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Heatwave Havoc: Modeling the Future of Urban Cooling and Power In
Memphis-Executive Summary

In recent years, heat waves have emerged as one of the most devastating and increasingly
frequent natural disasters, pushing communities, economies, and ecosystems to their limits. As
we navigate a warming world, addressing the causes, impacts, and mitigation strategies of heat
waves in cities such as Memphis becomes not just a scientific necessity but a moral and policy
imperative.

The first part of this report models the temperature changes of various
non-air-conditioned dwellings over the course of a day-long Memphis heatwave using a
differential equation model. This model involves expressing the rate of change of the
temperature as a sum of conduction, ventilation, solar radiation, and internal heating
components. We found that the maximum internal temperature of a realistic dwelling during a
heat wave can reach a dangerously high range of 97 to 99 degrees Fahrenheit. These results are
fairly consistent throughout the non-air-conditioned four dwellings, regardless of their shade,
floor size, and internal heat output. As such, the danger of high home-heats seems to persist
regardless of the home’s geographical or architectural circumstance, and lack of air conditioning
remains a threatening issue.

The second part of the report forecasted peak power demand in Memphis over the next
twenty years using a multivariate linear regression, which factored in historical data on climate
patterns and economic conditions. After starting with seven potential predictors, we used a
system of backward selection and multicollinearity analysis with correlation matrices, narrowing
down our desired variables to just peak temperature in a year and GDP of Memphis. We then ran
a multivariate regression, forecasting that peak electricity demand in Memphis for 2045 would
be 3,357.72 mW. Since the increase in electricity demand is very small (only 120.58 mW over 20
forecasted years), we concluded that there would not be any major changes in the maximum
demand for power through these 20 years apart from a very small potential increase.

The third and final section used information about 27 ZIP codes in the Mempbhis area to
quantify factors involved in heat-risk with a vulnerability score. Four factors, each of which
contribute to a community’s vulnerability and do not affect each other, were chosen - the
economy, population, age demographics, and transportation mode share of a neighborhood.
These factors were normalized so that each factor ranged from 0 (very low risk) to 4 (very high
risk) and combined using a weighted sum. ZIP codes with higher vulnerability scores, such as
38109, 38105, and 38111 were determined to be more heavily affected by heat waves; they
require more assistance in preparing for and responding to the effects of heat waves. Based on
the vulnerability scores calculated, the team recommends that neighborhoods such as South
Memphis, the Medical Center, and Downtown be given priority assistance in mitigating the
effects of extreme heat. Such areas are home to high populations of low-income Memphians, and
they stand to suffer more when critical pieces of infrastructure, such as the municipal power grid,
are shut down. The urgency of heat waves, especially in highly vulnerable areas, calls for a
comprehensive effort to cool down the urban environment.
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Q1: Hot to Go

1.1 Defining the Problem

The first problem asks us to develop a model that tracks the indoor temperature of a Memphis house
without air conditioning during a summer heat wave. Our model considers the outside temperature during
an example Memphis heat wave, and compares dwellings without air conditioning in varying
circumstances.

1.2 Assumptions
1.2.1. Convection through walls is proportional to the base area of the unit.

e Justification: Heat loss and gain through walls are largely dictated by surface area. Since taller
buildings with the same base area have less exposed wall surface per unit volume, we assume that
the base area serves as a reasonable approximation of heat transfer magnitude for most dwellings.

1.2.2. Solar heat gain is determined by radiation penetrating through windows.

e Justification: Direct and diffuse solar radiation contribute significantly to indoor temperature
fluctuations. Since glass allows heat to enter while trapping infrared radiation, we include
window surface area and solar heat in our model.

1.2.3. Ventilation occurs through cracks, windows, and openings.

e Justification: Air exchange through natural ventilation systems like vents and cracks affects
temperature by transferring heat between indoor and outdoor environments.

1.2.4. Heat sources inside the dwelling are limited to electronics and human occupants.

e Justification: Internal heat generation stems primarily from electrical appliances and human
metabolic activity. Other sources, such as combustion heating, are not explicitly modeled, as they
are either negligible in well-insulated homes or user-controlled.

1.2.5. Older houses have less insulation than newly constructed homes.

e Justification: Advancements in building codes and materials have led to improved insulation
standards over time. Older homes generally have higher thermal conductivity due to degraded or
outdated insulation, leading to more heat exchange with the environment.

1.2.6. The house is modeled as an object with a constant internal temperature.

e Justification: Studies on the optimization of temperature uniformity have shown that natural
convection can effectively maintain uniform temperatures in enclosed spaces, and that differences
in temperature in different areas quickly become negligible.

1.2.7. There are no other significant heat sources, and heat storage in walls and furniture is
negligible.

e Justification: While walls, floors, and furniture can absorb and release heat over time, we assume
their thermal mass effects are small compared to other heat exchange processes. Their influence
on short-term temperature variations is considered negligible.

1.2.8. Solar radiation is only present during daylight hours (6 AM to 8 PM). Outside this range (6
PM to 6 AM), solar radiation is assumed to be zero.

e Justification: This reflects the fact that the sun is not visible at night, so no direct solar radiation

reaches the Earth's surface during these hours.
1.2-9. Sinusoidal Variation During Daytime

e Justification: Solar radiation follows a sinusoidal pattern during the day, peaking at noon and

tapering off symmetrically in the morning and afternoon. The term (hour - 6) shifts the sine wave
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so that it starts at 6 AM. The divisor 14 scales the sine wave to fit within the 14-hour daylight
period (6 AM to 8§ PM).

1.3.1 Development of the Model

We used a differential equation to model the change in internal temperature of the house because heat
transfer in this scenario closely follows Newton’s Law of Heating (shown below), which states that the
rate of temperature change is proportional to the difference between an object’s temperature and its
surroundings. Since the house interacts with external factors, a differential equation describes how these
influences combine to affect indoor temperature over time. By assuming the house has a uniform internal
temperature, we can represent its behavior as a first-order differential equation.

dr = _ _ _
e kcon(Ti Tenv) + Tin

Newton’s Law of Heating

Additionally, we considered using other models, specifically, autoregressive models. However, we
realized AR models were not suitable since we lacked data on past temperatures and cannot predict future
values due to this constraint. Furthermore, an autoregressive approach would not account for other factors
like radiation, ventilation, or internal heat sources.

1.3.2 Variables

Symbol Value Units
TL_ , Tem] Temperature inside house, temperature outside house Fahrenheit
C Thermal capacitance of house J/K
kcon Thermal conductivity constant W/K
a , Solar heat gain coefficient, solar radiance value Unitless
solar ° " solar
ent Ventilation coefficient that accounts for air leakage W/K
L Number of people People
Papp Power output of all appliances W
Figure 1

1.3.3 Explanation of Model
We model the rate of change of indoor temperature as a function of four key heat transfer mechanisms:
conduction, radiation, ventilation, and internal heat sources. We first consider each component separately:
e According to Newton’s Law of Heating, the rate of conductive heat transfer is proportional to the
temperature difference, leading to the expression — kwn(TL_ - Tem;) for conductivity.
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e Radiation is influenced by the solar radiation intensity and the absorption properties of the house.

This is defined by the expression a 1 .
solae solar

e Heat loss or gain through ventilation depends on the temperature difference between the inside
and outside, and this is represented in the equation, again by Newton’s Law of Heating,

Wm(Ti - Tenv) . The sign is positive because if the outside air is cooler, ventilation removes

heat from the home.
e Internal heat generation accounts for heat produced by both humans and electrical appliances. We
assume the heat output of a human to typically be around 100W. Our expression is then

100n + P .
ppl app

Combining all of these components results in the final differential equation shown below, which we walk
through the process of solving in the next step.

dT
dt

= —k (T-T ) +a (T-T ) +100n  + P
con™ i en env pp

+ .
v solar " solar vent™ i l app

1.3.4 Model Execution

To solve the differential equation we derived, we need data on all variables associated with heat capacity,
conduction, radiation, and ventilation, as they vary for different housing types. Similarly, so does the
power released by appliances. We outsourced the data from the tables below and used its values to
calculate the temperature over the 24 hour period.

