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Executive Summary

With so much political and economic interest behind accurate results for the United
States Census, the Census Bureau has implemented several strategies for dealing with the
particularly pesky problem of undercounting, or the exclusion of certain individuals from the
Census: These include sampling the population after the Census to gauge how many people
were excluded, guessing values for missing data, and examining public records to estimate
the breakdown of the population. Of these, we found that only the last two are sufficiently
helpful to merit use, whereas the first strategy of post-Census sampling can lead to error
greater than what it was intended to remedy.

Of course, even with perfectly reliable Census results, proper political representation
cannot be attained without a system that distributes seats in the House of Representatives
in a manner that addresses the particularities of the population. Evaluating six methods
(Hill, Dean, Webster, Adams, Jefferson, and Hamilton–Vinton) that Congress has historically
considered for dividing seats in the House, we found one (Hamilton–Vinton) that surpasses
the others in the arena of fair apportionment.

After Congress, the next bearers of responsibility are the fifty states of the Union, who
are constitutionally charged with drawing district lines that demarcate regions for their
representatives. In regard to this process, we suggest that states commit to a system that
impartially divides the state, according to population density. Such a system, we hold, will
ultimately best serve the common good of the state and strengthen the faithfulness with
which our representative democracy reflects the sentiments of the American people.
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1 Introduction

“The actual Enumeration shall be made. . . every subsequent Term of ten Years, in such
Manner as they shall by Law direct.” — United States Constitution, Article I, Section 2

In 1787, the Founding Fathers set in law the requirement for a decennial enumeration of
the country’s population. Today, we call this once-a-decade process the Census, named after
a similar practice in Ancient Rome. The original purpose of the Census results was to assist
in the apportionment of seats in the House of Representatives and in the collection of direct
taxes. The earliest Censuses tried to collect all data on a single day, and, for the most part,
they succeeded. However, with a population now over 300 million, the United States’ 2010
Census will take weeks, if not months. When will it end? When can the Census Bureau be
sure that everybody has responded?

At some point, the Census Bureau will have to declare data collection to be over and start
tabulating results. Anybody who has not replied yet will be left out. Since the Census will
record fewer people than actually live in the United States, this is known as undercounting.
Undercounting may not sound like a big deal, but in today’s world, the stakes are huge. For
instance, suppose Wyoming has a population great enough to merit two seats in the House
of Representatives. There are no well-defined addresses in rural areas, and the sparse layout
makes it difficult for an interviewer to travel from house to house. If enough of Wyoming’s
citizens go uncounted, the Census Bureau’s “official” statistic for Wyoming’s population may
only be large enough to award one seat to the state. In other words, all Wyomingites will
be denied half of their voice in the House.

Though the Census’s second original purpose, which was to determine how much money
the government should charge the citizens of each state, has since reached obsolescence with
the passing of the 16th Amendment, in its place has arisen a new, more important, purpose:
The determination of how much money the government should give the citizens of each
state. Every year, Congress appropriates more than $200 billion in federal funding to states
based on Census estimates. Money targeted toward black youths, for example, is allocated
based on the number of black youths in each state, as recorded by the Census. Since many
populations in certain geographic areas are undercounted chronically, there can sometimes
be a mismatch between funding and the need for it in these areas. Statistically adjusting for
undercounting can help alleviate this problem, as we describe in Section 2.

Even if the Census were adjusted to perfection, some potential problems would still
remain. With regard to apportionment of Representatives, the algorithm that Congress uses
may not be optimal, even with perfect data. Finding a better method for apportioning these
seats is a key component in giving each citizen his or her fair voice. Our suggested method
is given in Section 3. Furthermore, once states learn how many seats (and consequently
how many Congressional districts) are needed, they still have to draw the actual district
lines. Sometimes, states gerrymander by intentionally drawing districts to concentrate a
particular interest in one district, or to spread a certain interest thinly across all the districts.
Congress must eschew inequity by encouraging states to adopt new, fairer methods, creating
impartial standards for boundary delimitation, as we recommend in Section 4.
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2 Census adjustments

