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Ride Like the Wind Without Getting Winded: The Growth of E-bike Use

Executive Summary
The popularity of electric bikes has been growing rapidly in recent years. E-bikes have started

to become an attractive alternative to cars or public transit, and they have the potential to play
a role in sustainable energy plans for the US Department of Transportation and UK Department
of Transport. This paper proposes mathematically founded insights on the future growth of e-bike
sales, factors influencing e-bike popularity, and the impact of increased e-bike usage—which can be
used to advise the head of these transportation departments on policy decisions.

One of our goals is to forecast sales of new e-bike technologies in the United States and United
Kingdom for the next two and five years using the Bass Diffusion Model. As this is a relatively new
product, accurate predictions can be made by analyzing data on adoption rates. The model uses
non-linear least squares regression to fit past data to the Bass Diffusion Model. We found that the
coefficients of innovation and imitation in the US were 0.00237 and 0.2257 respectively, and in the
UK, they were 0.00471 and 0.2775 respectively. By calculating the difference in the installed base
fraction multiplied by the market cap over consecutive years, we predict that electric bike sales in
the US will be 1.57 million in 2025 and 2.223 million in 2028, while sales in the UK will be 479
thousand in 2025 and 260 thousand in 2028.

The influence of various factors on people’s adoption of e-bikes was explored using the random
forest algorithm. In the results, urban population and electricity prices emerged as the most
influential variables in driving the adoption of e-bikes in both the US and UK. Interestingly, the
impact of disposable income varied between the two countries under consideration, with a significant
effect observed in the United States, but not in the UK. On the other hand, the perception of the
environment was found to have very little impact on e-bike adoption in either country. These
findings offer valuable insights into the key drivers of e-bike adoption and could be useful for
policymakers and businesses looking to promote sustainable transportation options.

The shift towards e-bike usage as a primary mode of transportation will have significant and
long-lasting impacts on carbon emissions, traffic congestion, and public health in the United States
and the United Kingdom. We have estimated the likelihood of commuters switching from driving
cars, using public transportation, walking, or traditional cycling to e-biking based on convenience
and cost. Using a formula to measure carbon emission savings, we predict that the US could save
approximately 105, 336, 765.5 metric tons of carbon emissions per year, while the UK could save
19, 311, 022.86 metric tons. Because there will be less congestion, an average commuter in the US
can save 4.425 minutes, and an average commuter in the UK can save 4.982 minutes. E-biking also
has considerable health benefits for commuters, with an average of 482 more calories burned per
day for US commuters and 369 more calories burned per day for UK commuters.

Electric bikes have the potential to revolutionize transportation in the United States and United
Kingdom. This increasingly popular technology can help to reduce carbon emissions, alleviate
traffic congestion, and improve overall well-being for commuters. By understanding the key factors
that influence the growth of e-bikes, governments can strategically target, prioritize, and optimize
areas to take full advantage of this novel technology. Our models provide invaluable insight into
the exciting growth of e-bikes, helping to shape the future of our transportation in a positive and
sustainable way.
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1 Introduction

As e-bikes have been growing in popularity in recent years, we are tasked with modeling the
projected growth, determining the significance of factors that impact said growth, and quantifying
the impacts of the reduced usage of other modes of transportation in the United States and United
Kingdom.

1.1 Restatement of the Problem

The problem we are tasked with addressing is as follows:

1. Create a mathematical model to predicts growth of e-bike sales two and five years from now
in the US and UK.

2. Use mathematical modeling to determine the significance of several factors in the growth of
e-bike usage in the US and UK.

3. Develop a model to quantify the impacts of reduced usage of other modes of transportation
due to the increase of e-bikes in the US and UK.

1.2 Global Assumptions

1. Consumers are rational beings. This is a necessary assumption for us to model the behavior
of consumers mathematically.

2. There are no new technological advancements or government policies that significantly impact
the number of e-bike users over the next five years. New technological advancements and new
government policies are unpredictable and thus difficult to predict. Therefore, it is necessary
to assume the number of bike users stay constant to simplify our models.

3. The total population will remain constant. While there will be population and age demo-
graphic changes, these changes will be negligible in the short-term, allowing for this simpli-
fying assumption.

2 Part I: The Road Ahead

E-bikes have been greatly increasing in popularity as they have become an attractive alternative
to other forms of transportation. In this section, we create a mathematical model to predict the
growth of e-bike sales two and five years from now in the US and UK.

2.1 Assumptions

1. No one who already bought an e-bike will need to buy a new e-bike. Accounting for e-bike
users replacing their vehicles is beyond the scope of the model. This assumption is reasonable
given that we are only predicting sales in the next five years.

2. Consumers that do not use a bike will not buy the e-bike technology over the next five years.
While it is possible that someone who does not already own a bike will want to buy an
e-bike bike, we limit the scope of our model to those who currently regularly use bikes for
transportation, as this is the primary target demographic of e-bikes.
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3. Information about electric bikes spreads via word-of-mouth and advertising. The rate of e-bike
adoption based on these methods is constant over the next five years. There is no reason to
believe that the effect of advertising and word-of-mouth on e-bike adoption will change in the
next five years.

4. All people who regularly use bicycles as a mode of transportation will eventually buy an e-
bike. It is reasonable to assume that only people who bike for transportation, as opposed to
recreation, will invest in an e-bike. Given pressures to migrate to greener technology and the
increasing cost efficiency of electric transportation, this assumption is necessary to simplify
the model.

5. The proportion of bicycle users who use e-bikes in the UK is equal to the proportion of bicycle
users who use e-bikes in Europe. Data on e-bikes sold is available for Europe but not the UK.
We assume the proportion of e-bike users in Europe is representative of the UK.

6. A person buying an e-bike is equivalent to that person adopting e-bikes and replacing bicycles
as their new mode of transportation. This is consistent with assumption assumption 1, as it
implies that there are no e-bike purchases from existing e-bike users. Defining the adoption
of e-bikes this way is necessary for the application of our model.

2.2 Model Development

To predict the adoption of new technologies such as the e-bike, we use the Bass Diffusion model,
which categorizes consumers of the population as “innovators” and “imitators.” [1] The formula
for the model is given below:

F (t) =
1− e−(p+q)t

1 + q
pe

−(p+q)t
.

with the following definitions:

• F (t) represents the proportion of the market using the product,

• p is the coefficient of innovation, i.e., the rate at which the market is adopting the product
via advertising,

• and q is the coefficient of imitation, i.e., the rate at which the market is the adopting the
product via word-of-mouth from current users.

Because the coefficients of innovation and imitation are likely different between the US and
U.K, we perform two separate regression analyses for each location.