Housing Type and Relevant Variables (C, kwn @Ak )
Housing Type C (MJ/K) Keon (W/m?-K) Ay (M?) Kyent (W/K)
Modern Apartment 8.5 0.35 210 90
1980s Apartment 7.2 0.45 190 120
Older Brick Apartment 12.3 0.7 220 180
Modern Single-Family Home 15.7 0.3 380 120
1970s Single-Family Home 13.8 0.5 340 250
Pre-1950s Single-Family
Home 10.5 0.75 290 300

Figure 2°. Relevant Conductivity, Ventilation Variables for Housing
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Number of Occupants and Power of Appliances

Occupancy Pattern Occupants P, (W)
Working Family (Daytime Empty) 4 250 (morning/evening), 50 (daytime)
Retired Couple (Full Day) 2 150 (constant)
Single Occupant (Mixed) 1 100 (variable)
Work-From-Home Family 4 300 (daytime), 150 (nighttime)

Figure 3°. Realistic Power Usage

As shown in the table above, we use different values for the Papp values throughout the day to
realistically represent appliance power consumption. To model the difference in the amount of heat due to
the sun over the course of the day, we use the approximate solar radiation with a sinusoidal function.

. . . . . . dr
Regarding the computational implementation of this model, we wrote a python script to calculate — - over
the total time period. The python program we wrote uses Euler’s method to iteratively multiply

numerically calculated values of % by small steps t to derive the final function T (t), which represents

the final temperature over the 24 hour period.

1.4 Results

Using the housing data for each home and parameters defined for specific homes in the previous tables,
we predicted the temperature of each dwelling over a 24 hour period. As shown above, we used Python to

compute the solution to the differential equation and plotted the predicted temperature alongside the
external temperature.

Home 1 - East Memphis

Max Internal Temp: 98.2°F Home 2 - South Memphis Apartment

Max Internal Temp: 99.7°F

—e— External Temperature 1025 —e— External Temperature
— Internal Temperature —— Internal Temperature

Temperature (°F)
Temperature (°F)

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00 000 00 600 o0 12:00 1:00 16:00 2100 000
Time (hours)
Time (hours)

Home 3 - Downtown High-Rise Apartment Home 4 - Raleigh
Max Internal Temp: 100.9°F Max Internal Temp: 99.7°F

10251 _g— External Temperature 1025

— Internal Temperature

~e— External Temperature
— Internal Temperature

Temperature (°F)
Temperature (°F)

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
0:00 300 6:00 9:00 12:00 15:00 18:00 21:00 0:00 Time (hours)
Time (hours)
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Figures 4, 5, 6, 7 for Homes 1, 2, 3, 4 respectively

Below is a table representing the predicted temperature of each of the different homes in 3 hour intervals
over the total time period.

Hour E;(:;fl Home 1 Temp. (°F) Home 2 Temp. (°F) Home 3 Temp. (°F) Home 4 Temp. (°F)
0 85 85.00 85.00 85.00 85.00
3 83 85.22 85.59 85.39 85.60
6 84 84.94 85.69 85.50 85.72
9 94 87.76 88.64 88.16 88.55
12 100 91.88 92.66 92.61 92.63
15 102 96.13 97.00 97.49 97.03
18 97 98.12 99.46 100.49 99.51
21 91 97.01 99.09 100.45 99.10
24 85 94.47 97.18 99.052 97.19

Figure 8. Modeled Temperature

1.5 Discussion

Our model estimates that at 6 hours, the temperatures of each home will be 84.94, 85.69, 85.50, and 85.72
°F for House 1, House 2, House 3, and House 4 respectively. From the data table, we can see that the peak
temperature experienced by each house occurs between 18 and 21 hours, with each house’s highest
temperature in three-hour intervals as 98.12, 99.46, 100.49, and 99.51 °F. Overall, the trends of the
temperature changes in each house seem to be similar, with slight differences likely caused by disparities
in factors like insulation, shade, and heat emittance internal to the home.

1.6 Sensitivity Analysis

For Home 4, we generated a graph that overlays the minimum and maximum temperatures in a home over
time with 10% perturbations in each starting coefficient and the starting temperature. As shown in the
figure below, the maximum temperatures for the range of possible curves for internal temperature proves
less than a one degree difference at the peak and end temperatures. This demonstrates strong resilience to
changes in initial conditions.

Temperature Simulation for Raleigh Single-Family Home
(Not Very Shady, Working Family)

—e— External Temperature
—— Internal Temperature
100 £10% Variation

Min Variation

Max Variation

.
.
@ Final Temp +10% Variation

95

©
3

Temperature (°F)

@
&

80

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
Time (hours)
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Figure 9. Model Sensitivity Analysis Graph

1.7 Strengths and Weaknesses

1.7.1 Strengths

Our differential equation model realistically captures the most significant factors that impact the
temperature of a home experiencing heat waves over time, taking into account thermal conductivity, solar
radiation, heat emittance from humans and appliances, and ventilation. Using Newton’s Law of Heating
as a foundation for the model aims to align our outcome with pragmatic physical principles, making the
model more intuitive and grounded.. The model proved resilient to changes in initial conditions, as
sensitivity analysis shows that small variations in starting temperature and coefficients have minimal
impact on the final results.

1.7.2 Weaknesses

Our model, however, treats the home as a single homogeneous thermal zone, ignoring spatial temperature
gradients caused by uneven insulation, multi-story layouts, or localized heat sources. While sensitivity
analysis demonstrates resilience to minor parameter changes, the model may struggle with extreme
deviations due to extreme weather changes or variables that may depend on one another, such as
ventilation and conduction.

Q2: Power Hungry

2.1 Defining The Problem

The second problem asks us to model the peak power demand of the power grid, making predictions over
the next 20 years for the city of Memphis, Tennessee. We used a multivariate regression with various
independent factors to draw an accurate conclusion.

2.2 Assumptions
2.2.1.The temperature readings taken in Memphis are considered representative of the whole city.
e Justification: The city of Memphis has a relatively uniform climate and is geographically
compact, meaning temperature variations across the city are minimal on a given day. Using a
single temperature reading simplifies the model while still capturing major trends in heat wave
conditions.
2.2.2. The examined historical trends in the city will stay relatively constant over the next 20 years.

e Justification: Many of the variables within our regression (ie socioeconomic status, population,
GDP) exhibited steady trends over the past 10 years. We are assuming that the policies that
Memphis takes remain historically comparable, allowing us to confidently model the direction
that energy consumption seems to be heading. Furthermore, the model assumes that no
unforeseen extreme events will occur during the predicted time frame. While heat waves
themselves are certainly extreme, larger national crises would be both difficult to predict and
could disrupt the underlying data our model relies on, affecting its accuracy and validity.

2.2.3. All terms are linearly related.

e Justification: Historical data indicates a strong linear correlation between indoor temperature

changes and external factors such as outdoor temperature, time of day, and solar radiation.
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Deviations from linearity, such as extreme temperature-dependent effects, are either rare or within
a range where linear approximation remains statistically valid.
2.2.4. No other independent variables will affect the peak power demand of Memphis.

e Other independent factors like humidity and wind speed have a secondary influence and are often
multicollinear with more significant variables. Thus, their presence would not only be statistically
insignificant but also overcomplicate the model.

2.2.5. Homoscedasticity is satisfied.

e Variance in residuals remains consistent across different temperature levels in observed data,
confirming that prediction errors do not systematically increase at higher or lower temperatures.
This ensures the model remains statistically robust across all conditions analyzed.

2.2.6. COVID-19 will have no effect on predicted energy consumption.

e Post-2021 data indicates a return to pre-pandemic energy usage patterns. Utility reports and
consumption trends in Memphis show that any temporary shifts in demand caused by lockdowns
had largely stabilized, with no lasting structural changes in residential or commercial electricity
consumption. Including pandemic-related adjustments would introduce unnecessary complexity
without providing meaningful improvements in predictive accuracy.

2.3 Building the Model

2.3.1 Data Collection

After reviewing the given data statement, we decided that the best course of action was to find new data.
Although relevant, Shelby County’s annual electricity usage' lacked specificity to predict peak electricity
consumption, while the monthly electricity consumption for East South Central USA was too broad'.
Instead, we gathered annual data (2012-2022) from reputable sources such as Memphis Light, Gas, and
Water (MLGW, the main electricity provider in Memphis).