2.1 Introduction

The U.S. Census is supposed to be a complete tabulation of every person residing the United
States; however, the omission of persons from the Census (known as undercounting) has
been a perennial (or rather, decennial) problem. Undercounting is of interest to policy-
makers and civil society because it afflicts groups at different rates; if poor people, for
instance, are more likely to be undercounted than wealthier people, then poorer states will
be politically underrepresented compared to their wealthier counterparts. Census data is
critical to allocating funding for big-ticket federal programs, so regions with undercounted
populations will also receive less federal money than they deserve. Thus, what matters is not
the absolute magnitude of the undercount, but rather the differential in undercounting be-
tween various groups. The size and nature of the undercount is not precisely known; indeed,
if it were, then the entire matter would be moot. In the most recent Census, overcounting
due to multiple entries for single persons was also found to be a significant problem. Sev-
eral statistical methods are currently available to aid in identifying and rectifying erroneous
Census counts. So, if undercounting introduces unfairness into the allocation of domestic
political and monetary resources, and if methods are available to rectify it, then why is there
any debate at all about the advisability of using them?

The various methods of Census data improvement attempt to squeeze more accuracy
out of inherently inaccurate numbers on a huge scale, mitigating some sources of error
but introducing others. With each method, one must question whether the introduced
error is a fair tradeoff for the eliminated error. The potential for minor imperfections with
individual entries in small data inputs to snowball into multithousand person population
fluctuations is a frightening prospect that is compounded by the inherent impossibility of
perfectly surveying each individual even in a fairly small area. Consequently, here we weigh
each method’s potential risk against its expected reward.

2.2 Assumptions

We make our recommendations without regard to current law. Our findings with respect to
the Post-Enumeration Survey (PES) (which uses the sampling method), for instance, were
not influenced by the current antisampling legal environment. In general, we also assume
that Census data is reasonably complete and accurate. Obviously the data is not perfect,
since the point of this exercise is to attempt to exorcise errors from the data. However, it is
impossible to paint an accurate picture of the U.S. population without fairly complete initial
input data.

2.3 Analysis

We consider three principal techniques: Sampling, demographic analysis, and imputation.
Each of these techniques finds wide international use; the U.S. Census Bureau currently uses
demographic analysis and imputation, but not sampling. Some statisticians claim that the
addition of sampling would help make the Census more accurate. However, we agree with
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Freedman and Wachter [1], who caution, “Despite what you read in the newspapers, the
census is remarkably accurate. Statistical adjustment is unlikely to improve on the census,
because adjustment can easily put in more error than it takes out.” We agree that the Census
Bureau’s decision to use demographic analysis and imputation but not sampling results in a
more accurate Census.

2.3.1 Sampling

Perhaps most prominent among the currently available Census rectification methods is sam-
pling, a technique which has been on the political radar since the 1970s [8]. In 1999, the
Supreme Court held that federal law prohibits the Census Bureau from using sampling to
determine population counts [9], barring the use of sampling to produce the official 2000
population count.

Broadly, sampling involves surveying a relatively small sample of the population after the
main Census and cross-referencing survey responses with Census data to approximate the
rate of incorrect inclusions or exclusions of people. The sample, which serves as a “second
pass” after the Census, is the essence of the technique commonly referred to as capture-
recapture. In the United States, the survey (known as the Post-Enumeration Survey, or
PES) is implemented as a blocked stratified cluster survey of more than one million people
[10]. By essentially surveying a region twice and comparing the results, sampling supposedly
gives additional accuracy to results.

To derive an equation for this sampling methodology, we define some variables:

NF is the final count.

NC is the initial census count.

NE is the number of extraneous persons identified during the sampling process who

should not have been included in the Census for the region.

NS is the number of people identified in the sampling survey.

NM is the number of matches (i.e., people who completed both the Census

and the sampling survey).

P (C) is the probability that a person was properly included in the Census.

P (S) is the probability that a person was included in the survey.