First, we found data for the total number of people who regularly used bikes for transportation
in each location, which we take as the potential market size because of assumption 5. To find this
value for all of Europe, we multiplied the percentage of regular bike users by the population in
each European country for which data was available and added them together. This calculation is
shown n in the table below for the five countries with greatest proportions of bike users. For the
UK and the US, we were able to directly find these values.
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Table 2.2.1: Bike Users for European Countries
Country Bike User Proportion Population Number of Bike Users

Netherlands 0.36 17590672 6332642

Denmark 0.23 5873420 1350887

Hungary 0.22 9689010 2131582

Sweden 0.17 10452436 1776914

Finland 0.14 5548241 776754

Table 2.2.2: Bike Users in Target Locations

Location Total Bike Users (thousands of users)

United States 45000 [2]

United Kingdom 10700 [3]

Europe 40794

To develop our model, we used the number of annual e-bike sales in the US and Europe [4]. For
the U.S, data for 2012 to 2017 was found [5] and used in addition to the provided data from 2018
to 2022. This allows us to calculate the proportion of bicycle users who have adopted e-bikes with
the following equation:

Ft =
t∑
0

st
m

where:

• F is the proportion of bike users who have adopted e-bikes,

• t is the the number of years since the first year of data collection,

• s is the number of bike sales,

• and m is the total number of regular bicycle users.

The first five years of these calculations are displayed in the table below for the U.S and Europe.

Table 2.2.3: E-bike Users in the U.S for 2012-2016

Year Sales (thousands) Change in E-bike Proportion Total E-Bike Proportion

2012 70 0.001556 0.001556

2013 159 0.003533 0.005089

2014 193 0.004289 0.009378

2015 130 0.002889 0.012267

2016 152 0.003378 0.015644

Table 2.2.4: E-bike Users in Europe for 2006-2010

Year Sales (thousands) Change in E-Bike Proportion Total E-Bike Proportion

2006 98 0.002402 0.002402

2007 173 0.004241 0.006643

2008 279 0.006839 0.013482

2009 422 0.010345 0.023827

2010 588 0.014414 0.038241
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This completes the analysis necessary to develop a data set that we can use for our model.
Fitting the equation for the Bass diffusion model using a non-linear least squares regression to this
data yielded the following values for p and q in each location:

Table 2.2.5: Estimated Parameters of the Bass Diffusion Model
Location Coefficient of Innovation (p) Coefficient of Imitation (q)

United States 0.00237 0.2257

Europe 0.00471 0.2775

The below figures show the Bass diffusion models graphed along side historical data and ex-
trapolated to 2029. The points at two (2025) and five (2028) years from now are labeled.

Figure 2.2.1: Proportion of US Bicycle Market Using E-Bikes

Figure 2.2.1: Proportion of European Bicycle Market Using E-Bikes
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2.3 Results

The values produced by this model can then be used to calculate the number of bikes sold using
the following formula:

st = m[F (t+ 1)− F (t)]

• s is the number of bike sales,

• t is the number of years since the first year of data collection

• F (t) is the proportion of bike users who have adopted e-bikes according to the Bass diffusion
model,

• and m is the total number of regular bicycle users.

This formula essentially reverses the conversion of the original data performed in Table 2.2.3 and
Table 2.2.4. The model was developed using the data for Europe because of assumption 5, so we
now use the number of bike users in the UK from table 2.2.2 for m. This calculation is shown in
the table below using the values for 2025-2026 and 2028-2029.

Table 2.3.1: Predictions of Number of E-Bike Sales in 2025 and 2028

Country Year t Year t+1 F(t) F(t+1) F(t+1)-F(t) E-Bike Sales (thousands)

US 2025 2026 0.168481 0.195359 0.030004 1570

US 2028 2029 0.280122 0.329520 0.044853 2223

UK 2025 2026 0.779831 0.824632 0.044802 479

UK 2028 2029 0.892258 0.916577 0.024319 260

2.4 Sensitivity Analysis

To analyze the sensitivity model, we adjust the values of p and q individually by 10%. The results
of the analysis are shown below.

Table 2.4.1: Results of Sensitivity Analysis with Constants p and q

Country Constant Change (%) Change in 2025 Sales (%) Change in 2025 Sales (%)

U.S. p +10% +1.1486% +0.5688%

U.S. p -10% -1.2386% -0.6693%

U.S. q +10% +4.3439% +2.9642%

U.S. q -10% -3.7235% -2.9377%

U.K. p +10% -0.3276% -0.2128%

U.K. p -10% +0.3623% +0.2488%

U.K. q +10% -1.0213% -0.7976%

U.K. q -10% +0.7696% +0.9044%

In varying p and q by 10%, e-bike sales do not change much in either 2025 or 2028. We can
see that e-bike sales respond more to changes in q than changes in p, which makes sense given the
meanings of p and q. Technological adaption caused by word-of-mouth increases with the number
of users, while adaption as a result of advertising does not.

The directions of for p and q corresponded to those of e-bike sales in the U.S, which was
expected, as larger coefficients of technological adaptation should increase the change in users. We
were initially surprised to see that, in the U.K, the directions of changes in p and q were opposite
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the resulting changes in e-bike sales. However, in examining Figure 2.2.1, we can see that the
proportion of e-bike users has already crossed an inflection point and is concave downward as it
approaches the market size, which acts as the model’s carrying capacity. The results are therefore
logical because larger coefficients of technological adaption should cause the proportion of e-bike
users in the U.K. to approach the market size more quickly.

2.5 Evaluation and Verification

The average values of p and q are 0.03 and 0.38 respectively; p is often 0.01 or less, while q is
typically between 0.3 and 0.5. Considering these values, the estimates for the parameters p and q
in table 2.2.5. In both the US (0.00237) and UK (0.00471), p is less than 0.01 and differs from the
average value 0.03 by only one order of magnitude. The values of q (0.2257 in the US and 0.2775
in the UK), while not between the typical bounds of 0.3 and 0.5, are still not drastically different
from the average value of 0.38. The fact that they are relatively low is also reasonable given that
there are many reasons for consumers to be hesitant to switch to electric modes of transportation
[6].

2.6 Strengths and Weaknesses

The Bass Diffusion model has many strengths in predicting the adoption of new technologies. With
the coefficients of innovation and imitation, Bass Diffusion models information spread via word-of-
mouth and advertising, incorporating both external and internal growth factors in the model. In
addition, the Bass Diffusion model can be scaled up or down to fit different market sizes, such as
the US and UK markets for electric bicycles.

One weakness of the model is that it assumes the all regular bike users will eventually adopt
the new technology, which is not necessarily the case in the real world. It also does not account for
new e-bike users who were not initially bike users. Another weakness of our Bass Diffusion model is
that it does not extrapolate well in the long-term. The number of bike users, or “market cap,” was
assumed to stay constant over the next five years, but with rising populations and bike production,
this would not be the case many years down the line. Finally, the Bass diffusion itself has a limited
scope. It assumes that the only two factors in the adoption process are innovation and imitation,
failing to take into consideration other influences such as social norms and regulatory barriers.

3 Part II: Shifting Gears

There are many factors that influence people’s choice to switch to e-bikes and therefore lead to the
growth of e-bike usage. These factors include gas and electricity prices, environmental awareness,
commute times, and more. In this section, we model the the significance of several factors in
explaining the growth of e-bike usage in the US and UK.

3.1 Assumptions

1. US State policies offering incentive for buying e-bikes are insignificant compared to national
policies in the US. This is a simplifying assumption that is reasonable because state policies
are nonuniform and often have narrow reach or specific criteria. National policies would have
greater effect.
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2. There are no government policies in the UK that significantly impact e-bike usage. After
extensive research, we were unable to determine any widespread UK government policies that
would affect all people equally.