Our selected predictors were peak temperature', population of Memphis'®>, GDP'S, investment in the
power grid"’, annual electricity consumption, rate charged for electricity in summer'®, and efficiency —
measured as consumption divided by GDP to reflect energy use per dollar of economic output. The
response variable, maximum power demand, was defined as the annual peak hourly load on the power
grid", providing a more precise measure than consumption over a year given the prompt at hand.

2.3.2 Model Development

After collecting data, we evaluated relevant predictors to select a model. The models considered were a
time series accounting for cyclic energy consumption, a logistic model, and a multivariate linear
regression. Time series was ruled out due to limited data points and its inability to incorporate external
predictors. Logistic regression was ruled out because there was no clear evidence of a “carrying capacity”
for energy consumption, especially given Memphis’s growing population. Ultimately, we chose
multivariate linear regression to assess the correlation between predictors and peak demand.

We used Python to import all data and began constructing the multivariate linear regression model. We
used the following equation, where Y is the annual peak hourly load on the power grid, € is an error term,
B 0 is a constant, Bl_ are coefficients of independent variables, and X , are the values of the predictors:
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n
Y=B,+¢e+3BX
i=1

The model was calculated using Python’s LinearModels library. The predictors used were determined
using backwards selection, removing the predictor with the highest P-value, because a high P-value shows
that the predictor is not statistically significant. This process was repeated until all remaining predictors
had P-values below 0.1, indicating all predictors hold statistical significance. This model used the three
predictor variables: peak temperature, GDP, and investment in the power grid. This model had an
R-squared value of 0.704, showing significant explanatory power. However, to check for
multicollinearity, a heat map showing correlations between each variable was created.

Correlation Matrix of Variables Loo

Temperature 1.00 -0.36 0.49 0.18 0.25 027 0.31 0.27

0.75

Population - -0.36

Peak Load - 0.49

Investment - 0.25

--0.25

Consumption ~  0.27

--0.50

Electricity Cost - -0.31

-0.75

Efficiency - 0.27

Temperature
Population
Peak Load
Investment
Consumption
Electricity Cost

Figure 10. Heat map showing correlation between predictors
From the heat map, we found that investment and GDP were highly correlated with a coefficient of -0.91,

suggesting multicollinearity. In order to account for this, we removed investment, with the resultant
multivariate linear regression equation modeled by the following:

Y=BO+81X1+BZX2+ €

Symbol Variable Units

Y Annual Peak Hourly Load MegaWatts (mW)

BO Constant Term MegaWatts (mW)
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Bl Coefficient of Peak Temperature MegaWatts/Degrees Fahrenheit (m—;v)
X 1 Peak Temperature Degrees Fahrenheit (F)
B, Coefficient GDP MegaWatts/Million Dollars (L:V)
X, GDP Millions of Dollars ($)
€ Error term MegaWatts (mW)
Figure 11
2.3.3 Model Execution

We then forecasted the Peak Temperature and GDP up to 2045 based on a linear model.

Peak Temperature vs. Year with Forecast GDP vs. Year with Forecast

1600001 o Historical GDP

Forecasted GDP
—— GDP Regression Line

° © Historical Temperature
X Forecasted Temperature
102 ° Temperature Regression Line

140000

100 e o °
120000

100000

GDP (Millions of Dollars)

Peak Temperature (F)
D,

%
* 80000

[
%
94 ps

¢
Ky

Kse
60000

2015 2020 2025 2030 2035 2040 2045 2015 2020 2025 2030 2035 2040 2045
r Year

Figure 12. Peak temperature vs. year with forecast. Figure 13. GDP vs. year with forecast.

Despite highly varied historical data, peak temperature clearly shows a downward trend, especially if two
outliers in 2012 and 2022 are disregarded. GDP shows a clear, linear increase year after year.

Year 2045
Peak Temperature (Degrees Fahrenheit) 93.327
GDP (Millions of Dollars) 157466.226

Given this data, we can calculate estimates of Peak Electricity Demand in Memphis.

2.4 Results
We used a multivariate regression to model the peak power demand of the Memphis power grid over the
next 20 years. The results are shown below:
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Peak Load (mW) Each Year with Historical and Forecasted Data

— Forecast
Historical

33501

33001

32501

32004

Peak Load (mW)

3150

31001

2015 2020 2025 2030 2035 2040 2045
‘Year

Figure 14. Peak load (mW) each year with both historical and forecasted data.
Forecasted Value for 2045 (20 years into the future): 3357.716 mW

2.5 Discussion

Ultimately, our multivariate regression model predicted that the peak load each year in Memphis would
increase over time. Our forecasted peak electricity demand for 2045 was 3,357.72 mW, meaning that 20
years from now, given no unusual changes, Memphis's power grid will need to be able to handle at least
3,357.72 mW of power demanded in one hour. However, the increase is very slight, with a total of only
120.58 mW of change over these 20 forecasted years. This keeps all forecasted values within the range of
the historical data, allowing us to conclude that there will not be any major changes in the maximum
demand for power through these 20 years apart from the slight increase shown above.

2.6 Sensitivity and Error Analysis

In our multivariate regression analysis, we examined the residual plot, which displays residuals on the
y-axis against predicted values (or sometimes individual independent variables) on the x-axis. The goal of
this analysis is to identify whether any systematic patterns exist in the residuals, which would suggest that
a linear model is insufficient to describe the relationship between variables.

Residual Plot: Fitted Values vs. Residuals

L ]
150

100

50

Residuals

=100 4

T T T T T
3150 3200 3250 3300 3350
Fitted Values

Figure 15. Residuals Between Predicted and Actual Peak Power Demand.
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The residual plot for our model exhibits a random, widely spread distribution, with no discernible patterns
or trends. This indicates that the relationship between the predictors and resultant variable is captured well
by the linear model. Furthermore, it indicates that the residuals are independent, meaning that errors are
not correlated with each other. Given these findings, we can confidently justify our decision to use a linear
model for this regression. The residual plot supports the assumption that the relationship between our
independent and dependent variables is well-approximated by a linear function.

Actual vs. Predicted Peak Load Over Years

—— Actual Peak Load
Predicted Peak Load

3350
3300

3250

N A /
3150 4 \/

3100 A

Peak Load (mw)

T T T T T u
2012 2014 2016 2018 2020 2022
‘Year

Figure 16. Actual vs Predicted Peak Load over Years
To determine the accuracy of our predictions, we plotted our model’s predicted values for homeless
people for the years 2012 to 2022 against the historical data. Then we calculated the Mean Absolute
Percent Error (MAPE), to measure the accuracy of our model. The resulting MAPE was 1.94%. This low
value indicates our model is highly accurate.

2.7 Strengths and Weaknesses

2.7.1 Strengths

One major strength of our model is its transparency and interpretability. Unlike black-box models, which
rely on methods not easily understood, multivariate models, when developed with sufficient computing,
provide direct and quantifiable insight of model fit through correlation matrices, p-values, and F-statistics.
Furthermore, we were able to take two factors — peak temperature and GDP — into account. They were
both correlated with peak power use while remaining independent of each other, which allowed us to
achieve more accurate results than just relying on just one variable.

2.7.2 Weaknesses

However, the model had a few limitations. It assumes a linear relationship between predictors and the
response variable, which may not always hold in complex real-world data. The regression is also highly
sensitive to outliers, as extreme values can disproportionately influence the model and distort results.
Furthermore, the training data, especially for peak temperature and peak load, were highly variable. This
may contribute to our model’s uncertainty. In future research, if we could find more data, it would be
more helpful to train on peak load and temperature over a longer period, such as a month.
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Q3: Beat the Heat

3.1 The Problem

The third problem asks us to construct a metric to quantify the vulnerability of the various neighborhoods
in Memphis to heat waves and power outages. We used a Min-Max normalized vulnerability score with
four factors to identify the most at-risk areas and guide resource allocation for heat wave preparedness
and emergency response.