We start by rewriting some of these variables in terms of other variables:

NM = P (C ∧ S) ·NF = P (C) · P (S) ·NF , (1)

NC −NE = P (C) ·NF ,

NS = P (S) ·NF .
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Then, by substituting, we find

NF = NF · NF

NF
· P (C)

P (C)
· P (S)

P (S)

=

(
NF · P (C)

)
·
(
NF · P (S)

)
(
NF · P (C) · P (S)

) ,

NF =
(NC −NE) ·NS

NM

. (2)

Equation (2) is a macroscopic approximation of the sampling methodology.
First, the good news: Sampling can be highly effective at estimating population sizes

from incomplete data. Running a computer simulation with actual population size NA =
1, 000, 000 and P (C) = P (S) = 90% gives NF = 999, 932. In other words, even when each
individual had only a 90% probability of responding to the Census or the PES, sampling
was still able to estimate the population size with 99.99% accuracy. A similar result was
obtained for P (C) = 10% and P (S) = 20%, indicating that sampling is robust with respect
to changes in the response rate between the two surveys.

However, there is a flaw: In Equation (1), we assumed that P (C ∧ S) = P (C) · P (S).
To see why this is a problem, let us write P (C) = P (A ∨X) and P (S) = P (A ∨ Y ), where
A represents the probability that a person is highly unlikely to complete either survey and
X and Y are random noise variables. Obviously, C and S are not independent because A
implies both C and S. Using simple Boolean identities and the laws of probability, we can
write

P (C ∧ S) = P
(
(A ∨X) ∧ (A ∨ Y )

)

= P
(
A ∨ (X ∧ Y )

)
= P (A) + P (X ∧ Y )− P (A ∧X ∧ Y )

= P (A) + P (X) · P (Y )− P (A) · P (X) · P (Y ), (3)

P (C) · P (S) = P (A ∨X) · P (A ∨ Y )

=
(
P (A) + P (X)− P (A) · P (X)

)
·
(
P (A) + P (Y )− P (A) · P (Y )

)
. (4)

But note that Equation (3) does not equal Equation (4). Therefore, by the transitive
property, P (C ∧ S) �= P (C) · P (S). In other words, if C and S are not independent, then
we can no longer use the identity that we took for granted in Equation (1), and our approx-
imation in Equation (2) no longer holds! Logically, we should assume that C and S are not
independent because there is likely to be a good deal of correlation between failing to com-
plete the Census and failing to complete the PES. People in difficult socioeconomic conditions
and radical subscribers to antigovernment philosophies, for instance, are both significantly
less likely to complete either survey than a typical person. Even though Equation (2) is not
perfect, it is the best approximation that we have.
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Running a simulation with “correlation parameter” A = .05, actual population size
NA = 1, 000, 000, and noise parameter equal to 3%, we get NF = 949, 896 using the above
formula. It appears that NF = (1 − A) · NA; indeed, this makes sense since repeat survey
nonrespondents appear the same to the Census as nonexistent people. However, the math
only becomes more complicated when additional real-world factors, such as the disinclination
of some people to respond (but no guarantee), come into play. Sampling-based results are
consequently guaranteed to be inaccurate by at least the number of people who purposefully
avoid Census surveys, a population that remains uncounted even after sampling is conducted.
This effect is known as correlation bias. If the proportion of nonrespondents is known, then
the true population can be calculated from NF ; however, a .001 error in the estimation of
A corresponds directly to a .1% change in the estimated population, or 300, 000 people.
One paper estimates the size of this “doubly uncounted” population as 3 million, but any
approximation of this elusive group’s size is highly speculative [11].

A final problem from the use of sampling comes from details of real-life implementation.
In order to obtain PES results that are representative of the entire population, it is necessary
to conduct the survey on a sample that is carefully controlled in terms of diversity. (Typically,
the Bureau has used a stratified block cluster sample [10].) In such an arrangement, there
may be over 1,000 strata representing different slices of the populace; assuming about a
million participants, the average stratum works out to 1,000 individuals. The “leverage
factor” NC/NS, the number of individuals across the country represented by each individual
in the sample, would be about 300. In such an arrangement, small pieces of questionable
data could have large sway over the final outcome. For instance, suppose that there are 100
individuals in the relatively small Montana block of the African-American female stratum.
Great Falls, home to more than 10% of Montanan African-Americans, is a cluster site for
the PES. An unscrupulous field worker fabricates half of his forms, marking on most of them
that the supposed interviewee did not participate in the Census. The NM for this stratum-
block are consequently depressed (and the NP number may be inflated as well), leading to
a potentially drastic overstatement of the Montanan African-American female population,
potentially numbering tens of thousands of individuals, as a result of a few dozen fabricated
PESs. Such an extreme situation is unlikely in real life, but it demonstrates the pitfalls
of adjusting the results of the broad main Census based on data from a relatively small
post-survey.