3. The US inflation rate is equal to the UK inflation rate. This is a simplifying assumption, as
these two inflation rates are relatively close to each other, and allows for one inflation rate
(the US rate) to be used across all calculations. [7].

4. The growth in bike usage can be measured by the growth in bike sales. This is a simplifying
assumption based on the data we have available.

3.2 Model Development

In developing our model, we determine key factors that influence the growth of e-bike usage and
use a random forest algorithm to order their significance by feature importance.

3.2.1 Factor Identification

First, we identify a variety of factors that are likely to influence the growth of e-bike usage. Our
chosen factors that we used in our model are listed below.

1. Gas prices: High gas prices would encourage consumers to switch to e-bikes to save money.

2. Electricity prices: High electricity prices would discourage consumers from switching to e-
bikes, while low electricity prices would encourage them to switch.

3. Disposable income: If a consumer has a greater amount of disposable income, they may be
more willing to make an investment into e-bikes.

4. Government incentives: Incentives such as rebates for owning e-bikes would encourage con-
sumers to buy and use e-bikes.

5. Environmental perceptions: If consumers care about the environment, they would be more
likely to use e-bikes as an environmentally-friendly alternative.

6. Urban population: Consumers are more likely to use e-bikes in urban environments because
travel distances tend to be shorter and there is typically better biking infrastructure.

7. Number of bikeshare systems: A greater number of bikeshare systems would encourage more
people to use e-bikes from these systems. An increasing number of these systems is also likely
to reflect a trend of increasing e-bike popularity.

3.2.2 Collecting Input Data

Table 3.2.2 lists each of the input factors and how they are defined.

Table 3.2.1: Representation for Each US Input Factor
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Factor Representation

Gas Prices USD per gallon adjusted for inflation [4]

Electricity Prices USD per kWh [4]

Disposable Income Chained 2012 USD [4]

Government Incentives Yes (1) or No (0) [10]

Environmental Perceptions % who care a ”great deal” about the environment [4]

Urban Population % of total population living in urban setting

Number of Bikeshare Systems Number of docked and dockless bikeshare stations

Table 3.2.2: Representation for Each UK Input Factor

Factor Representation

Gas Prices Pence per liter adjusted for inflation [4]

Electricity Prices Change in cost based on the consumer price index [4]

Disposable Income Chained 2021 GBP

Environmental Perceptions [4]
% who included the environment as a top

3 important issue

Urban Population % of total population living in urban setting

Number of Bikeshare Systems Number of Bikeshare Bike Hires in London

3.3 Results

After training random forest models on the UK and US data separately, we used the feature
importance attribute to find the importance of each factor. We ranked then ranked each factor by
these calculated importances for each location. It is important to note that we focus on the order
of importance of these factors. Given more time, we could explore the mathematical significance
of the feature importances and how they are calculated. The results of our analysis are displayed
in the tables below.

Table 3.3.1: Importance of Each Factor for the US

Factor Rank Importance

Disposable Income 1 0.249776

Urban Population 2 0.228853

Electricity Prices 3 0.199010

Number of Bikeshare Systems 4 0.192196

Government Incentives 5 0.057273

Gas Prices 6 0.0442675

Environmental Perceptions 7 0.028625

Table 3.3.2: Importance of Each Factor for the UK

Factor Rank Importance

Electricity Prices 1 0.244375

Urban Population 2 0.240936

Gas Prices 3 0.185762

Number of Bikeshare Systems 4 0.175073

Environmental Perceptions 5 0.088524

Disposable Income 6 0.065330
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3.4 Sensitivity Analysis

To analyze the sensitivity of our model, we dropped each input feature one at a time and retrained
our model with the remaining features only. We ranked the factors by their feature importances
and subtracted the new ranks from the old ranks. These results are shown in Tables 3.4.1 and
3.4.2.

All of the changes were minimal, with magnitudes generally around 0-2 ranks and with only one
change of magnitude 3 in disposable income in the US. Many of changes can also be explained by
the dropping of one of the columns. For example, the disposable income in the UK had to increase
in rank by 1 each time because it was in the last rank previously, so each time a column is dropped
it would automatically increase by 1 in rank.

The minimal changes in rank suggests that our model is robust against changes, rendering
validity to our model results.

Table 3.4.1: Change in Rank of Each Factor for the US

Number of
Bikeshare
Systems

Electricity
Prices

Urban
Population

Gas
Prices

Environmental
Perceptions

Disposable
Income

Government
Incentives

Rank

— 0 1 1 1 -1 1
1 — 1 1 1 -1 1
2 2 — 0 2 -2 1
1 2 -2 — 1 -1 0
2 2 -1 0 — -3 0
1 2 0 1 1 — 1
0 1 -1 0 2 0 —

Table 3.4.2: Change in Rank of Each Factor for the UK

Number of
Bikeshare
Systems

Electricity
Prices

Urban
Population

Gas
Prices

Environmental
Perceptions

Disposable
Income

Rank

— -1 1 0 1 1
2 — 1 0 1 1
2 0 — 0 1 1
1 -1 1 — 1 1
1 -1 1 -1 — 1
1 -1 1 -1 0 —

3.5 Evaluation and Verification

The mean absolute error (MAE) of the random forest algorithm averages the distance (i.e., error)
between the actual and predicted data points.

Σn
i=1

|Error|i
n

Table 3.5.X: Mean Absolute Error

Country MAE

US 21.736

UK 28.932
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Theses MAEs are relatively small compared to the data values, which makes this model a good
fit for the data.

3.6 Strengths and Weaknesses

The model has several strengths, including a low mean absolute error and the ability to effectively
compare the relative influence of different factors on the decision to choose e-bikes. However, it
also has notable weaknesses, such as the inability to evaluate the magnitude of each factor and the
lack of transparency in the black box nature of the Random Forest algorithm.

4 Part III: Off the Chain

There are an increasing number of people who prefer e-bikes as their primary mode of trans-
portation, which overall decreases other modes of transportation such as cars, buses, bikes, and
walking. This section aims to quantify the impacts of switching to e-bikes on carbon emissions,
traffic congestion, and health and wellness in the United States and United Kingdom.

4.1 Assumptions

1. The average number of miles for each mode of transportation taken per person is the same
for both the US and the UK. This is a simplifying assumption due to a lack of data for the
UK. Additionally, because of the Central Limit Theorem, over large populations, the average
number of miles traveled for a given mode of transportation will tend towards the average,
so to simplify the model, we assume that each person travels the average number of miles for
their preferred mode of transportation.

2. The fuel efficiency of each mode of transportation are constant in the US and UK. Because
of the Central Limit Theorem, the fuel efficiency will tend towards the average, so we can
assume that the fuel efficiency is constant across that particular mode of transportation.

3. The fuel used in each mode of transportation yields the same amount of carbon emissions per
gallon. On average, the same amount of fuel will release the same amount of carbon.