3.2 Assumptions
3.2.1. Min-Max normalization is valid for the given data.

e Justification: The model assumes that transforming each variable to a 0—1 scale (via Min-Max) is
appropriate and that the resulting normalized values maintain meaningful comparisons across
different ZIP codes. There are no extreme enough outliers to distort the 0—1 scaling to an extent
that would misrepresent the vulnerability of most neighborhoods. Some factors may be skewed,
concentrating scores among a smaller number of neighborhoods, which may indicate that people
and developments more greatly affected by heat waves have concentrated in a few vulnerable
areas. Because Min-Max Scaling is a linear transformation, normalized scores will preserve such
skewed distributions.

3.2.2. All citizens of Memphis behave like rational actors.

e Justification: This assumption is justified by the principle that individuals act in ways that protect
their health and well-being. Older adults, who often have heightened sensitivity to heat, limit their
exposure by spending more time in air-conditioned or shaded environments. People who travel to
work by walking or taking public transit may choose to drive instead, if the improved comfort
during heatwaves outweighs the financial costs. By assuming predictable behavior by Memphians
during heat events, we can more accurately model which groups will be more susceptible to its
negative consequences.

3.2.3. All chosen factors in our model affect the vulnerability score equally.

e Justification: Each of the four selected factors—income, population, proportion of elderly
residents, and reliance on walking and public transit—addresses a unique facet of heat
vulnerability. Income influences access to cooling and healthcare, a large population puts strain
on infrastructure, demographic composition shapes health risk profiles, and transport modes
determine exposure levels. Assigning equal weights ensures that no single dimension
overshadows the others, allowing all four factors to contribute comparably to overall
vulnerability.

3.2.4. Each zip code consists of a neighborhood.

e Justification: ZIP codes serve as well-established administrative units that reliably encompass
demographics, infrastructure, and economic conditions'®. The population, physical environment,
and resource availability within these boundaries collectively function as a neighborhood,
allowing for meaningful comparisons across the city.

3.3 The Model

3.3.1 Defining the Model

The vulnerability of neighborhoods to heat waves depends on a number of factors®®?!, the most
significant being income, total population, elderly population per household, and number of walkers. To
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determine which factors should be considered in the development of the model, a correlation matrix was

created using Python’s Statsmodels library:

Correlation Matrix

# Households 1.00

Population
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Fig. 17: Correlation matrix between various factors of ZIP codes in Memphis, Tennessee

1. Income: Households with lower incomes often lack access to air conditioning and reside in
neighborhoods with fewer green spaces, more heat-trapping infrastructure, and less access to
healthcare, all of which worsen the effects of heat exposure. The team chose to use each ZIP
code’s median household income to quantify the economic status of the neighborhood. Median
income was chosen instead of other collinear factors, such as average home value or the

employment-population ratio, because it provides a direct insight into the economic standing of a

typical household in the neighborhood, instead of the properties or employment options in the

area, which may vary based on land availability or type of industry.

2. Population: In neighborhoods with larger populations, more people are at risk of heat illnesses,

and heat induced blackouts become more likely due to overloaded power grids. Population was
found to be correlated with many other variables, including the number of households, the
working population, and the number of detached whole houses; the team found that in many
cases, this correlation could be accounted for by dividing a variable by the population size or
number of households, e.g. considering the proportion of the population currently employed.

3. Elderly Residents: Older residents spend more time at home, placing greater strain on the
municipal power grid, and have underlying health conditions that may be worsened by heat
conditions or add to the overwhelming demand for local medical services. To avoid collinearity
with population, the team considered the proportion of households containing 1 or more people

over the age of 65.
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4. Walking and Public Transit: ZIP codes whose residents are more likely to walk to work or use
public transportation will be more severely affected by heat waves. These Memphis residents
expose themselves to the extreme outside conditions as they walk or wait for their bus. Water and
shade is often not available outside of their homes and workplaces. The raw number of people
who walk to work shares collinearity with population; however, considering the proportion of
Memphians who walk to work allowed the team to consider how big of a role walking and public
transit play in each ZIP code.

Metrics for all four factors were normalized to range from 0 to 1 using Min-Max Scaling:

v min

X =X
max min

A final vulnerability score, ranging from 0 to 4, was determined by performing a weighted sum of the
four normalized scores. Because we assumed each of the four factors - economy, population,
demographics, and transportation - would have equally weighted effects on a community’s vulnerability,
each of the four factors was given a weight of 1.

4
V= '
P

3.4 Results
The model provided the following vulnerability scores for each of the given ZIP codes in Memphis:

14 16 18 20 2.2 24

1.2 - -
Lower Viineraility Vulnerability Index (Higher = More Vulnerable)

Higher Vulnerability

Fig. 18: Map showing vulnerability scores in selected Memphis ZIP codes regions
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Vulnerability Score By Neighborhood

38109
38105
38111
38106
38127
38128
38112
38108
38107
38016
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38002
38135
38018
38117
38125
38066
38060
38141
38133
38103
38028
38139

Neighborhood

Vulnerability Index (0-4)

Fig. 19: Bar chart showing vulnerability scores in selected Memphis ZIP codes

3.5 Discussion

Our model calculates vulnerability scores for a variety of neighborhoods in Memphis, taking into
consideration the effects of income, population, age demographics, and transportation. A weighted sum of
the normalized scores for each factor was used to compute the vulnerability of each neighborhood. The
resulting model quantifies heat-risk in a straightforward manner and can be generalized to any ZIP code
in any location. The City of Memphis can use this scoring model to inform policy decisions, dedicating
more of its resources to more vulnerable communities. In concentrating its efforts to reduce heat-risk in
more neighborhoods that are more heavily impacted by extreme heat, the City can ensure a more
equitable distribution of resources.

3.6 Policy Recommendation

The team recommends that the City of Memphis dedicate funding to a Cool Neighborhoods initiative,
improving its streets to be more comfortable during periods of extreme heat. The city should rehabilitate
streets and sidewalks in vulnerable neighborhoods with reflective, heat-reducing pavement and shade
provided by trees and bus shelters. The community improvements provided by urban greenery and better
bus stops, reducing heat, and pollution, and flooding from the nearby Mississippi river, will reduce the
need for personal investment, thus lifting residents out of poverty*. Residents will be able to walk on
surfaces made cooler by reflective pavement and a shaded canopy, without the discomfort or danger of
extreme heat, and enjoy a safer and more comfortable wait for Memphis’s notably low-frequency buses
(the most frequent buses arrive every 30 minutes)*. The naturally cooler environment will reduce the
need for air conditioning, and when seniors need to leave their homes to visit stores or social spaces, they
will be less at risk of heat stroke. By dedicating municipal resources toward cooling down urban spaces,
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especially in high-risk neighborhoods, the city can protect vulnerable communities, limit exposure to
extreme weather, and improve public health - without requiring individuals to spend money.

3.7 Strengths and Weaknesses

3.7.1 Strengths

The model assigned the highest vulnerability scores to neighborhoods with low-income residents, larger
and more concentrated populations, high-density affordable housing, ports along the Mississippi river,
hospitals, and major sources of employment - the people and places hit hardest by extreme heat and loss
of power. Thus, the vulnerability index effectively identifies areas that face increased threats from heat
waves and power outages, and provides the City of Memphis with information that will prove critical in
allocating its resources to prepare for and respond to heat waves.

3.7.2 Weaknesses

The model had some drawbacks in how each factor was weighted and scaled. The team assumed that each
of the four chosen factors were equally impactful on a community’s heat risk. However, the factors may
be different in terms of how they affected communities undergoing a heatwave. For example, the strain
that the elderly put on medical and municipal services will likely be far less than the strain of a
population’s limited budget. Additionally, all factors were transformed linearly. This created the
possibility of a normalized score distributed more asymmetrically. The proportion of the population that
walked to work, for example, was heavily skewed toward a very small number of neighborhoods, because
dense, walkable development is often concentrated near the city’s downtown. Alternative normalization
methods, such as mean normalization or z-score normalization, were considered; however, the team
decided that concentrating high scores among a few key neighborhoods was an important part of the
scoring process and reflected the tendency of vulnerable populations to concentrate near community
centers.
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Conclusion

Heat waves are becoming increasingly severe and frequent, posing significant risks to public health,
infrastructure, and economic stability. This paper examined the dangers of extreme heat in Memphis,
analyzing three key problems: indoor temperature, peak power demand forecasting, and vulnerability
assessment.