Sampling is a very powerful statistical technique in an ideal survey, but the real-world risk
of small pieces of false data causing large swings in population estimates, coupled with sam-
pling’s inability to discern the existence of people wholly averse to a government-operated
Census of the entire population, makes it unsuitable for use in producing official Census
statistics. A Berkeley statistics professor identifies a 1990 instance in which 13 PES responses
caused a 50,000 swing in the undercount estimate [12]. Such situations are uncommon but
evidently do exist. The risk of throwing off the entire U.S. population estimate, particu-
larly in smaller demographic categories, does not stack up against the reward of potentially
identifying and rectifying some count errors.
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2.3.2 Demographic analysis

A second method of calculating discrepancies between Census counts and actual count is
Demographic Analysis (DA). Used for every Census since 1960 [13], DA estimates under-
count/overcount by comparing Census data with existing aggregate data sets held by the
government. These data sets are usually independent of the Census and often include admin-
sitrative statistics on births, deaths, authorized international migration, healthcare, welfare,
etc. [13]. Also included are estimates of legal emigration and net illegal immigration. By
analyzing the DA, the Census Bureau develops population benchmarks, with which, via
substraction, we can find the Census net undercount [13]. The internal consistency of DA
and its high fidelity with population changes make DA a preferable alternative over statistic
sampling. One important distinction must be made, however: DA and sampling are, by
nature, different techniques for estimating count discrepancies. Whereas sampling estimates
undercount directly with the capture-recapture strategy, DA simply offers baselines from
which we can draw conclusions about the completeness of the Census data.

2.3.3 Imputation

The final method, and also the technique most extensively used by the 2000 Census, is im-
putation. Imputation deals with the attribution of data (both demographic and population
count) to households or sites that are known to exist but have not been surveyed by the
Census. The fundamental premise of imputation is essentially, “I am like my neighbors.”
In other words, the idea behind imputation assumes that we can make an educated guess
about a household based on information already known about the household’s neighbors.
A central question of imputation, then, is how information about a person or housing unit
should be guessed based on its surroundings.

There are two categories of imputation: Count imputation and whole-person characteris-
tics imputation. Count imputation affects the Census count of the actual population, while
characteristics imputation affects the demographic information of individual people. In the
2000 Census, count imputation added 1.2 million people to the Census total, while char-
acteristics imputation was necessary to complete the personal information of an additional
4.6 million people [5]. Count imputation was needed when, for instance, the Postal Service
returned Census materials as undeliverable. Even if a housing unit could not be located, its
expected occupancy could be imputed and the personal information of its theoretical resi-
dents completed. Imputation differs from sampling because it involves extrapolating known
regional demographic data to known (or previously known) residential locations; sampling,
on the other hand, necessitates the use of statistical and mathematical methods to estimate
a final population from the overlap of two samples. The people added to a Census count via
count imputation are added for some reason (such as the Census Bureau knowing that their
residences exist but not being able to locate them). The people added to a Census count via
sampling are added for no reason other than the prediction of their existence by statistical
models. In this way, count imputation is more based in reality than sampling and thus less
prone to catastrophic error.

Count imputation is implemented in three stages: First, if a housing unit’s status (i.e.,
whether it exists and is in habitable condition) is unknown, it is imputed. Next, if the housing
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unit is habitable and its occupancy status (occupied or vacant) is unknown, it too is imputed.
Finally, if the household is vacant but its size is unknown, the number of residents is imputed.
Characteristics imputation is more straightforward than count imputation: essentially, if a
person is known (or projected, based on count imputation) to exist but their demographic
information is incomplete, the information is imputed based on the demographic trends
around the person’s home.

It is difficult to come by information that identifies demographic information and res-
idences for individual people; since imputation is all about correlating data on a house-
to-house scale, it is consequently difficult to evaluate the effectiveness of imputation on
real-world test cases. Larger data sets, such as the map in Figure 1 depicting counties
shaded based on the African-American portion of the population, tend to display the same
associative clustering (on a macroscopic scale) that imputation assumes on a microscopic
scale:

Figure 1: This map depicts counties shaded based on the African-American portion of the
population [7].