4. The percent of people working from home in UK is equal to that in the US. As there was
no data provided for the percent of people working from home in UK, we assume that the
percent of people would be equal, and adjusted the

5. People who work from home do not do any traveling outside of their house, as the main reason
for people to travel is to commute to their jobs. This simplifies the model as we do not have
data for people who travel outside of their commute.

6. A consumer who switches from their preferred transportation method to e-bikes will travel the
same number of miles per day. This is because they will still be commuting to the same work
location.

7. When making decisions between transportation methods, consumers tend to want more con-
venience and lower cost. This follows from our assumption that consumers are rational.

8. The average cost of a vehicle is the same in the US and the UK. This is a simplifying as-
sumption that allows for a more consistent model across the two countries.
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9. Motorcyclists and rail riders do not switch to e-bikes. E-bikes do not provide any convenience
increase for these riders. For motorcyclists, their routes are much the same as an e-bike,
and they would not want to purchase a new product. Meanwhile, rail riders travel a longer
distance than would be reasonable for a person to travel on a e-bike.

10. People who walk as their primary mode of transportation do not switch to e-bikes. The cost
of e-bikes is incredibly high compared the cost of walking, which is free, which makes it
unfeasible to buy an e-bike.

11. The speed drop due to congestion is constant for both the US and the UK. This is a simplifying
assumption due to a lack of data.

12. There is no traffic no matter the number of bicycles on the road. This is a simplifying
assumption due to a lack of data.

4.2 Model Development

We analyze the effect of people switching from their preferred mode of transportation, namely car,
bus/coach/public transportation, walking, bicycling, and working from home to electric bikes on
three features:

• carbon emissions,

• traffic congestion,

• and health and wellness.

We use each transportation’s average number of miles traveled per day in each of the three factors.
We have the global constants below:
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Table 4.2.1: Average Number of Miles Traveled Per Day Per Each Mode of
Transportation

Vehicle Average number of miles traveled per day per vehicle

Car 35

Public Transportation 20

Walk 3.5

Bicycle 15

Carbon Emissions: Consider the functions in the following table:

Table 4.2.2: Functions Used for Carbon Emissions

Function Definition

M(T ) average number of miles traveled per day per person for each transportation T

C(T )
average carbon emissions of each transportation method per mile

(gC per mile)

Pr(T ) probability of a user switching to an e-bike from T

Pe(T ) percentage of population that prefers transportation mode T

P(T ) average number of users per transportation mode T

F(T ) average carbon emissions saved per person

Notice that M(T )C(T ) represents the total amount of carbon emitted per day for each vehicle. We
have to divide this by P(T ) to account for the carbon emitted per day per person. By subtract-
ing away M(T )C(e-bike), we can get the emissions saved by a consumer who switched to e-bike
transportation. However, we have to multiply by the probability Pr(T ), as not every consumer is
guaranteed to switch.

Thus, we have the following formula:

F(T ) =

(
M(T )

C(T )

P(T )
−M(T )C(e-bike)

)
· Pr(T ).

Note that the carbon emissions per gallon of gasoline is 8887 grams of carbon. The average fuel
efficiency of 24.2 miles per gallon for cars and 6.1 miles per gallon for buses/public transportation,
so C(car) = 8887

24.2 = 367.2 gC per gallon and C(public transportation) = 8887
6.1 = 1457 gC per gallon.

Therefore, from research and datasets collected, we have the following constants for vehicles in the
US and UK:

Table 4.2.3: Transportation Constants in the US

Vehicle Pe(T) M(T) C(T)

Car 75.1 35 367.2

Public Transportation 2.5 20 1457

Walk 2.2 3.5 0

Bicycle 0.4 15 0
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Table 4.2.4: Transportation Constants in the UK

Vehicle Pe(T) M(T) C(T)

Car 68.1 35 367.2

Public Transportation 6.2 20 1457

Walk 11.4 3.5 0

Bicycle 3.6 15 0

To calculate the probability to switch from transportation to e-bikes, we consider the “conve-
nience” and cost factors. We measure convenience based on the speed (mph) of their preferred
transportation method, where consumers tend to want higher speed and thus faster travel times.
Per assumption 7, we assume consumers also tend to want a product with lower cost, and we weight
both of these conditions equally.

Let P (C) be the total population for each country C. Then Pe(T ) · P (C) represents the total
number of people that use T as their preferred mode of transportation. Then, we have Pe(T )·P (C)·
F(T ) be the total amount of kilograms of carbon saved per day. Note the estimated commuter
populations for each country below.

Table 4.2.5: Estimated Commuter Population of US and UK

Country P (C)

US 155,284,955

UK 31,501,464

Traffic Congestion: We only analyze the conversion of people from cars to electric bicycles, as
there is negligible congestion for people who walk, ride bikes, or take public transport.

Table 4.2.6: Functions and Variables for Traffic Congestion

Function Definition

M(T) average number of miles traveled per day per person for each transportation T

Pr(T) probability of a user switching to an e-bike from T

Pe(T) percentage of population that prefers transportation mode T

P(T) average number of users per transportation mode T

S(T) optimal speed for transportation mode T

Pc proportion of the total population who commute

sc speed drop for a city

smax maximum speed driven in a city during the day (mph)

smin minimum speed driven in a city during peak traffic congestion hours (mph)

sp speed drop proportion per person

We find the weighted average by population of the speed drop of the 20 most populous US cities,
as the number commuters in each city correspond with the population. The speed drop per city, sc
is defined as sc =

smax−smin
smax

, where smin is the minimum speed during the peak traffic congestion
hours, and smax is the maximum speed driven throughout the day; without traffic congestion, a
car would drive the maximum speed.
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Table 4.2.7: Speed Drop by City due to Congestion (First Five Cities)

City Speed Drop [8] Population (2021) [9]

Boston 0.40 654,776

NYC 0.38 8,467,513

Miami 0.37 439,890

DC 0.35 670,050

San Fran 0.34 815,201

Using the weighted average speed drop per city, sc, we find the speed drop proportion per
person, sp:

sp =
sc · P (car)

P (country) · Pc · Pe(car)
.

Then, the change in commute time for the average commuter who would optimally be driving
M(car) miles at S(car) miles per hour is computed. This is found by:

∆t =
M(car)

S(car) · sp · P (car)
− M(car)

S(car) · sp · P (car) · Pr(car)
.

Health and Wellness: For health and wellness, we consider the calories burned from riding an
electric bicycle compared with the calories burned through other modes of transportation, in terms
of the average miles traveled per person per day.

Table 4.2.8: Variable/Function Names and Definition

Function Definition

P Percentage of people using a particular mode of transportation

M Miles traveled per day per person

CTransport Calories burned through modes of transport other than e-bikes

CEbike Calories burned through riding e-bikes

DeltaC Difference between CEbike and CTransport

WCalories Weighted DeltaC with respect to P percent of users

AvgCalories Average difference in calories burned per person over all modes of transport

To calculate the number of calories burned from traveling M miles on an e-bike, we assume
e-bikes travel at 20 miles per hour, and an average human burns 6 calories per minute on an e-bike
[flyer-bikes]. Thus, the formula for the calories burned for e-bike riders is:

CEbike =
M

20
· 6 · 60 = 18M.