Our temperature model revealed that non-air-conditioned dwellings could reach dangerously high internal
temperatures of 97 to 99°F during a heatwave, regardless of their shading, floor size, or internal heat
sources. This underscores the urgent need for cooling solutions, as lack of air conditioning remains the
primary risk factor for extreme indoor heat.

Our analysis of future power demand used multivariate regression to forecast Memphis’ peak electricity
consumption through 2045. Despite rising temperatures, our model predicts only a small increase in
maximum power demand (120.58 mW over 20 years), suggesting that existing power infrastructure may
not require significant expansion to meet future heat-related energy needs.

Lastly, our vulnerability assessment analyzed 27 Memphis ZIP codes to determine which areas are most
at risk during extreme heat events. By quantifying economic status, population density, age demographics,
and transportation dependence, we identified neighborhoods such as South Memphis, the Medical
District, and Downtown as being highly vulnerable. These areas, home to many low-income residents,
will face disproportionate harm when power outages and extreme heat coincide, necessitating targeted
mitigation efforts.
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Summary Statistics

ar  TemperatureF  TemperatureC Population Peak_Load_Hour_MW. GDP_Millions_Dollars Investment_Thousands_Dollars Consumption KWH  Number_EV Summer_ResidentialRate_Electricity_DollarPerKWH Efficiency_KWH_Per_GDP
103 394 1081000 3255 64569.542 977339 10753992000 006435 166548.9699
% 367 1090000 3195 66932.313 996031 10705452000 0.066 159944.4501
100 378 1100000 3069 68027.974 938844 10544122000 006771 154996.8547
99 372 1109000 3226 71119.881 964812 10514853000 006928 147846.8869

100 378 1119000 3155 72974138 958213 10436626000 006644

372 1129000 3086 75341736 892669 10154668000 0.06804

36.1 1139000 3096 77803.073 921736 10604732000 00714

78 1144000 3390 80380.966 932380 10208674000 007416

36.1 1150000 3113 81011504 891294 9672364000 1179 007692

356 1156000 377 90039.953 841428 9800375000 1820 007788

389 1163000 3316 96976.712 844408 9768296000 3101 007837

=== 20-Year Forecast ===
YearInt Forecasted TemperatureF Forecasted GDP Forecasted Peak Load MW
2023 97.927273 94112 .605000 3225.082087
2024 97.718182 96992.315045 3231.110920
2025 97.509091 99872.025091 3237.139753
2026 97 .300000 102751.735136 3243.168585
2027 97.090909  105631.445182 3249.197418
2028 96.881818  108511.155227 3255.226251
2029 96.672727 111390.865273 3261.255084
2030 96.463636  114270.575318 3267.283916
2031 96.254545  1171560.285364 3273.312749
2032 96.045455  120029.995409 3279.341582
2033 95.836364  122909.705455 3285.370415
2034 95.627273  125789.4155600 3291.399247
2035 95.418182  128669.125545 3297.428080
2036 95.209091  131548.835591 3303.456913
2037 95.000000  134428.545636 3309.485746
2038 94.790909  137308.255682 3315.514578
2039 94.581818  140187.965727 3321.543411
2040 94.372727  143067.675773 3327.572244
2041 94.163636  145947.385818 3333.601076
2042 93.954545 148827 .095864 3339.629909
2043 93.745455  151706.805909 3345.658742
2044 93.536364  154586.515955 3351.687575
2045 93.327273  157466.226000 3357.716407

(%]
1
2
3
4
5
6
7
8
5
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import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import os

def main():
internal_temp = 85 # Initial internal temperature (F)

# Get current directory where the script is located
script_dir = os.path.dirname(os.path.abspath(__file__))
csv_path = os.path.join(script_dir, 'data/heatwaves.csv')

# Read the CSV file
df = pd.read_csv(csv_path, skiprows=2)

# Extract time and temperature data
times_str = df['Time'].values
external_temps = df['Temperature (F)'].values

# Convert time strings to hour values (@-24)
hours = []
for time_str in times_str:

hour, minute = time_str.split(':")

hour = int(hour)

minute = int(minute.split()[@]) # Remove AM/PM
# Convert to 24-hour format
if 'PM' in time_str and hour != 12:

hour += 12
if 'AM' in time_str and hour == 12:

hour = @

hours.append(hour + minute/60)

# Ensure data covers full 24 hours

if len(hours) > @ and hours[-1] < 24:
hours.append(24)
external_temps =

# Time points for simulation (granular) — full 24-hour period

time_points = np.linspace(@, 24, 1000)

# Housing type parameters
housing_types = {

"Modern Apartment": {"C_eff": 8.5e6, "u_value": 0.35, "U_vent":
"1980s Apartment": {"C_eff": 7.2e6, "u_value": 0.45, "U_vent": 120, "wall_area":
"0lder Brick Apartment": {"C_eff": 12.3e6, "u_value": 0.70, "U_vent": 180, "wall_area": 220, "ACH":
"Modern Single-Family Home": {"C_eff": 15.7e6, "u_value": 0.3@, "U_vent": 120, "wall_area": 380, "ACH":
"1970@s Single-Family Home": {"C_eff": 13.8e6, "u_value":

# Skip the first two header rows

np.append(external_temps, external_temps[@])

90, "wall_area": 210, "ACH": 0.5},

190, "ACH": @.8},

1.2},
8.4},

9.50, "U_vent": 250, "wall_area": 34@, "ACH": 1.9},

"Pre-1950s Single-Family Home": {"C_eff":

10.5e6, "u_value": @.75, "U_vent": 300, "wall_area": 290, "ACH": 1.5},

"East Memphis Single-Family Home": {"C_eff": 10.5e6, "u_value":
"South Memphis Apartment": {"C_eff": 7.2e6, "u_value": 0.45, "U_vent":
"Downtown High-Rise Apartment": {"C_eff":
"Raleigh Single-Family Home": {"C_eff": 13.8e6, "u_value": 0.50, "U_vent":

@.75, "U_vent":

300, "wall_area": 240, "ACH": 1.5},

120, "wall_area": 180, "ACH": 8.8},
8.5e6, "u_value": 0.35, "U_vent":

90, "wall_area": 200, "ACH": 0.5},
250, "wall_area": 450, "ACH": 1.0}
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# Define all four homes
homes = [
{ # Home 1: East Memphis
"name": "Home 1 - East Memphis",
"housing_type'": "East Memphis Single-Family Home",
"solar_config": "Very Shady",
"occupancy": "Family of 3",
"custom_sqg_ft": 950,
"custom_u_value": 0.75, # Pre-1950s (1953)
"custom_wall_area": 240,
"initial_temp": internal_temp

{ # Home 2: South Memphis Apartment
"name": "Home 2 - South Memphis Apartment",
"housing_type'": "South Memphis Apartment",
"solar_config": "Not Very Shady",
"occupancy": "Family of 3", # Updated to 3 occupants
"custom_sqg_ft": 675,
"custom_u_value": 0.60, # 1967 construction
"custom_wall_area": 180,
"initial_temp": internal_temp

{ # Home 3: Downtown High-Rise
"name": "Home 3 - Downtown High-Rise Apartment",
"housing_type': "Downtown High-Rise Apartment",
"solar_config": "Not At All Shady",
"occupancy": "Family of 2",
"custom_sq_ft": 800,
"custom_u_value": .35, # Modern (2003)
"custom_wall_area": 200,
"initial_temp": internal_temp

{ # Home 4: Raleigh Single-Family Home
"name": "Home 4 - Raleigh",
"housing_type': "Raleigh Single-Family Home",
"solar_config": "Not At All Shady",
"occupancy": "Family of 6",
"custom_sq_ft": 2993,
"custom_u_value": 0.40, # 1990 construction
"custom_wall_area": 450,
"ipitial_temp": internal_temp

# Solar radiation estimation (W/m?) - simple model for a typical summer day
def solar_radiation(hour):
if hour < 6 or hour > 28: # Nighttime
return @
else: # Daytime with peak at noon
return 800 * np.sin(np.pi * (hour - 6) / 14)
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# Solar gain parameters

solar_configs = {
"Very Shady": {"alpha_solar": 0.5},
"Not Very Shady": {"alpha_solar": 1},
"Not At A1l Shady": {"alpha_solar": 2}