A potential pitfall of imputation is the repetition of “oddball” individuals: for instance,
if the Census Bureau imputes Bob’s personal data by replicating the data of his nearest
neighbor, but Bob happens to live next to William Gates, the imputation process will have
introduced a good deal of error. As a less extreme example, a neighborhood with an atyp-
ically low response rate and a correspondingly high imputation rate may have the same
person’s data imputed multiple times to represent several neighbors. Even if that person is
fairly typical, the repetition of a single person’s data several times is not good design and is
indicative of potential problems. (What if Bill Gates’s data were repeated four times? What
kind of per capita income would that ZIP code have?) Fairly simplistic imputation meth-
ods, such as sequential hot deck (which is essentially nearest-neighbor matching, possibly
with correlation of known demographic data), suffer from potential multiple repetition of
individuals and also potential repetition of oddball individuals. However, a more advanced
technique that examines multiple neighbors and repeats a median value could mitigate such
concerns [6].
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More advanced forms of imputation use more complex models that also allow imputation
error to be estimated and bounded. Since imputation extrapolates information based on the
existence of real people (or real housing structures, at least), it is less subject to error from
statistical and survey artifacts than sampling. In terms of manpower and cost, imputation is
quite efficient since it is mostly accomplished by computer analysis. The greatest danger from
imputation is the repetition of “oddball” individuals or the multiple repetition of individuals
in areas with spotty data; modern, high-power computers are capable of using advanced
cross-sampling spatial analysis algorithms to mitigate these effects. Imputation is a cost-
effective way to improve the detail and accuracy of spotty Census data within a known error
bound and is thus advisable for use within the Census.

3 Apportionment method

3.1 Introduction

As described in Section 1, one of the primary purposes of the U.S. Census is to determine
the number of people in each state so that seats in the House of Representatives can be
apportioned among the states fairly. (How the states then choose to district their seats
is detailed in Section 3.) After every Census, Congress uses the population of each state
to compute the number of seats each state will receive. However, what algorithm they
should use is under contentious debate. Currently, Congress uses what is known as the equal
proportions (or Hill) method. A 2001 report by the Congressional Research Service [14]
suggested five alternative methods without reaching a conclusion as to which is the “best”
or “most fair.” In this section, we examine these six methods (the Hill method plus the five
alternatives) quantitatively to determine which method is statistically superior.

3.2 Goals

In order to create a model, we must precisely define what the goal of our model is. In other
words, what constitutes a fair reapportionment method?

Goal 3.1. We want to choose a reapportionment method that, in the long run, is indistin-
guishable from assigning seats proportionally to states’ populations.

What does this mean? In one reapportionment cycle, it is impossible to assign seats
exactly proportionally to populations because seats come in whole numbers. Imagine a
simple country with only two states of equal population and 435 seats to distribute. Each
state should receive the same number of seats, but there are an odd number of seats total.
One state will be cheated out of half a seat and receive only 217, while the other will receive
a bonus half seat to make 218 total. This isn’t fair! Luckily, we can make it fair. The next
time the seats are reapportioned, switch the “bonus” seat to the other state. If we repeat
this process over many reapportionment cycles, it will be fair on average.

Unfortunately, this goal alone is not enough. What if we assigned all 435 seats to the
same state (and 0 to the other state), and switched all 435 seats to the other state every 10
years? This is perfectly fair in the long run but horribly unfair in the short term. This leads
us to another goal.
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Goal 3.2. We want to choose a reapportionment method that, in the short term, is as close
as possible to assigning seats proportionally to states’ populations.

How can we quantify whether a method achieves these goals? Imagine making a scat-
terplot of all 50 states, where the x-coordinate represents the proportion of the total U.S.
population living in that state, and the y-coordinate represents the proportion of the total
House of Representatives seats apportioned to that state. A state with 1% of the total pop-
ulation should receive 1% of all seats, and a state with 10% of the total population should
receive 10% of all seats. In other words, our target is the line ŷ = x. However, the actual y
values will not lie on this line. If we have n data points (that is, n states), then the standard
error of the actual statistics about the line is

SE =

√∑
(y − ŷ)2

n
. (5)

We know that n = 50 and ŷ = x. Additionally, popstate/poptotal and y = seatsstate/435.