We then find the difference in the number of calories burned when switching to e-bikes, by
subtracting the calories burned through each mode of transportation, CTransport, and CEbike:

DeltaC = CEbike− CTransport.
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Now, consider P for ever mode of transportation. For the average person, we can take the
weighted average of all of these modes of transportation to find AvgCalories.

AvgCalories =
∑ P

100
·DeltaC.

Thus, substituting gives the formula of:

AvgCalories =
∑ P

100
· (18M − CTransport).

For the United Kingdom, we proceed similarly. We assume that 17.9% of people work from
home, and then assume that the car, bicycle, bus/coach, and walking sectors make up the other
100− 17.9 = 82.1% of the population. Thus, the new P can be calculated using:

Pnew = (100− 17.9) · P∑
P
.

4.3 Results

We have the following probabilities for switching from preferred transportation, which will be used
across multiple parts of the results:

Pr(car) =
20

20 + 45
· 40000

2000 + 40000
= 0.4233

Pr(bike) =
20

12.5 + 20
· 525

525 + 2000
= 0.1280

Pr(public transportation) =
20

12.7 + 20
· 3511.8

3511.8 + 2000
= 0.3897

Pr(0) =
20

3.5 + 20
· 0

0 + 2000
= 0.

Therefore, with C(e-bike) = 4.6, we can calculate the carbon emissions saved per person, on average,
as

F(car) = 2.4535 kgC per day per person

F(bike) = −0.010748 kgC per day per person

F(public transportation) = 0.14560 kgC per day per person

F(walk) = 0 kgC per day per person

Carbon Emissions: Summing over all the kilograms of carbon saved for each transportation
method provided, we have that the average carbon emissions saved in the US is:∑

transportation∈T
Pe(T ) · P (US) · F(T ) = 105, 336, 765.5 metric tons C per year,

which is equivalent to 22, 899, 297 cars’ emissions saved per year for more context. Similarly, for
the UK, we have∑

transportation∈T
Pe(T ) · P (UK) · F(T ) = 17, 751, 419.19 metric tons C per year,
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which is equivalent to 3, 859, 004 cars’ emissions saved per year for more context.

Traffic Congestion: The weighted average for speed drop of a city, sc, was computed to be 0.3075.
Based on the population for a country and the current percent of people who drive during their
commute, we compute sp:

Table 4.3.1: Speed Drop Proportion per Person

Country sp
US 4.346110132 · 10−8

UK 4.824756677 · 10−8

Then, using the calculated probabilities for switching from preferred mode of transportation
to e-bikes, we compute the amount of time saved by an average commuter when that percent of
people switch from a car to an e-bike.

Table 4.3.2: Commute Times for the US and UK (minutes)

Country Original Commute Time New Commute Time ∆t

US 53.904 49.479 4.425

UK 54.764 49.783 4.982

Therefore, an average commuter driving on the roads will save 4.425 and 4.982 minutes in the
US and UK, respectively, from the shift to e-bikes.

Health and Wellness: For the United States, we can produce the following table:

Table 4.3.3: Calories Burned by Transportation in US

Transportation P M CTransport WCalories

Car 75.6 35 0 476

Public Transportation 2.5 20 0 9

Walking 2.2 3.5 350 -6.31

Biking 0.4 15 750 -1.92

Taxicab/Other 1.5 20 0 5.4

Work From Home 17.9 0 0 0

Taking the sum of the values in the WCalories column gives AvgCalories = 482 calories.
For the United Kingdom, we calculate the rescaled P for each sector other than work from home
to produce the following table:

Table 4.3.4: Calories Burned by Transportation in UK

Transportation P M CTransport WCalories

Car 62.6 35 0 394

Public Transportation 5.7 20 0 20.5

Walking 10.5 3.5 350 -30.1

Biking 3.3 15 750 -15.8

Work From Home 17.9 0 0 0
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Taking the sum of the values in the WCalories column gives AvgCalories = 369 calories.
Thus, in total, the average person who switches to e-bikes in the US burns 482 more calories

than they did with their prior mode of transportation. Similarly, the average gain in caloric burn
in the United Kingdom is 369 calories.

4.4 Sensitivity Analysis

Carbon Emissions: To perturb the model, decrease the amount of car users by 5% arbitrarily,
and increase the amount of other modes of transportation equally to make their total stay at 100%.

Scaling the US car commuter population down yields a car transportation percent of 75.6·0.95 =
71.8 percent, a 3.8% change. The rest of the sectors add up to 100 − 75.6 = 24.4%, implying a
3.8/24.4 = 0.156% change every percent of sector included. For example, public transportation
scales up to 2.5 + 2.5 · 0.156 = 2.89%.

This results in an average carbon emission saved in the US of 100111704.6 metric tons C per

year. This value is
105336765.5− 100111704.6

105336765.5
= 4.96% less than the calculated value without

perturbation. This difference can be explained by the fact that the most carbon emission saved
comes from converting from cars to e-bikes, so reducing the number of cars converting to e-bikes
will naturally decrease the amount of carbon saved.

For the United Kingdom, we do the same thing. The car percentage drops to 62.6∗0.95 = 59.5%,
a 3.1% drop. The rest of the sectors rise by 3.1/(100 − 62.6) = 0.0829% every percent of sector
included.

This results in an average carbon emission saved in the UK of 16,884,413.43 metric tons C per

year. This value is
17751419.19− 16884413.43

17751419.19
= 4.88% less than the calculated value without per-

turbation. This difference can once again be explained by the fact that the most carbon emission
saved comes from converting from cars to e-bikes, so reducing the number of cars converting to
e-bikes will naturally decrease the amount of carbon saved.

Traffic Congestion: To perturb the model, we increase and decrease the value of sc by 5%.
Reanalyzing the data, we get the following differences in values for commute times.

Table 4.4.1: Percent Change in Traffic Congestion Time for Changes in sc

Country sc + 5% sc − 5%

US 6.14% -6.01%

UK 6.27% -6.13%

Health and Wellness: To perturb the model, we decrease the amount of car users by 5% arbi-
trarily, and increase the amount of other modes of transportation equally to make their total stay
at 100%. We scale the P for each mode of transportation the precise same way as in the carbon
emission perturbation.

Reanalyzing the data produces the following table:
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Table 4.4.2: Perturbed Calories Burned by Transportation in US

Transportation P M CTransport WCalories

Car 71.8 35 0 452

Public Transportation 2.89 20 0 10.4

Walking 2.54 3.5 350 -7.29

Biking 0.462 15 750 -2.22

Taxicab/Other 1.73 20 0 0

Work From Home 20.7 0 0 0

Summing these values gives an AvgCalories = 453 calories. This value is
482− 453

482
= 6.01%

less from the calculated value without perturbation. This difference can be explained by the fact
that the most calories gained from converting to e-bike is from cars. Thus, by reducing the number
of cars switching to e-bikes, the average calories gained also is reduced.

