):

long[count].type="R"

for count in range(fleetSize-len(fleet)):

fleet.append(Truck("L",0,"Electric"))

prop=[]

for count in range(21):

prop.append(electric[count]/total[count])

# Produce data for graphs

with open('percents'+str(run)+'.csv', 'w', newline='') as csvfile:

writer = csv.writer(csvfile, delimiter=',')

writer.writerow(["Year","Percent Electric"])

for count in range(21):

writer.writerow([2020+count,prop[count]])

B.2 Problem 2 Simulating Code

import matplotlib.pyplot as mp

import csv

#Constants

MAX_MILES = 400 #Maximum miles of electricity a truck battery can hold.

CHARGER_SPACING = 50 #How far apart are charging stations along the highway?

RECHARGING_HOURS = 9 #How long does it take for a truck to recharge to full

battery?

CAPACITY_OVER_AVERAGE = 1.5 #How many chargers do we want in a station (in terms

of the number of average trucks it has)
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#P function

def P(m):

"""

Input: m, a number of miles of charge

Output: the probability that a new truck has m miles left on their battery

"""

#Assumption: p is a uniform distribution from CHARGER_SPACING to MAX_MILES

if int(m) < CHARGER_SPACING or int(m) > MAX_MILES:

return 0

else:

return 1/(MAX_MILES - CHARGER_SPACING + 1) #So that the integral from 0 to

MAX_MILES of P is 1.

def get_T(obs):

"""

Input: obs, a list of ordered pairs (number of miles, AADTT) observations

Output: A list of T at each mile

"""

#Assumption: The value T between observations are approximated linearly

T = []

mile = 0

obs_num = 0

while obs_num < len(obs)-1:

slope = (obs[obs_num + 1][1] - obs[obs_num][1])/(obs[obs_num + 1][0] -

obs[obs_num][0]) #Slope of the line segment

T.append(obs[obs_num][1] + slope*(mile-obs[obs_num][0])) #First order

approximation (linear) of T

#Move on to next mile. Use next line segment if necessary.

mile += 1

while obs_num<len(obs)-1 and mile > obs[obs_num + 1][0]:

obs_num += 1

return T

def ddx(y):

"""

Input: y, a sequence (function) of x

Output: dy/dx (discrete derivative)

"""

dydx = []

for i in range(len(y)-1):

dydx.append(y[i+1]-y[i])

dydx.append(0) #Add 0 to the end to pad it to be the same length as y
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return dydx

def get_need(obs):

"""

Input: obs, a list of ordered pairs (number of miles, AADTT) observations

num_miles, the total number of miles in the route

Output: The need funcion (how many trucks run out of battery on any given mile)

"""

T = get_T(obs)

dTdx = ddx(T)

num_miles = len(T) #Length of the route (in miles)

#The distribution of trucks. dist[m] is the number of trucks with m miles of

battery left.

dist = [P(m)*T[0] for m in range(0,MAX_MILES + 1)] #Start out as the

distribution of P.

#need[m] represents how many trucks would end up recharging at mile m, if

recharging stations were everywhere

need = [0 for m in range(0,num_miles)]

#Actual simulation

for mile in range(num_miles):

#All trucks with no battery must recharge at this mile.

need[mile] += dist[0]

dist[MAX_MILES] += dist[0]

dist[0] = 0

#Assumption: trucks are either leaving or entering. There is no part of

the highway in which some trucks enter and others leave.

if dTdx[mile] > 0: #Trucks are entering

#Assumption: they enter with battery distribution P

for m in range(MAX_MILES + 1):

dist[m] += dTdx[mile] * P(m)

else: #Trucks are leaving

#Assumption: leaving trucks are a perfectly representative sample of

all trucks on the highway

leaving_proportion = -dTdx[mile]/T[mile]

for m in range(MAX_MILES + 1):

dist[m] *= (1 - leaving_proportion)
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#Decrease every truck's battery by 1 mile for the next pass through the

loop

for m in range(MAX_MILES):

dist[m] = dist[m+1]

dist[MAX_MILES] = 0

return need, num_miles

def get_stations(obs):

"""

Input: obs, a list of ordered pairs (number of miles, AADTT) observations

Output: the stations as ordered pairs (mile marker, number of chargers)

"""

need, num_miles = get_need(obs)

#The locations of charger stations

locs = [m for m in range(0,num_miles,CHARGER_SPACING)]

#The locations (mile marker) and size (number of chargers) of the stations

#Stored as ordered pairs

stations = []

for loc in locs:

usage = 0 #Number of trucks that use it per day

#Integrate need from loc to loc+CHARGER_SPACING

for m in range(loc, min(loc+CHARGER_SPACING, num_miles)):

usage += need[m]

size = (usage * (RECHARGING_HOURS / 24) ) * CAPACITY_OVER_AVERAGE

stations.append([loc, size])

return stations

def get_obs(route_name):

miles = [float(x.strip().replace(",","")) for x in

open(route_name+"_miles.txt", "r").readlines()]

AADTTs = [float(x.strip().replace(",","")) for x in

open(route_name+"_AADTT.txt", "r").readlines()]

obs = list(zip(miles,AADTTs))

return obs
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