SE =

√√√√∑(
seatsstate

435
− popstate

poptotal

)2

50
. (6)

For instance, we can calculate the standard error for the actual 2000 apportionment.
Using Census-provided data for the apportionment population and number of apportioned
representatives in each state [15], we find that SE ≈ 0.000637. Figure 2 confirms this small
standard error because we can visually see that all of the data points lie very close to the
line ŷ = x.

Figure 2: A scatterplot of the 2000 apportionment. The data lies very close to the expected
line, meaning there is a small standard error.
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3.3 Model

Rather than working with real Census data, we worked with a model of the United States.
This model made several simplifying assumptions.

Assumption 3.1. The number of states in the United States will remain fixed at 50.

Assumption 3.2. The number of seats in the United States House of Representatives will
remain fixed at 435, as it has for 9 of the last 10 decades [16].

Assumption 3.3. The total population of the United States will remain between 300 million
and 400 million.

One trial run of the program consists of randomly picking a population between 300
million and 400 million and then distributing these among the 50 states. For this step,
we used two methods: A uniform distribution that assigns roughly the same number of
people to each state, and a power-law distribution that assigns a small number of people to
many states and a large number of people to very few states. We calibrated our power-law
distribution so that the expected values for the most and least populous states resemble the
actual populations of the most and least populated states in the United States, as of 2000.

After distributing the population into states, we apportioned the 435 House of Represen-
tatives seats to the 50 states using 6 different methods. The following definitions are adapted
from [14].

Method 3.1 (Adams). Use a binary search to find a number so that, when it is divided
into each state’s population and resulting quotients are rounded up for all fractions, the total
number of seats will sum to 435. In all cases where a state would be entitled to less than one
seat, it receives one anyway because of the constitutional requirement.

Method 3.2 (Dean). . . . are rounded at the harmonic mean, the total number of seats. . .

Method 3.3 (Hill). . . . are rounded at the geometric mean, the total number of seats. . .

Method 3.4 (Webster). . . . are rounded at the arithmetic mean, the total number of seats. . .

Method 3.5 (Jefferson). . . . are rounded down for all fractions, the total number of seats. . .

Method 3.6 (Hamilton–Vinton). First, the population of 50 states is divided by 435 in
order to find the national “ideal size” district. Next this number is divided into each state’s
population. Each state is then awarded the whole number in its quotient (but at least one).
If fewer than 435 seats have been assigned by this process, the fractional remainders of the
50 states are rank-ordered from largest to smallest, and seats are assigned in this manner
until 435 are allocated.

For each of the two population distribution functions, we ran the program over many
trials and calculated the standard error for the apportionment determined by each of the six
methods.
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3.4 Results

For the uniform distribution, the averages of the standard errors over 1,000,000 trials were
as follows:

Method Mean Std Err
Hamilton–Vinton: 0.000782851

Adams: 0.001348290
Dean: 0.000839477
Hill: 0.000812758

Webster: 0.000795882
Jefferson: 0.001124880

To create a more manageable data set, we reduced the number of trials to 1,000 and
computed standard deviation as well:

Method Mean Std Err Std Dev
Hamilton–Vinton: 0.0007854 0.0000799

Adams: 0.0013489 0.0001859
Dean: 0.0008423 0.0001020
Hill: 0.0008150 0.0000945

Webster: 0.0007987 0.0000884
Jefferson: 0.0011269 0.0001314

An ANOVA test at the 5% significance level showed significant evidence that these means
are not the same (p ≈ 0.000). It appears that the Hamilton–Vinton has the lowest mean, so
we performed five 2-sample matched-pair one-sided t-tests, one comparing Hamilton–Vinton
to each of the other five methods. All five showed significant evidence at the 5% significance
level (p ≈ 0.000) that the Hamilton–Vinton test has a lower standard error than the other
tests. This means that, if the Hamilton–Vinton method were not the best and we conducted
many many trials, we would expect to see results as extreme as these only 5% of the time.