For the United Kingdom, we do the same thing. The car percentage drops to 62.6∗0.95 = 59.5%,
a 3.1% drop. The rest of the sectors rise by 3.1/(100 − 62.6) = 0.0829% every percent of sector
included. Thus, the following table can be produced:

Table 4.4.3: Perturbed Calories Burned by Transportation in UK

Transportation P M CTransport WCalories

Car 59.5 35 0 375

Public Transportation 6.17 20 0 22.2

Walking 11.4 3.5 350 -32.7

Biking 3.57 15 750 -17.1

Work From Home 19.4 0 0 0

Summing these values gives an AvgCalories = 347 calories. This value is
369− 347

369
= 5.96%

less from the calculated value without perturbation. This difference can once again be explained
by the fact that the most calories gained from converting to e-bike is from cars. Thus, by reducing
the number of cars switching to e-bikes, the average calories gained also is reduced.

4.5 Strengths and Weaknesses

One strength of the model is that it is extremely flexible and scaleable with the population. Adjust-
ing the percentages of the commuter populations for each mode of transportation is quite simple
to do with our transparent formulas. The models for each of the factors are robust due to the
consistent changes in the data from our sensitivity analysis.

A weakness of the model is that there is a lack of prior data on the percentage of people that
switch from each transportation to e-bikes. Without understanding how people of various primary
vehicular transportation react to the new technology of e-bikes, it is difficult to precisely represent
the probability of a specific archetype transitioning to e-bikes.
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5 Conclusion

5.1 Further Studies

Our first model fails to account for the adoption of e-bikes by those who are not regular bicycle
users. By addressing this limitation, we can increase the accuracy of our predictions regarding
the spread of e-bike technology throughout the United States and United Kingdom. Extending the
Bass Diffusion Model to increase the market cap to accommodate the growth of bicycle users would
also be fruitful. Furthermore, we can investigate further whether individuals who have purchased
e-bikes are inclined to revert to conventional bicycles or other means of transportation.

Our second model had a very limited set of datapoints to work with, and given the black block
nature of the random forest algorithm, we are unsure how the model was generated and how the
importances were ranked. We can explore alternative modeling techniques that allow for more
transparency and interpretability, helping us understand the models better.

Our third model was not able to fully encapsulate the effect of e-bikes on the three aforemen-
tioned factors due to the lack of data and many inferences that had to be made. In the future, we
would like to further refine our model by gathering more comprehensive data and minimizing the
need for assumptions. This would help us better understand and model how e-bikes impact traffic,
individual health, and the environment.

5.2 Conclusion

In Part I, we predicted the number of e-bikes sold in two years and five years for both the United
States and the United Kingdom. We created a Bass Diffusion Model and estimated the coefficients
of innovation and imitation using a non-linear least squares regression. Subtracting the installed
base fraction of two consecutive years and multiplying it by the market cap, we determined the
predicted sales. In Part 2, urban population and electricity prices were estimated to be the most
important in influencing people to choose e-bikes. Disposable income was a significant factor in the
United States but not in the UK, while environmental perception was insignificant in both countries.
In Part 3, we quantified the potential effects of transitioning to primarily e-bike transportation,
focusing on the environment, traffic, and individual health. To estimate the likelihood of commuters
adopting e-bikes, we factored convenience and cost, which enabled us to derive formulas for various
functions and arrive at an approximate assessment of e-bikes’ impact on the three factors.
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7 Appendix

7.1 part1.ipynb

1 # import necessary libraries

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from scipy.optimize import curve_fit

6

7 $# Importing Data

8

9 # import TCP23_data.xlsx sheet Q1 E-bike Sales as df starting at row 6 and end

at row 22

10 df = pd.read_excel(’TCP23_data.xlsx’, sheet_name=’Q1 E-bike Sales ’, skiprows

=6, nrows =17)

11

12 locations = [’US’, ’Europe ’, ’France ’, ’China’, ’India’, ’Japan’]

13

14 #rename rows to Year , US , Europe , France , China , India , Japan

15 df.columns = [’Year’] + locations

16

17 #focus on US and Europe data

18 df = df[[’Year’, ’US’, ’Europe ’]]

19 locations = [’US’, ’Europe ’]

20

21 # convert year data to int

22 df[’Year’] = df[’Year’]. astype(int)

23

24 ## Splitting Data by Location

25

26 # separate into data frames for each location with year

27 dataframes = {location: df[[’Year’, location ]] for location in locations}

28

29 # for each df , drop all rows with no data

30 for location , df in dataframes.items():

31 dataframes[location] = df[df[location] != ’--’]

32

33 # convert all values to numbers

34 for location , df in dataframes.items():

35 dataframes[location ][ location] = pd.to_numeric(df[location ])

36

37 # define market size for locations in 1000s of people

38 market_size = {’US’: 45000 , ’Europe ’: 40794 , ’UK’: 10700 }

39

40 # show us data head

41 print(dataframes[’Europe ’].head())

42

43 # divide data by market size

44 for location , df in dataframes.items():

45 dataframes[location ][ location] = df[location] / market_size[location]

46

47 # for each dataframe create a column for cumulative sum

48 for location , df in dataframes.items():

49 dataframes[location ][’cum_sum ’] = df[location ]. cumsum ()

50

51 # for each dataframe create a new column with year minus first year

52 for location , df in dataframes.items():



53 dataframes[location ][’year_diff ’] = df[’Year’] - df[’Year’].iloc [0]

54

55 # show us data head

56 print(dataframes[’Europe ’].head())

57

58 ## Defining Bass Diffusion Equation

59

60 # define bass diffusion model

61 def bass_diffusion_model(x, p, q):

62 return (1.0- np.exp(-1.0 * (p + q) * x))/(1 + q / p * np.exp(-1.0 * (p + q

) * x))

63

64 ## Regression for US Data

65

66 location = ’US’

67

68 # get the last year in the location data

69 last_year = dataframes[location ][’Year’].iloc[-1]

70

71 # get the first year in the location data

72 first_year = dataframes[location ][’Year’].iloc [0]

73

74 # fit to data

75 bass_popt , bass_pcov = curve_fit(bass_diffusion_model , dataframes[location ][’

year_diff ’], dataframes[location ][’cum_sum ’], p0=[0.003 , 0.17] , maxfev

=100000)

76

77 # for sensitivity analysis

78 # increase p and q by 10% and -10%

79 bass_popt_10pplus = [bass_popt [0] * 1.1, bass_popt [1]]

80 bass_popt_10pminus = [bass_popt [0] * 0.9, bass_popt [1]]

81 bass_popt_10qplus = [bass_popt [0], bass_popt [1] * 1.1]

82 bass_popt_10qminus = [bass_popt [0], bass_popt [1] * 0.9]

83

84 # add columns for predictions

85 dataframes[location ][’bass’] = bass_diffusion_model(dataframes[location ][’

year_diff ’], *bass_popt)

86 dataframes[location ][’bass_10pplus ’] = bass_diffusion_model(dataframes[

location ][’year_diff ’], *bass_popt_10pplus)

87 dataframes[location ][’bass_10pminus ’] = bass_diffusion_model(dataframes[

location ][’year_diff ’], *bass_popt_10pminus)

88 dataframes[location ][’bass_10qplus ’] = bass_diffusion_model(dataframes[

location ][’year_diff ’], *bass_popt_10qplus)