# Internal heat gain parameters (from the provided tables)
occupancy_patterns = {
"Working Family": {
"occupants": 4,
"heat_per_person": 100,
"appliance_load": {"morning": 250, "daytime": 5@, "evening": 25@, "night": 508}
}ir
"Retired Couple": {
"occupants": 2,
"heat_per_person": 90,
"appliance_load": {"constant": 150}
i
"Single Occupant": {
"occupants'": 1,
"heat_per_person": 100,
"appliance_load": {"variable": 100}
}ir
"Work-From-Home Family": {
"occupants": 4,
"heat_per_person": 110,
"appliance_load": {"daytime": 3@@, "nighttime": 150}
}ir
"Family of 3": {
"occupants": 3,
"heat_per_person": 100,
"appliance_load": {"morning": 225, "daytime": 5@, "evening": 225, "night": 5@}
i
"Family of 2": {
"occupants'": 2,
"heat_per_person": 100,
"appliance_load": {"morning": 200, "daytime": 50, "evening": 20@, "night": 50}
}ir
"Family of 6": {
"occupants": 6,
"heat_per_person": 100,
"appliance_load": {"morning": 300, "daytime": 100, "evening": 350, "night": 75}
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# Solar radiation estimation (W/m2) - simple model for a typical summer day
def solar_radiation(hour)
if hour < 6 or hour > 28: # Nighttime
return @
else: # Daytime with peak at noon
return 800 * np.sin(np.pi * (hour - 6) / 14)

# Internal heat gain based on time of day
def internal_heat_gain(hour, occupancy):
occupant_heat = occupancy["occupants"] * occupancy["heat_per_person"]

if "Family" in selected_occupancy:
# Morning: 6-9, Evening: 17-23, Night: 23-6, Daytime: 9-17
if 6 <= hour < 9: # Morning
return occupant_heat + occupancy["appliance_load"]["morning"]
elif 17 <= hour < 23: # Evening
return occupant_heat + occupancy["appliance_load"]["evening"]
elif hour < 6 or hour >= 23: # Night
return occupancy["heat_per_person'"] * occupancy["occupants"] + occupancy["appliance_load"]["night"]
else: # Daytime
return occupancy["appliance_load"] ["daytime"] # Minimal presence

elif "Retired Couple" in selected_occupancy:
return occupant_heat + occupancy(["appliance_load"]["constant"]

elif "Work-From-Home" in selected_occupancy:
if 8 <= hour < 22: # Daytime
return occupant_heat + occupancy["appliance_load"]["daytime"]
else: # Nighttime
return occupancy["heat_per_person"] * (occupancy["occupants"]/2) + occupancy["appliance_load"] ["nighttime"]

else: # Single occupant with variable pattern
if 8 <= hour < 1@ or 18 <= hour < 23: # Active hours
return occupant_heat + occupancy["appliance_load"]["variable"
else: # Less active or away
return occupancy["appliance_load"]["variable"] / 2

# Function to convert Fahrenheit to Celsius
def f_to_c(temp_f):
return (temp_f - 32) % 5.0/9.0

# Create separate plots for all homes

# Initialize dict to store all simulation results
simulation_results = {

'Hour': list(range(25)),

'External_Temp': []

# Store the external temperatures first
for hour in range(25):
simulation_results['External_Temp'].append(np.interp(hour, hours, external_temps))
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if __name__ ==

Q2

# Store hourly temperatures (0-24 hours) from simulation results
for hour in range(25):
# Use interpolation to get exact hourly values
simulation_results([f'{home_name}_Internal'].append(
np.interp(hour, time_points, temperatures_f)
)

# Create plot for this home

plt.figure(figsize=(10, 6))

plt.plot(hours, external_temps, 'ro-', label='External Temperature')
plt.plot(time_points, temperatures_f, 'b-', label='Internal Temperature')

# Calculate max internal temperature
max_internal_temp = round(np.max(temperatures_f), 1)

# Title with details

plt.title(f"{home['name']r*\nMax Internal Temp: {max_internal_temp}°F")
plt.xlabel("Time (hours)")

plt.ylabel("Temperature (°F)")

# Create time labels for x-axis

time_labels = [f"{h%24}:00" for h in range(@, 25, 3)]
time_ticks = np.arange(@, 25, 3)
plt.xticks(time_ticks, time_labels)

plt.grid(True)
plt.legend()

# Save each figure with a unique name
plt.savefig(f'home_thermal_{i+1}_{home["name"].replace(™ - ", "_").replace(" ", "_")}.png')

# Create DataFrame from the simulation_results dictionary
hourly_df = pd.DataFrame(simulation_results)

# Make sure the directory exists
os.makedirs(os.path.dirname(os.path.join(script_dir, 'data')), exist_ok=True)

# Save to CSV
csv_output_path = os.path.join(script_dir, 'data', 'hourly_temperatures.csv')
hourly_df.to_csv(csv_output_path, index=False)

print(f"Hourly temperatures saved to {csv_output_path}")

# Show all figures
plt.show()

__main__":
main()

26
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gspread
~t pandas as pd
from google.colab import auth
from google.auth.transport.requests i
from google.auth import default

auth.authenticate_user()

credentials, _ = default()

thor 5 ead with the cred
gc = gspread.authorize(credentials)

t A( t y E R
spreadsheet = gc.open_by_url("https:/ . / C )S KD7PdGNJOGk ) c/edit?usp=sharing")

t select the "Dat \ggregatio

worksheet = spreadsheet.worksheet(

.DataFrame(worksheet.get_all_records())
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# Summary Statistics
cols_to _exclude = ['Year']
data.drop(columns=cols_to_exclude).describe().round(3)

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

#Heat Mad

# Calculate the correlation matrix
correlation_matrix = correlation data.corr()

# Define a dictionary mapping the original variable names to new names
rename_dict = {
‘"TemperatureF': 'Temperature’,
'GDP_Millions Dollars': 'GDP',
"Investment_Thousands Dollars': 'Investment’,
"Consumption KWH': ‘'Consumption’,
'Population’: 'Population’,
'Summer_ResidentialRate Electricity DollarPerKWH': 'Electricity Cost’,
"Efficiency_ KWH_Per_ GDP': 'Efficiency’,
"Peak Load Hour MW': 'Peak Load',
# Add additional mappings as needed for your data

# Rename both the columns and index labels of the correlation matrix
correlation_matrix.rename(columns=rename_dict, index=rename_dict, inplace=True)

# Plot the correlation matrix as a heatmap

plt.figure(figsize=(12, 10))

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm’, fmt=".2f")
plt.title( 'Correlation Matrix of Variables')

plt.show()
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import pandas as pd IO 2 ] E * Ll_——l
import statsmodels.api as sm
import matplotlib.pyplot as plt

Re y data from the Google Sheet
spreadsheet = gc.open_by_url(“"https://docs.google.com/spreadsheets/d/1xZWrhGF1FFV6XSTQsBi38gKD7PdGNIOGKKyY-NyxW91c/edit?usp=sharing")
worksheet = spreadsheet.worksheet("Data Aggregation")
data = pd.DataFrame(worksheet.get_all_records())

. ~r0 (mE n to datetime (assuming it's a

data[ 'Year'] = pd.to_datetime(data[ 'Year'], format='%Y’

Prepar
lepender ari €
data[ 'Peak_Load_Hour_MW']

er ables (v y it
hr r ctc ere r v dowr
data[[ 'TemperatureF', 'GDP_Millions_Dollars',
'Investment_Thousands_Dollars']]

sm.add_constant(X)

model = sm.OLS(y, X)
results = model.fit(cov_type="HC1")

# rint © egressior mary
print(results.summary())

--- Create predictions ---

data[ 'Predicted_Peak_Load'] = results.predict(X)