For the power-law distribution, the data after 1,000,000 trials was as follows:
Method Mean Std Err

Hamilton–Vinton: 0.000802677
Adams: 0.001531700
Dean: 0.000884385
Hill: 0.000848855

Webster: 0.000824826
Jefferson: 0.001214880

The results of the ANOVA test and t-tests were similar. In other words, the Hamilton–
Vinton method appears to be the best method for apportioning seats fairly, given the re-
straints of our model. However, not all real-world situations will obey the assumptions we
made. To truly test this model, we would want to test the six methods on actual state
population data.

4 Fair redistricting

When the Founding Fathers crafted the U.S. Government, they purposefully constructed our
institutions to guard against the unrestrained despotism that had driven the first pilgrims
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to flee the Old World. With the doctrine of “dual spheres of sovereignty,” the Framers de-
centralized power, splitting governing duties between the federal government and the states.
Thus, although the government apportions the seats in the House of Representatives, the
responsibility of boundary delimitation rests with the state legislatures. Redistricting, there-
fore, has always been politically contentious because the party in power has the ability to
fix the political makeup of the state, possibly for the next ten years. State legislatures
have often proven to be incredibly nimble in their redistricting, carving districts of bizarre
shape in order to concentrate a particular interest (a practice called gerrymandering).
Since the whole point of a representative democracy is that interests find a voice through
the legislature, and since so much political tension invariably accompanies the decennial
reapportionment, fairer standards for redistricting would not only produce a more complete
representation of American citizens in government but also obviate the occasion for partisan
bickering and needless tying up of our judicial system by politically motivated suits.

The particular algorithm we proffer is an impartial drawing of district lines, based on
where people live, but without regard to who they are. The reason for this is simple: Redis-
tricting has become a huge, involved task that, in many states, drastically changes existing
boundaries and local constituencies, without regard to the needs of the local communities.
An impartial algorithm is an equitable and appealing alternative because, in the long run,
no party benefits or suffers as the demographic composition changes with time.

A moral justification for accepting impartial boundary delimitation comes from the con-
cept of the “original position,” a philosophy first outlined by John Rawls in his 1971 magnum
opus A Theory of Justice. The original position specifies a hypothetical situation in which
all parties are behind what Rawls called a “veil of ignorance” [2]. Rawls’ principle argument,
then, was that the choices made in such a disinterested scenario comprise the truly equitable
and just resolution.

Accordingly, in such a Rawlsian situation, political parties have no knowledge of any fac-
tors that would contribute to any partiality in decision-making; that is, they know nothing
of the racial composition of the state, the distribution of income, geographic party affili-
ation, political majority, etc. In such a situation, neither party would be so foolish as to
gerrymander and opt for specifically shaped districts because such an arrangement can just
as likely help as hurt. In fact, understanding that the demographics of the state are, in a
sense, subject to chance, each party would want to subscribe to an impartial standard, or,
at the very least, hold no objection to one; for impartial redistricting will tend to mirror
the state’s sociopolitical composition in the long run, so a party would possess rightful clout
with the support of a majority, yet still retain representation if it should draw support from
a minority.

Moving away from philosophy, one reasonable question is whether an impartial mecha-
nism for redistricting is at all feasible in the real world. To address this, we created a model
that forms districts for Texas, based on population data by county from the 2000 Census
[3, 4] and assuming homogenous distribution inside each county. The districting algorithm
moves laterally across the state, dividing the region into columns. During this process, two
factors are under consideration: The number of residents encompassed by the column and
the population density of each district. Columns contain a multiple of the number of indi-
viduals in a district that would be found in each district if the state’s populace were to be
uniformly divided. However, the size of districts is bounded by population density, which we
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prevent from deviating too much from that of the entire state. Thus, in “thicker” regions of
the state, the algorithm establishes more districts per column; in areas that are rural and
sparsely populated, the algorithm creates districts that are generally larger in size.

Consequently, in Figure 3, the rectangles correspond to the districts created via our
algorithm; each point corresponds to approximately 3000 people. As expected, smaller
districts correspond to higher population densities, and larger districts to lower population
densities. In particular, notice that some of the smallest districts correspond to the Lone
Star State’s largest urban centers, namely, Austin, Dallas, and Houston.

Figure 3: An illustration of the proposed districting method applied to the state of Texas.
Red illustrates population density based on the 2000 Census.
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