89 dataframes[location ][’bass_10qminus ’] = bass_diffusion_model(dataframes[

location ][’year_diff ’], *bass_popt_10qminus)

90

91 # take results dataframe as Year , year_diff , and bass , bass_10pplus ,

bass_10pminus , bass_10qplus , bass_10qminus

92 US_results = dataframes[location ][[’Year’, ’year_diff ’, ’bass’, ’bass_10pplus ’

, ’bass_10pminus ’, ’bass_10qplus ’, ’bass_10qminus ’]]

93

94 # create new df with years from last year+1 to 2030

95 preds = pd.DataFrame ({’Year’: range(last_year+1, 2030)})

96 preds[’year_diff ’] = preds[’Year’] - first_year

97 preds[’bass’] = bass_diffusion_model(preds[’year_diff ’], *bass_popt)

98 preds[’bass_10pplus ’] = bass_diffusion_model(preds[’year_diff ’], *

bass_popt_10pplus)

99 preds[’bass_10pminus ’] = bass_diffusion_model(preds[’year_diff ’], *

bass_popt_10pminus)



100 preds[’bass_10qplus ’] = bass_diffusion_model(preds[’year_diff ’], *

bass_popt_10qplus)

101 preds[’bass_10qminus ’] = bass_diffusion_model(preds[’year_diff ’], *

bass_popt_10qminus)

102

103 # add preds to US_results

104 US_results = US_results.append(preds , ignore_index=True)

105

106 # plot results year against bass predictions and data

107 plt.plot(US_results[’Year’], US_results[’bass’])

108 plt.plot(dataframes[location ][’Year’], dataframes[location ][’cum_sum ’], ’o’,

color=’green’)

109

110 #label the coordinate at x=2025 with (year , bass) to 6 decimal places

111 pred_2025 = US_results[US_results[’Year’] == 2025][ ’bass’].iloc [0]

112 plt.plot (2025, pred_2025 , ’o’, color=’red’)

113 plt.annotate(f’(2025, {pred_2025 :.6f})’, xy=(2022 , pred_2025))

114

115 #label the coordinate at x = 2028

116 pred_2028 = US_results[US_results[’Year’] == 2028][ ’bass’].iloc [0]

117 plt.plot (2028, pred_2028 , ’o’, color=’red’)

118 plt.annotate(f’(2028, {pred_2028 :.6f})’, xy=(2025 , pred_2028))

119

120 # set ticks to be every 2 years

121 plt.xticks(range(dataframes[location ][’Year’].iloc[0], 2030, 2))

122

123 # label X axis as Year

124 plt.xlabel(’Year’)

125

126 # label Y axis as Proportion of Bike Market Using E-Bikes

127 plt.ylabel(’Proportion of Bike Market Using E-Bikes’)

128

129 # add legend with blue line for bass model , orange dots for original data , and

red dots for predictions

130 plt.legend ([’Bass Diffusion Model’, ’Historical Data’, ’Predictions ’])

131

132 plt.show()

133 print("US Parameters: " + str(bass_popt))

134

135 # change in bass

136 US_results[’bass_change ’] = US_results[’bass’].diff()

137 US_results[’bass_10pplus ’] = US_results[’bass_10pplus ’].diff()

138 US_results[’bass_10pminus ’] = US_results[’bass_10pminus ’].diff()

139 US_results[’bass_10qplus ’] = US_results[’bass_10qplus ’].diff()

140 US_results[’bass_10qminus ’] = US_results[’bass_10qminus ’].diff()

141

142 # find the percent change from bass to each of the sensitivity analysis basses

143 US_results[’bass_10pplus ’] = (US_results[’bass_10pplus ’] - US_results[’

bass_change ’]) / US_results[’bass’]

144 US_results[’bass_10pminus ’] = (US_results[’bass_10pminus ’] - US_results[’

bass_change ’]) / US_results[’bass’]

145 US_results[’bass_10qplus ’] = (US_results[’bass_10qplus ’] - US_results[’

bass_change ’]) / US_results[’bass’]

146 US_results[’bass_10qminus ’] = (US_results[’bass_10qminus ’] - US_results[’

bass_change ’]) / US_results[’bass’]

147

148 # add bikes sold as bass_change times market size

149 US_results[’bikes_sold ’] = US_results[’bass_change ’] * market_size[location]

150 US_results



151

152 ## Regression for Europe Data

153

154 location = ’Europe ’

155

156 # get the last year in the location data

157 last_year = dataframes[location ][’Year’].iloc[-1]

158

159 # get the first year in the location data

160 first_year = dataframes[location ][’Year’].iloc [0]

161

162 # define bass diffusion model

163 def bass_diffusion_model(x, p, q):

164 return (1.0- np.exp(-1.0 * (p + q) * x))/(1 + q / p * np.exp(-1.0 * (p + q

) * x))

165

166 # fit to data

167 bass_popt , bass_pcov = curve_fit(bass_diffusion_model , dataframes[location ][’

year_diff ’], dataframes[location ][’cum_sum ’], p0=[0.003 , 0.17] , maxfev

=100000)

168

169 # for sensitivity analysis

170 # increase p and q by 10% and -10%

171 bass_popt_10pplus = [bass_popt [0] * 1.1, bass_popt [1]]

172 bass_popt_10pminus = [bass_popt [0] * 0.9, bass_popt [1]]

173 bass_popt_10qplus = [bass_popt [0], bass_popt [1] * 1.1]

174 bass_popt_10qminus = [bass_popt [0], bass_popt [1] * 0.9]

175

176 # add columns for predictions

177 dataframes[location ][’bass’] = bass_diffusion_model(dataframes[location ][’

year_diff ’], *bass_popt)

178 dataframes[location ][’bass_10pplus ’] = bass_diffusion_model(dataframes[

location ][’year_diff ’], *bass_popt_10pplus)

179 dataframes[location ][’bass_10pminus ’] = bass_diffusion_model(dataframes[

location ][’year_diff ’], *bass_popt_10pminus)

180 dataframes[location ][’bass_10qplus ’] = bass_diffusion_model(dataframes[

location ][’year_diff ’], *bass_popt_10qplus)

181 dataframes[location ][’bass_10qminus ’] = bass_diffusion_model(dataframes[

location ][’year_diff ’], *bass_popt_10qminus)

182

183 # take results dataframe as Year , year_diff , bass , bass_10pplus , bass_10pminus

, bass_10qplus , bass_10qminus

184 europe_results = dataframes[location ][[’Year’, ’year_diff ’, ’bass’, ’

bass_10pplus ’, ’bass_10pminus ’, ’bass_10qplus ’, ’bass_10qminus ’]]

185

186 # create new df with years from last year to 2030

187 preds = pd.DataFrame ({’Year’: range(last_year+1, 2030)})

188 preds[’year_diff ’] = preds[’Year’] - first_year

189 preds[’bass’] = bass_diffusion_model(preds[’year_diff ’], *bass_popt)

190 preds[’bass_10pplus ’] = bass_diffusion_model(preds[’year_diff ’], *

bass_popt_10pplus)