# Optionally, display a plot of actual vs. predicted values over the years.
plt.figure(figsize=(10, 6))

plt.plot(datal[ ‘Year'], data[ ‘Peak_Load_Hour_MW'], marker=‘o', label='Actual Peak| Load")
plt.plot(data['Year"], data[ 'Predicted_Peak_Load'], marker='x"', label='Predicted Peak Load")
plt.xlabel( 'Year')

plt.ylabel( 'Peak_Load_Hour_Mu')

plt.title('Actual vs. Predicted Peak Load Over Years')

plt.legend()

plt.show()

import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt

# --- Read you ata frorn he Google Sheet ---

spreadsheet = gc.open_by_url("https://docs.google.com/spreadsheets/d/1xZWrhGF1FFV6XSTQsBi38gKD7PdGNIOGkKy-NyxW91c/edit?usp=sharing™)
worksheet = spreadsheet.worksheet("Data Aggregation”)

data = pd.DataFrame(worksheet.get_all_records())

onvert 'Year' colum ) time (assuming it's a 4-digit year)

data[ 'Year'] = pd.to_datetime(data[ 'Year'], format="%Y")

Prepare dependent and independ
data[ 'Peak_Load_Hour_MW']
data[[ 'TemperatureF', 'GDP_Millions_Dollars']]

dd a c to the independent
sm.add_constant(X)
OLS r
model = sm.OLS(y, X)
results = model.fit(cov_type="HC1")
# Print the regression s

print(results.summary())

Create predictions

data[ ‘Predicted_Peak_Load'] = results.predict(X)

o Error
data[ 'Error'] = data[ 'Peak_Load_Hour_MW'] - data['Predicted_Peak_Load"']
data['% Error'] = (data['Error'] / data['Peak_Load_Hour_MW']) * 100
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# Calculate Mean solute Percentage Error (MAPE)
mape = data['% Error'].abs().mean()
print(f“"Mean Absolute Percentage Error (MAPE): {mape:.2f}%")

# Optionally, display a plot of actual vs. predicted values over the years.
plt.figure(figsize=(10, 6))

plt.plot(data[ 'Year'], data[ 'Peak_Load_Hour_MW'], marker='o0', label="Actual Peak Load')
plt.plot(data[ 'Year'], data['Predicted_Peak_Load'], marker='x", label='Predicted Peak Load')
plt.xlabel(Year")

plt.ylabel( Peak Load (MW)")

plt.title('Actual vs. Predicted Peak Load Over Years')

plt.legend()

plt.show()

# Print individual errors
print(data[[ 'Year', 'Peak_Load_Hour_MW®', 'Predicted_Peak_Load", 'Error’

import pandas as pd
t statsmodels.api as
import matplotlib.pyplot as plt

# Replace this with your

spreadsheet = gc.open_by_url(
worksheet = spreadsheet.worksheet(
data = pd.DataFrame(worksheet.get_all_records()

= data[[ ' < 'GDP_Millions_Dollars|']].copy()

Drop ar

sm.add_constant(df[[ 'Ye
= df['TemperatureF']
temp_model = sm.OLS(y_temp, X_temp).fit()
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# B) GDP ~ YearInt

X_gdp = sm.add_constant(df[[YearInt']]) # Expected columns: [const, YearInt]
y_gdp = df['GDP_Millions_Dollars']

gdp_model = sm.OLS(y_gdp, X_gdp).fit()

# 4. Fit Main Linear

df[['TemperatureF', 'GDP_Millions_Dollars']]
sm.add_constant(X_main) # Expected columns: [const, TemperatureF, GDP_Millions_Dollars]
df[ 'Peak_Load_Hour_MW']

peak_model = sm.OLS(y_main, X_main).fit()

# Print summaries for clarity

print("\n=== Temperature ~ YearInt (Linear Regression) ===")
print(temp_model. summary())

print("\n=== GDP ~ YearInt (Linear Regression) ==
print(gdp_model.summary())

print("\n=== Peak Load ~ Temperature + GDP (Linear Regression) =
print(peak_model.summary())

last_year = df['YearInt'].max()
future_years = range(last_year + 1, last_year + 24) # e.g., if last_year=2022, [then years 2023 to 2042

forecasts = []

for yr in future_years:
# (A) Predict Temperature for future year
# Manually build a DataFrame with a constant column and YearInt
future_temp_df = pd.DataFrame({'YearInt': [yr]})
future_temp_df[ 'const’'] = 1
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forecasts = []

for yr in future_years:
# Predict Temperature for future year
# Manually build a DataFrame with a constant column and YearInt
future_temp_df = pd.DataFrame({'YearInt': [yr]})
future_temp_df['const'] = 1
# Ensure correct column order: const first, then YearInt
future_temp_df = future_temp df[['const’', 'YearInt']]
pred_temp = temp_model.predict(future_temp_df).iloc[@]

# (B) Predict GDP for future year

future_gdp df = pd.DataFrame({'YearInt': [yr]})
future_gdp_df['const’'] = 1

future_gdp_df = future_gdp df[['const’, 'YearInt']]
pred_gdp = gdp_model.predict(future_gdp_df).iloc[e@]

# (C) Predict Peak Load using forecasted Temperature & GDP
future_peak_df = .DataFrame({
‘TemperatureF': [pred_temp],
'GDP_Millions_Dollars': [pred_gdp
1)
future_peak_df['const'] = 1
# Ensure the column order matches that of X _main: [const, TemperatureF, GDP_Millions _Dollars]
future_peak_df = future_peak_df[['const', 'TemperatureF', 'GDP_Millions_Dollars']]
pred_peak_load = peak_model.predict(future_peak_df).iloc[@]

forecasts.append({
‘YearInt': yr,
'Forecasted_TemperatureF': pred_temp,
‘Forecasted_GDP': pred_gdp,
‘Forecasted_Peak_Load_MW': pred_peak_load
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# 6. Plot Historical vs. Forecasted Peak Load (Optional)

=

hist_plot_df = df[['YearInt', 'Peak_Load_Hour_MW']].copy()
hist plot df[ 'Type'] = 'Historical’

fut_plot_df = forecast_df[['YearInt', 'Forecasted_Peak_Load MW']].rename(
columns={'Forecasted Peak Load MW': 'Peak Load Hour MW"}

)
fut_plot_df['Type'] = 'Forecast’

plot_df = pd.concat([hist_plot_df, fut_plot_df], ignore_index=True).sort_values('YearInt')

plt.figure(figsize=(10, 6))
for ttype, subset in plot_df.groupby( ' Type'):
plt.plot(subset[ "YearInt'], subset['Peak Load Hour MW'],

marker="o"' if ttype=='Historical' else 'x',
label=ttype)

plt.xlabel('Year"')

plt.ylabel( 'Peak Load (mW)')

plt.title( 'Peak Load (mW) Each Year with Historical and Forecasted Data')
plt.legend()

plt.show()

# Print forecast table
print("\n=== 20-Year Forecast ===")
print(forecast_df)

# Calculate fitted values and residuals from the main model
df['Fitted'] = peak_model.fittedvalues
df[ 'Residuals’'] = peak_model.resid

# Calculate fitted values and residuals from the main model
df['"Fitted'] = peak_model.fittedvalues
df[ "Residuals’'] = peak_model.resid

# Create a residual plot: Fitted Values vs. Residuals
plt.figure(figsize=(10, 6))

plt.scatter(df[ 'Fitted'], df['Residuals’'], color='blue’, alpha=0.7)
plt.axhline(y=0, color="'red', linestyle='--")

plt.xlabel('Fitted Values"')

plt.ylabel('Residuals’)

plt.title('Residual Plot: Fitted Values vs. Residuals"')

plt.show()
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ate r f rs from tt inim
years_extended
X_extended_gdp sm.add_constant(pd.DataFrame
gdp_line = gdp_model.predict(X_extended_gdp)

le

plt.plot(li

(years_extended), gdp_line, col

plt.xlabel('Year")
plt.ylabel('GDP (Milli
plt.title('GDP vs.
plt.legend()
plt.show()

Year with

plt.figure(figsize=(10, 6))

lot hi

plt.scatter(df['YearInt'], df['Tempe

plt.scatter(forecast_df[

eate a xtende f year ] he mini

years_extended = range(df['YearInt'].min(), forecast_df["
X_extended_temp = sm.add_constant(pd.DataFrame({'YearInt’
temp_line = temp_model.predict(X_extended_temp)

e regre line e e ende eri

.plot(list(years_extended), temp_line, color='or

.xlabel("’
.ylabel('P
.title('Pe
.legend()
.show()

Q3:

n', alpha=0.7, label="Hi

d_GDP'], color=

range(df[ 'YearInt'].min(), forecast_df['YearInt'].max() + 1)
'YearInt': list(years_extended)}))

ion Line")