191 preds[’bass_10pminus ’] = bass_diffusion_model(preds[’year_diff ’], *

bass_popt_10pminus)

192 preds[’bass_10qplus ’] = bass_diffusion_model(preds[’year_diff ’], *

bass_popt_10qplus)

193 preds[’bass_10qminus ’] = bass_diffusion_model(preds[’year_diff ’], *

bass_popt_10qminus)

194

195 # add preds to results



196 europe_results = europe_results.append(preds , ignore_index=True)

197 # plot results year against bass predictions and data

198 plt.plot(europe_results[’Year’], europe_results[’bass’])

199 plt.plot(dataframes[location ][’Year’], dataframes[location ][’cum_sum ’], ’o’,

color=’green’)

200

201 #label the coordinate at x=2025 with (year , bass) to 6 decimal places

202 pred_2025 = europe_results[europe_results[’Year’] == 2025][ ’bass’].iloc [0]

203 plt.plot (2025, pred_2025 , ’o’, color=’red’)

204 plt.annotate(f’(2025, {pred_2025 :.6f})’, xy=(2021 , pred_2025))

205

206 #label the coordinate at x = 2028

207 pred_2028 = europe_results[europe_results[’Year’] == 2028][ ’bass’].iloc [0]

208 plt.plot (2028, pred_2028 , ’o’, color=’red’)

209 plt.annotate(f’(2028, {pred_2028 :.6f})’, xy=(2024 , pred_2028))

210

211 # set ticks to be every 2 years

212 plt.xticks(range(dataframes[location ][’Year’].iloc[0], 2030, 2))

213

214 # label X axis as Year

215 plt.xlabel(’Year’)

216

217 # label Y axis as Proportion of Bike Market Using E-Bikes

218 plt.ylabel(’Proportion of Bike Market Using E-Bikes’)

219

220 # add legend with blue line for bass model , orange dots for original data , and

red dots for predictions

221 plt.legend ([’Bass Diffusion Model’, ’Historical Data’, ’Predictions ’])

222

223 plt.show()

224 print("Europe Parameters: " + str(bass_popt))

225

226 # change in bass

227 europe_results[’bass_change ’] = europe_results[’bass’].diff()

228 europe_results[’bass_10pplus ’] = europe_results[’bass_10pplus ’].diff()

229 europe_results[’bass_10pminus ’] = europe_results[’bass_10pminus ’].diff()

230 europe_results[’bass_10qplus ’] = europe_results[’bass_10qplus ’].diff()

231 europe_results[’bass_10qminus ’] = europe_results[’bass_10qminus ’].diff()

232

233 # find the percent change from bass to each of the sensitivity analysis basses

234 europe_results[’bass_10pplus ’] = (europe_results[’bass_10pplus ’] -

europe_results[’bass_change ’]) / europe_results[’bass’]

235 europe_results[’bass_10pminus ’] = (europe_results[’bass_10pminus ’] -

europe_results[’bass_change ’]) / europe_results[’bass’]

236 europe_results[’bass_10qplus ’] = (europe_results[’bass_10qplus ’] -

europe_results[’bass_change ’]) / europe_results[’bass’]

237 europe_results[’bass_10qminus ’] = (europe_results[’bass_10qminus ’] -

europe_results[’bass_change ’]) / europe_results[’bass’]

238

239 # add bikes sold as bass_change times market size

240 europe_results[’bikes_sold ’] = europe_results[’bass_change ’] * market_size[

location]

241 europe_results



7.2 part2.py

1 # import libraries for random forest regressor

2 from sklearn.ensemble import RandomForestRegressor

3 from sklearn.metrics import mean_absolute_error

4 from sklearn.model_selection import train_test_split

5 import pandas as pd

6 import matplotlib.pyplot as plt

7 import numpy as np

8

9 # Import data

10 df = pd.read_csv(’input_data_us.csv’)

11 # df = pd.read_csv(’input_data_uk.csv ’)

12

13 # drop years before 2012 and after 2021

14 df = df[df[’Year’] >= 2011]

15 df = df[df.Year <= 2021]

16

17 # Drop year

18 df = df.drop([’Year’], axis =1)

19

20 # create random forest model

21 rf_model = RandomForestRegressor(random_state =1)

22

23 # set target as ’sold’ and features as everything else

24 y = df.sold

25 X = df.drop([’sold’], axis =1)

26

27 # fit model

28 rf_model.fit(X, y)

29

30 # get predicted values

31 rf_val_predictions = rf_model.predict(X)

32

33 # calculate mean absolute error

34 rf_val_mae = mean_absolute_error(rf_val_predictions , y)

35

36 print("Validation MAE for Random Forest Model: {}".format(rf_val_mae))

37

38 # plot predicted values vs actual values

39 rf_val_predictions

40

41 # plot predicted values vs actual values

42 plt.scatter(rf_val_predictions , y)

43 plt.xlabel(’Predicted Values ’)

44 plt.ylabel(’Actual Values ’)

45 plt.show()

46

47 # plot feature importance

48 importances = rf_model.feature_importances_

49 features = X.columns

50 plt.barh(features , importances)

51 plt.show()

52

53 # print feature importances in dict

54 feature_importances = dict(zip(features , importances))

55 print(’feature importances:’)

56 print(feature_importances)

57



58 # Order the features by importance

59 feature_importances = dict(sorted(feature_importances.items(), key=lambda item

: item[1], reverse=True))

60

61 # Assign each feature the number in the order

62 for i, key in enumerate(feature_importances):

63 feature_importances[key] = i + 1

64

65 print(’ranked features: ’)

66 print(feature_importances)

67

68 ### Perform sensitivity analysis

69

70 # Create empty dataframe with columns for each feature

71 sensitivity_df = pd.DataFrame(columns=X.columns)

72

73 print(X.columns)

74

75 ## Sensitivity analysis dropping columns

76 for c in X.columns:

77

78 # Drop column c

79 X_copy = X.copy()

80 X_copy = X_copy.drop([c], axis =1)

81

82 # create new random forest model

83 rf_model_new = RandomForestRegressor(random_state =1)

84

85 # fit model

86 rf_model_new.fit(X_copy , y)

87

88 # Find new importances

89 new_importances = rf_model_new.feature_importances_

90 new_features = X_copy.columns

91 new_importances = dict(zip(new_features , new_importances))

92

93 # Order the features by importance

94 new_importances = dict(sorted(new_importances.items(), key=lambda item:

item[1], reverse=True))

95

96 # Assign each feature the number in the order

97 for i, key in enumerate(new_importances):

98 new_importances[key] = i + 1

99

100 # Find difference in importances

101 new_importances[key] = feature_importances[key] - new_importances[key

]

102

103 # Dropped column

104 new_importances[c] = np.nan

105

106 # Add new importances to sensitivity_df with pandas concat

107 sensitivity_df = pd.concat ([ sensitivity_df , pd.DataFrame(new_importances ,

index=[c])])

108

109 print(sensitivity_df)

110

111

112 # Download csv of sensitivity_df



113 sensitivity_df.to_csv(’sensitivity_df_us.csv’)

114 # sensitivity_df.to_csv(’sensitivity_df_uk.csv ’)
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