F'], color="blue', alpha=0.7, label="His

arInt'], forecast_df['Forecasted_TemperatureF'], colo

rint'].max() + 1)
list(years_extended)}))

="Tem

>

s=100,

label=

ted GDP')




Team #17524
35

° #import necessary packages
import warnings
warnings.filterwarnings('ignore"')

import statsmodels.api as sm

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn import preprocessing

from sklearn import metrics

from statsmodels.stats.outliers_influence import variance_inflation_factor, OLSInfluence
#from sklearn.cross_validation import train_test_split

%matplotlib inline

[167] # Load data
df = pd.read_csv('/Memphis_Zipcodes.csv')
print(df.head())

[188] #clean up matrix by removing all unnecessary dependent variables
df=df.drop('Neighborhood’ ,axis=1).drop( 'Avg Value',axis=1).drop( "Households w/ Bachelor\'s or Higher',axis=1).drop(‘'ZIP code’,axis=1)

[109] # lets plot correlation matrix using statmodels graphics packages's plot_corr

# create correlation matrix

corr = df.corr()

sm.graphics_plot_corr{corr, xnames=list(corr.columns))
plt.show()

print(corr)
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import pandas as pd
import numpy as np

# Load the memzipcodes data
try:

| df = pd.read_csv('/Users/jackvu/Desktop/latex projects/compsci/m3mathworks/real/data/memzipcodesdata.csv')

except FileNotFoundError:
print("File not found. Please provide the correct path to memzipcodes data.")
exit(1)

# Function to normalize a column to range [@, 1]
def normalize_column(column):

min_val = column.min()

max_val = column.max()

# Check if min and max are the same to avoid division by zero
if min_val == max_val
return np.zeros(len(column))

return (column - min_val) / (max_val - min_val)

# Store original zip codes
zipcodes = df['ZIP code'].copy() if 'ZIP code' in df.columns else df.index.copy()

# Calculate Walkers Ratio
df['Walkers Ratio']l = df['Walkers'] / df['Population’]

# Extract only the columns we need
selected_columns = ['Population', 'Old Proportion', 'Median Income', 'Walkers Ratio'l
filtered_df = df[selected_columns].copy()

# Normalize each column
normalized_df = pd.DataFrame()
for col in filtered_df.columns:
normalized_df[col] = normalize_column(filtered_df[col])

# Reverse the Median Income score since we want lower incomes to contribute more positively
normalized_df['Median Income'] = 1 - normalized_df['Median Income']

# Calculate the sum of normalized scores for each zipcode
normalized_df['total_normalized_score'] = normalized_df.sum(axis=1)

# Add zipcode back to the dataframe
normalized_df['ZIP code'] = zipcodes

# Reorder columns to have zipcode first
cols = ['ZIP code'] + [col for col in normalized_df.columns if col != 'ZIP code']
normalized_df = normalized_df[cols]

# Display the results
print("Normalized data with total scores:")
print(normalized_df.head())

# Save to CSV
normalized_df.to_csv('normalized_memzipcodes.csv', index=False)
print("Saved normalized data to 'normalized_memzipcodes.csv'")

36
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import pandas as pd

import geopandas as gpd

import contextily as ctx

import matplotlib.pyplot as plt
import matplotlib.colors as colors

# Load the data with vulnerability scores
data = pd.read_csv('/Users/jackvu/Desktop/latex projects/compsci/m3mathworks/real/normalized_memzipcodes.csv')

# Load ZIP code geometry data from a local shapefile or use geopandas sample data
try:

zipcode_gdf = gpd.read_file('/Users/jackvu/Desktop/latex projects/compsci/m3mathworks/real/data/t1_2022_us_zcta520.shp')
except:

# Fallback to using the Memphis area ZIP codes only

print("Local file not found. Downloading from Census Bureau TIGER/Line...")

# Use the 2020 TIGER/Line Shapefiles which are commonly available
url = "https://www2.census.gov/geo/tiger/TIGER2020/ZCTA520/t1_2020_us_zcta52@.zip"
try:
# Download directly using geopandas
zipcode_gdf = gpd.read_file(url)
except Exception as e:
print(f"Error downloading data: {e}")
# Alternative source if Census data fails
print("Using Natural Earth data as fallback...")
zipcode_gdf = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
# This would only give country boundaries, so we'd need to warn the user
print("WARNING: Could not load ZIP code data. Map will show country boundaries only.")

# Convert ZIP code strings to match format in data
zipcode_gdf['ZCTASCE20'] = zipcode_gdf['ZCTASCE20'].astype(str)
data['ZIP code'] = data['ZIP code'].astype(str)

# Filter for Memphis area ZIP codes (these are typically in the range 38101-38199)

memphis_zip_codes = datal'ZIP code'].unique()

zipcode_gdf_memphis = zipcode_gdf[zipcode_gdf['ZCTASCE20'].isin(memphis_zip_codes)]

# Print info about the found ZIP codes

print(f"Found {len(zipcode_gdf_memphis)} Memphis area ZIP codes out of {len(memphis_zip_codes)} in the dataset.")

# Configure matplotlib colormap settings for better visualization
plt.rcParams.update({
'axes.labelsize': 10,
'legend. fontsize': 8,
'legend.title_fontsize': 18,
1
# Set custom color scheme and legend label
cmap = 'YWOrRd' # Yellow-Orange-Red colormap
legend_label = "Vulnerability Index'

# If filtering doesn't return enough results, we can use a broader approach
if len(zipcode_gdf_memphis) < len(memphis_zip_codes) * 8.5: # Less than half of expected ZIP codes
print(f"Only found {len(zipcode_gdf_memphis)} of {len(memphis_zip_codes)} Memphis ZIP codes. Using broader geographic filter.")
# Get ZIP codes for Tennessee (first 3 digits typically 370-385)
tn_mask = zipcode_gdf['ZCTASCE20'].str.startswith(('37', '38'))
zipcode_gdf_memphis = zipcode_gdf [tn_mask]

# Merge the vulnerability data with geographic data
merged_data = zipcode_gdf_memphis.merge(data, left_on='ZCTA5CE20', right_on="ZIP code', how='left')
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# Convert to a proper CRS for mapping (Web Mercator)
merged_data = merged_data.to_crs(epsg=3857)

# Create the plot
fig, ax = plt.subplots(1l, 1, figsize=(15, 1@))

# Check if the column exists, otherwise use the first numeric column

if 'total_normalized_score' in merged_data.columns:
score_column = 'total_normalized_score'

else:
numeric_columns = merged_data.select_dtypes(include=['float64', 'int64']).columns
score_column = numeric_columns[@] if len(numeric_columns) > @ else merged_data.columns[@]
print(f"Column 'total_normalized_score' not found. Using '{score_column}' instead.")

# Plot the data with a colormap indicating vulnerability
merged_data.plot(
column=score_column,
ax=ax,
legend=False, # Disable the default legend
cmap="Y10rRd'

# Try to add basemap if contextily is available
try:

ctx.add_basemap(ax, source=ctx.providers.CartoDB.Positron)
except:

print("Could not add basemap - continuing without it")

# Add title and labels
plt.title('ZIP Code Vulnerability Heatmap', fontsize=12)
plt.axis('off"')

# Create a separate axis for the colorbar
cbar_ax = fig.add_axes([0.25, 0.08, 0.5, 0.02]) # Adjusted position and size

# Create a custom colormap with normalized data range

norm = colors.Normalize(vmin=merged_data[score_column].min(), vmax=merged_datal[score_column].max())
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)

sm.set_array([])

# Add colorbar with descriptive labels

cbar = fig.colorbar(sm, cax=cbar_ax, orientation='horizontal')
cbar.set_label(f'{legend_label} (Higher = More Vulnerable)', fontsize=1@)
cbar.ax.tick_params(labelsize=8)

# Add annotations with smaller font size and adjusted positions

ax.annotate('Lower Vulnerability', xy=(0.25, 0.05), xycoords='figure fraction', fontsize=8)
ax.annotate('Higher Vulnerability', xy=(@.75, 0.05), xycoords='figure fraction', fontsize=8)

plt.tight_layout()
plt.savefig('vulnerability_heatmap.png', dpi=300, bbox_inches='tight')
plt.show()
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